1
|
Lim C, Jeon J, Park K, Liang C, Chae Y, Kwak K, Cho M. Revisiting Ultrafast Dynamics in Carbonate-Based Electrolytes for Li-Ion Batteries: Clarifying 2D-IR Cross-Peak Interpretation. J Phys Chem B 2023; 127:9566-9574. [PMID: 37905968 DOI: 10.1021/acs.jpcb.3c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Understanding chemical exchange in carbonate-based electrolytes employed in Li-ion batteries (LIBs) is crucial for elucidating ion transport mechanisms. Ultrafast two-dimensional (2D) IR spectroscopy has been widely used to investigate the solvation structure and dynamics of Li-ions in organic carbonate-based electrolytes. However, the interpretation of cross-peaks observed in picosecond carbonyl stretch 2D-IR spectra has remained contentious. These cross-peaks could arise from various phenomena, including vibrational couplings between neighboring carbonyl groups in the first solvation shell around Li-ions, vibrational excitation transfers between carbonyl groups in distinct solvation environments, and local heating effects. Therefore, it is imperative to resolve the interpretation of 2D-IR cross-peaks to avoid misinterpretations regarding ultrafast dynamics found in LIB carbonate-based electrolytes. In this study, we have taken a comprehensive investigation of carbonate-based electrolytes utilizing 2D-IR spectroscopy and molecular dynamics (MD) simulations. Through meticulous analyses and interpretations, we have identified that the cross-peaks observed in the picosecond 2D-IR spectra of LIB electrolytes predominantly arise from intermolecular vibrational excitation transfer processes between the carbonyl groups of Li-bound and free carbonate molecules. We further discuss the limitations of employing a picosecond 2D-IR spectroscopic technique to study chemical exchange and intermolecular vibrational excitation transfer processes, particularly when the effects of the molecular photothermal process cannot be ignored. Our findings shed light on the dynamics of LIB electrolytes and resolve the controversy related to 2D-IR cross-peaks. By discerning the origin of these features, we could provide valuable insights for the design and optimization of next-generation Li-ion batteries.
Collapse
Affiliation(s)
- Chaiho Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chungwen Liang
- Creyon Bio Inc., San Diego, California 92121, United States
| | - Yeongseok Chae
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Rutherford SH, Baker MJ, Hunt NT. 2D-IR spectroscopy of proteins in H 2O-A Perspective. J Chem Phys 2023; 158:030901. [PMID: 36681646 DOI: 10.1063/5.0129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The form of the amide I infrared absorption band provides a sensitive probe of the secondary structure and dynamics of proteins in the solution phase. However, the frequency coincidence of the amide I band with the bending vibrational mode of H2O has necessitated the widespread use of deuterated solvents. Recently, it has been demonstrated that ultrafast 2D-IR spectroscopy allows the detection of the protein amide I band in H2O-based fluids, meaning that IR methods can now be applied to study proteins in physiologically relevant solvents. In this perspective, we describe the basis of the 2D-IR method for observing the protein amide I band in H2O and show how this development has the potential to impact areas ranging from our fundamental appreciation of protein structural dynamics to new applications for 2D-IR spectroscopy in the analytical and biomedical sciences. In addition, we discuss how the spectral response of water, rather than being a hindrance, now provides a basis for new approaches to data pre-processing, standardization of 2D-IR data collection, and signal quantification. Ultimately, we visualize a direction of travel toward the creation of 2D-IR spectral libraries that can be linked to advanced computational methods for use in high-throughput protein screening and disease diagnosis.
Collapse
Affiliation(s)
- Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Matthew J Baker
- School of Medicine, Faculty of Clinical Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
3
|
Freindorf M, Delgado AAA, Kraka E. CO bonding in hexa‐ and pentacoordinate carboxy‐neuroglobin: A quantum mechanics/molecular mechanics and local vibrational mode study. J Comput Chem 2022. [DOI: 10.1002/jcc.26973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marek Freindorf
- Department of Chemistry Southern Methodist University Dallas Texas USA
| | | | - Elfi Kraka
- Department of Chemistry Southern Methodist University Dallas Texas USA
| |
Collapse
|
4
|
Abstract
Multidimensional optical spectra are measured from the response of a material system to a sequence of laser pulses and have the capacity to elucidate specific molecular interactions and dynamics whose influences are absent or obscured in a conventional linear absorption spectrum. Interpretation of complex spectra is supported by theoretical modeling of the spectroscopic observable, requiring implementation of quantum dynamics for coupled electrons and nuclei. Performing numerically correct quantum dynamics in this context may pose computational challenges, particularly in the condensed phase. Semiclassical methods based on calculating classical trajectories offer a practical alternative. Here I review the recent application of some semiclassical, trajectory-based methods to nonlinear molecular vibrational and electronic spectra. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Roger F. Loring
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Amadei A, Aschi M. Stationary and Time-Dependent Carbon Monoxide Stretching Mode Features in Carboxy Myoglobin: A Theoretical-Computational Reappraisal. J Phys Chem B 2021; 125:13624-13634. [PMID: 34904432 DOI: 10.1021/acs.jpcb.1c05815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The stationary and time-dependent infrared spectrum (IR) of the CO stretching mode (νCO) in carboxymyoglobin (MbCO), a longstanding problem of biophysical chemistry, has been modeled through a theoretical-computational method specifically designed for simulating quantum observables in complex atomic-molecular systems and based on a combined application of long time scale molecular dynamics simulations and quantum-chemical calculations. This study is basically focused on two aspects: (i) the origin of the stationary IR substates (termed as A0, A1, and A3) and (ii) the modeling and the interpretation of the νCO energy relaxation. The results, strengthened by a more than satisfactory agreement with the experimental data, concisely indicate that (i) the conformational His64-FeCO relevant substates, i.e., characterized by the formation-disruption of the H-bond between the above moieties, are the main responsible of the presence of two distinct and well separated (A0 and A1/A3) spectroscopic regions; (ii) the characteristic bimodal shape of the A1/A3 spectral region, according to our model, is the result of the fluctuation of the electric field pattern as provided by the protein-solvent framework perturbing the bound His64-CO-Heme complex; and (iii) the electric field pattern, in conjunction with the relatively high density of MbCO vibrational states, is also the main determinant of the νCO energy relaxation, characterizing its kinetic efficiency.
Collapse
Affiliation(s)
- Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00 133 Roma, Italia
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università de l'Aquila, via Vetoio (Coppito 1), 67 010 l'Aquila, Italia
| |
Collapse
|
6
|
Kübel J, Lee G, Ooi SA, Westenhoff S, Han H, Cho M, Maj M. Ultrafast Chemical Exchange Dynamics of Hydrogen Bonds Observed via Isonitrile Infrared Sensors: Implications for Biomolecular Studies. J Phys Chem Lett 2019; 10:7878-7883. [PMID: 31794222 DOI: 10.1021/acs.jpclett.9b03144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Local probes are indispensable to study protein structure and dynamics with site-specificity. The isonitrile functional group is a highly sensitive and H-bonding interaction-specific probe. Isonitriles exhibit large spectral shifts and transition dipole moment changes upon H-bonding while being weakly affected by solvent polarity. These unique properties allow a clear separation of distinct subpopulations of interacting species and an elucidation of their ultrafast dynamics with two-dimensional infrared (2D-IR) spectroscopy. Here, we apply 2D-IR to quantify the picosecond chemical exchange dynamics of solute-solvent complexes forming between isonitrile-derivatized alanine and fluorinated ethanol, where the degree of fluorination controls their H-bond-donating ability. We show that the molecules undergo faster exchange in the presence of more acidic H-bond donors, indicating that the exchange process is primarily dependent on the nature of solvent-solvent interactions. We foresee isonitrile as a highly promising probe for studying of H-bonds dynamics in the active site of enzymes.
Collapse
Affiliation(s)
- Joachim Kübel
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Giseong Lee
- Department of Chemistry , Korea University , Seoul 02841 , South Korea
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Hogyu Han
- Department of Chemistry , Korea University , Seoul 02841 , South Korea
| | - Minhaeng Cho
- Department of Chemistry , Korea University , Seoul 02841 , South Korea
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , South Korea
| | - Michał Maj
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden
| |
Collapse
|
7
|
Chatterjee S, Ghosh D, Haldar T, Deb P, Sakpal SS, Deshmukh SH, Kashid SM, Bagchi S. Hydrocarbon Chain-Length Dependence of Solvation Dynamics in Alcohol-Based Deep Eutectic Solvents: A Two-Dimensional Infrared Spectroscopic Investigation. J Phys Chem B 2019; 123:9355-9363. [DOI: 10.1021/acs.jpcb.9b08954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Deborin Ghosh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Tapas Haldar
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranab Deb
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil S. Sakpal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samadhan H. Deshmukh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Somnath M. Kashid
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Song Y, Konar A, Sechrist R, Roy VP, Duan R, Dziurgot J, Policht V, Matutes YA, Kubarych KJ, Ogilvie JP. Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013108. [PMID: 30709236 DOI: 10.1063/1.5055244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Multidimensional spectroscopy is the optical analog to nuclear magnetic resonance, probing dynamical processes with ultrafast time resolution. At optical frequencies, the technical challenges of multidimensional spectroscopy have hindered its progress until recently, where advances in laser sources and pulse-shaping have removed many obstacles to its implementation. Multidimensional spectroscopy in the visible and infrared (IR) regimes has already enabled respective advances in our understanding of photosynthesis and the structural rearrangements of liquid water. A frontier of ultrafast spectroscopy is to extend and combine multidimensional techniques and frequency ranges, which have been largely restricted to operating in the distinct visible or IR regimes. By employing two independent amplifiers seeded by a single oscillator, it is straightforward to span a wide range of time scales (femtoseconds to seconds), all of which are often relevant to the most important energy conversion and catalysis problems in chemistry, physics, and materials science. Complex condensed phase systems have optical transitions spanning the ultraviolet (UV) to the IR and exhibit dynamics relevant to function on time scales of femtoseconds to seconds and beyond. We describe the development of the Multispectral Multidimensional Nonlinear Spectrometer (MMDS) to enable studies of dynamical processes in atomic, molecular, and material systems spanning femtoseconds to seconds, from the UV to the IR regimes. The MMDS employs pulse-shaping methods to provide an easy-to-use instrument with an unprecedented spectral range that enables unique combination spectroscopies. We demonstrate the multispectral capabilities of the MMDS on several model systems.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Riley Sechrist
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Ved Prakash Roy
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Rong Duan
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jared Dziurgot
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Veronica Policht
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Yassel Acosta Matutes
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Eckert PA, Kubarych KJ. Solvent Quality Controls Macromolecular Structural Dynamics of a Dendrimeric Hydrogenase Model. J Phys Chem B 2018; 122:12154-12163. [PMID: 30427195 DOI: 10.1021/acs.jpcb.8b07259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report a spectroscopic investigation of the ultrafast dynamics of the second-generation poly(aryl ether) dendritic hydrogenase model using two-dimensional infrared (2D-IR) spectroscopy to probe the metal carbonyl vibrations of the dendrimer and a reference small molecule, [Fe(μ-S)(CO)3]2. We find that the structural dynamics of the dendrimer are reflected in a slow phase of the spectral diffusion, which is absent from [Fe(μ-S)(CO)3]2, and we relate the slow phase to the quality of the solvent for poly(aryl ether) dendrimers. We observe a solvent-dependent modulation of the initial phase of vibrational relaxation of the carbonyl groups, which we attribute to an inhibition of solvent assistance in the intramolecular vibrational redistribution process for the dendrimer. There is also a clear solvent dependence of the vibrational frequencies of both the dendrimer and [Fe(μ-S)(CO)3]2. Our data represent the first 2D-IR study of a dendritic complex and provide insight into the solvent dependence of molecular conformation in solution and the ultrafast dynamics of moderately sized, conformationally mobile compounds.
Collapse
Affiliation(s)
- Peter A Eckert
- Department of Chemistry , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 49109 , United States
| | - Kevin J Kubarych
- Department of Chemistry , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 49109 , United States
| |
Collapse
|
10
|
Kossowska D, Kwak K, Cho M. Do Osmolytes Impact the Structure and Dynamics of Myoglobin? Molecules 2018; 23:E3189. [PMID: 30513982 PMCID: PMC6321238 DOI: 10.3390/molecules23123189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 11/16/2022] Open
Abstract
Osmolytes are small organic compounds that can affect the stability of proteins in living cells. The mechanism of osmolytes' protective effects on protein structure and dynamics has not been fully explained, but in general, two possibilities have been suggested and examined: a direct interaction of osmolytes with proteins (water replacement hypothesis), and an indirect interaction (vitrification hypothesis). Here, to investigate these two possible mechanisms, we studied myoglobin-osmolyte systems using FTIR, UV-vis, CD, and femtosecond IR pump-probe spectroscopy. Interestingly, noticeable changes are observed in both the lifetime of the CO stretch of CO-bound myoglobin and the spectra of UV-vis, CD, and FTIR upon addition of the osmolytes. In addition, the temperature-dependent CD studies reveal that the protein's thermal stability depends on molecular structure, hydrogen-bonding ability, and size of osmolytes. We anticipate that the present experimental results provide important clues about the complicated and intricate mechanism of osmolyte effects on protein structure and dynamics in a crowded cellular environment.
Collapse
Affiliation(s)
- Dorota Kossowska
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea.
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea.
- Department of Chemistry, Korea University, Seoul 136-713, Korea.
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea.
| |
Collapse
|
11
|
Kiefer LM, Kubarych KJ. Two-dimensional infrared spectroscopy of coordination complexes: From solvent dynamics to photocatalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Mondal P, Meuwly M. Vibrational Stark spectroscopy for assessing ligand-binding strengths in a protein. Phys Chem Chem Phys 2018; 19:16131-16143. [PMID: 28604854 DOI: 10.1039/c7cp01892d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitrile groups are potentially useful spectroscopic probes in the infrared to characterize the binding and dynamics of ligands in proteins. This opens the possibility of locating and determining the binding mode of suitably labelled ligands in proteins based on optical spectroscopy, without the need for determining an X-ray structure. However, relating structure and spectroscopy requires means to accurately compute infrared spectra. This is investigated for benzonitrile (PhCN) in water, wild type (WT) and two lysozyme mutants in solution. The force field is validated by comparing with experimental data for benzonitrile in water which is the basis for computing the Stark shift and time scale for spectral diffusion of PhCN in WT and the L99A and L99G mutants of T4 lysozyme. The 1-d spectra for PhCN in WT and the two mutant proteins differ in their maximum absorption by up to 4 cm-1, which reflects the modified electrostatic environments in the three proteins. It is also tested whether extending from 1-d to 2-d infrared spectroscopy provides further discrimination in the ligand-binding modes. First, for PhCN in solution the frequency fluctuation correlation function (FFCF) decays to zero at short times whereas in the protein a pronounced static inhomogeneous component is found. Secondly, the decay time of the FFCF for the mutant to which PhCN binds most strongly has the longest decay time. It is demonstrated explicitly that the ligand-binding free energy with respect to the three protein variants correlates with the Stark shift. This makes 1-d infrared spectroscopy together with computations a valuable tool for characterizing binding modes and potentially binding locations in proteins.
Collapse
Affiliation(s)
- Padmabati Mondal
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056-Basel, Switzerland.
| | | |
Collapse
|
13
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Eckert PA, Kubarych KJ. Dynamic Flexibility of Hydrogenase Active Site Models Studied with 2D-IR Spectroscopy. J Phys Chem A 2017; 121:608-615. [PMID: 28032999 DOI: 10.1021/acs.jpca.6b11962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogenase enzymes enable organisms to use H2 as an energy source, having evolved extremely efficient biological catalysts for the reversible oxidation of molecular hydrogen. Small-molecule mimics of these enzymes provide both simplified models of the catalysis reactions and potential artificial catalysts that might be used to facilitate a hydrogen economy. We have studied two diiron hydrogenase mimics, μ-pdt-[Fe(CO)3]2 and μ-edt-[Fe(CO)3]2 (pdt = propanedithiolate, edt = ethanedithiolate), in a series of alkane solvents and have observed significant ultrafast spectral dynamics using two-dimensional infrared (2D-IR) spectroscopy. Since solvent fluctuations in nonpolar alkanes do not lead to substantial electrostatic modulations in a solute's vibrational mode frequencies, we attribute the spectral diffusion dynamics to intramolecular flexibility. The intramolecular origin is supported by the absence of any measurable solvent viscosity dependence, indicating that the frequency fluctuations are not coupled to the solvent motional dynamics. Quantum chemical calculations reveal a pronounced coupling between the low-frequency torsional rotation of the carbonyl ligands and the terminal CO stretching vibrations. The flexibility of the CO ligands has been proposed to play a central role in the catalytic reaction mechanism, and our results highlight that the CO ligands are highly flexible on a picosecond time scale.
Collapse
Affiliation(s)
- Peter A Eckert
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Maj M, Ahn C, Błasiak B, Kwak K, Han H, Cho M. Isonitrile as an Ultrasensitive Infrared Reporter of Hydrogen-Bonding Structure and Dynamics. J Phys Chem B 2016; 120:10167-10180. [DOI: 10.1021/acs.jpcb.6b04319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Michał Maj
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Changwoo Ahn
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Bartosz Błasiak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hogyu Han
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
17
|
Pagano P, Guo Q, Kohen A, Cheatum CM. Oscillatory Enzyme Dynamics Revealed by Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2016; 7:2507-11. [PMID: 27305279 PMCID: PMC4939886 DOI: 10.1021/acs.jpclett.6b01154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Enzymes move on a variety of length and time scales. While much is known about large structural fluctuations that impact binding of the substrates and release of products, little is known about faster motions of enzymes and how these motions may influence enzyme-catalyzed reactions. This Letter reports frequency fluctuations of the azide anion bound to the active site of formate dehydrogenase measured via 2D IR spectroscopy. These measurements reveal an underdamped oscillatory component to the frequency-frequency correlation function when the azide is bound to the NAD(+) ternary complex. This oscillation disappears when the reduced cofactor is added, indicating that the oscillating contributions most likely come from the charged nicotinamide ring. These oscillatory motions may be relevant to donor-acceptor distance sampling of the catalyzed hydride transfer and therefore may give future insights into the dynamic behavior involved in enzyme catalysis.
Collapse
Affiliation(s)
- Philip Pagano
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Qi Guo
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Amnon Kohen
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
18
|
Falvo C. A new interpretation of the meaning of the center of line slope from a two-dimensional infrared spectrum. J Chem Phys 2016; 144:234103. [PMID: 27334150 DOI: 10.1063/1.4953848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This article presents a new approximation to understand the connection between the center of line slope from a single peak of a two-dimensional (2D) infrared spectrum and the frequency-frequency correlation function. This approximation which goes beyond the short-time approximation includes explicitly pure dephasing mechanisms by introducing a time parameter that separates the fast fluctuations and slow fluctuations. While in the short-time approximation, the center of line slope is given by the normalized frequency fluctuations auto-correlation function, I show using this new approximation that the center of line slope measures on long time scales a shifted and scaled correlation function. The results present a new interpretation of the meaning of the center of line slope that allows for a better understanding of what 2D experiments can measure. To illustrate these findings, I compare this approximation with the short-time approximation for several examples of frequency-frequency correlation functions. I also give an estimate of the value of the time separation parameter for a correlation function with a simple exponential decay.
Collapse
Affiliation(s)
- Cyril Falvo
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
19
|
Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem 2016; 408:2875-89. [PMID: 26879650 DOI: 10.1007/s00216-016-9375-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
Abstract
Mid-infrared (MIR) spectroscopy investigates the interaction of MIR photons with both organic and inorganic molecules via the excitation of vibrational and rotational modes, providing inherent molecular selectivity. In general, infrared (IR) spectroscopy is particularly sensitive to protein structure and structural changes via vibrational resonances originating from the polypeptide backbone or side chains; hence information on the secondary structure of proteins can be obtained in a label-free fashion. In this review, the challenges for IR spectroscopy for protein analysis are discussed as are the potential and limitations of different IR spectroscopic techniques enabling protein analysis. In particular, the amide I spectral range has been widely used to study protein secondary structure, conformational changes, protein aggregation, protein adsorption, and the formation of amyloid fibrils. In addition to representative examples of the potential of IR spectroscopy in various fields related to protein analysis, the potential of protein analysis taking advantage of miniaturized MIR systems, including waveguide-enhanced MIR sensors, is detailed.
Collapse
|
20
|
Chatterjee P, Sengupta N. Signatures of protein thermal denaturation and local hydrophobicity in domain specific hydration behavior: a comparative molecular dynamics study. MOLECULAR BIOSYSTEMS 2016; 12:1139-50. [PMID: 26876051 DOI: 10.1039/c6mb00017g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigate, using atomistic molecular dynamics simulations, the association of surface hydration accompanying local unfolding in the mesophilic protein Yfh1 under a series of thermal conditions spanning its cold and heat denaturation temperatures. The results are benchmarked against the thermally stable protein, Ubq, and behavior at the maximum stability temperature. Local unfolding in Yfh1, predominantly in the beta sheet regions, is in qualitative agreement with recent solution NMR studies; the corresponding Ubq unfolding is not observed. Interestingly, all domains, except for the beta sheet domains of Yfh1, show increased effective surface hydrophobicity with increase in temperature, as reflected by the density fluctuations of the hydration layer. Velocity autocorrelation functions (VACF) of oxygen atoms of water within the hydration layers and the corresponding vibrational density of states (VDOS) are used to characterize alteration in dynamical behavior accompanying the temperature dependent local unfolding. Enhanced caging effects accompanying transverse oscillations of the water molecules are found to occur with the increase in temperature preferentially for the beta sheet domains of Yfh1. Helical domains of both proteins exhibit similar trends in VDOS with changes in temperature. This work demonstrates the existence of key signatures of the local onset of protein thermal denaturation in solvent dynamical behavior.
Collapse
Affiliation(s)
- Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
21
|
Ultrafast Structural Fluctuations of Myoglobin-Bound Thiocyanate and Selenocyanate Ions Measured with Two-Dimensional Infrared Photon Echo Spectroscopy. Chemphyschem 2015; 16:3468-76. [DOI: 10.1002/cphc.201500606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/27/2015] [Indexed: 11/07/2022]
|
22
|
Ross MR, White AM, Yu F, King JT, Pecoraro VL, Kubarych KJ. Histidine Orientation Modulates the Structure and Dynamics of a de Novo Metalloenzyme Active Site. J Am Chem Soc 2015; 137:10164-76. [PMID: 26247178 PMCID: PMC5250509 DOI: 10.1021/jacs.5b02840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ultrafast dynamics of a de novo metalloenzyme active site is monitored using two-dimensional infrared spectroscopy. The homotrimer of parallel, coiled coil α-helices contains a His3-Cu(I) metal site where CO is bound and serves as a vibrational probe of the hydrophobic interior of the self-assembled complex. The ultrafast spectral dynamics of Cu-CO reveals unprecedented ultrafast (2 ps) nonequilibrium structural rearrangements launched by vibrational excitation of CO. This initial rapid phase is followed by much slower ∼40 ps vibrational relaxation typical of metal-CO vibrations in natural proteins. To identify the hidden coupled coordinate, small molecule analogues and the full peptide were studied by QM and QM/MM calculations, respectively. The calculations show that variation of the histidines' dihedral angles in coordinating Cu controls the coupling between the CO stretch and the Cu-C-O bending coordinates. Analysis of different optimized structures with significantly different electrostatic field magnitudes at the CO ligand site indicates that the origin of the stretch-bend coupling is not directly due to through-space electrostatics. Instead, the large, ∼3.6 D dipole moments of the histidine side chains effectively transduce the electrostatic environment to the local metal coordination orientation. The sensitivity of the first coordination sphere to the protein electrostatics and its role in altering the potential energy surface of the bound ligands suggests that long-range electrostatics can be leveraged to fine-tune function through enzyme design.
Collapse
Affiliation(s)
| | | | | | | | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
|
24
|
Falvo C, Daniault L, Vieille T, Kemlin V, Lambry JC, Meier C, Vos MH, Bonvalet A, Joffre M. Ultrafast Dynamics of Carboxy-Hemoglobin: Two-Dimensional Infrared Spectroscopy Experiments and Simulations. J Phys Chem Lett 2015; 6:2216-2222. [PMID: 26266594 DOI: 10.1021/acs.jpclett.5b00811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Letter presents a comparison between experimental and simulated 2D mid-infrared spectra of carboxy-hemoglobin in the spectral region of the carbon monoxide stretching mode. The simulations rely on a fluctuating potential energy surface that includes both the effect of heme and the protein surroundings computed from molecular dynamics simulations. A very good agreement between theory and experiment is obtained with no adjustable parameters. The simulations show that the effect of the distal histidine through the hydrogen bond is strong and is directly responsible for the slow decay of the frequency-frequency correlation function on a 10 ps time scale. This study confirms that fluctuations in carboxy-hemoglobin are more inhomogeneous than those in the more frequently studied carboxy-myoglobin. The comparison between simulations and experiments brings valuable information on the complex relation between protein structure and spectral diffusion.
Collapse
Affiliation(s)
- Cyril Falvo
- †Institut des Sciences Moléculaires d'Orsay, Univ Paris-Sud, CNRS UMR 8214, 91405 Orsay, France
| | - Louis Daniault
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Thibault Vieille
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Vincent Kemlin
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Christoph Meier
- §Laboratoire Collisions Agrégats et Réactivité, IRSAMC, Université Paul Sabatier, CNRS UMR 5589, 31062 Toulouse, France
| | - Marten H Vos
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Adeline Bonvalet
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Manuel Joffre
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| |
Collapse
|
25
|
Shaw DJ, Adamczyk K, Frederix PWJM, Simpson N, Robb K, Greetham GM, Towrie M, Parker AW, Hoskisson PA, Hunt NT. Multidimensional infrared spectroscopy reveals the vibrational and solvation dynamics of isoniazid. J Chem Phys 2015; 142:212401. [DOI: 10.1063/1.4914097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Daniel J. Shaw
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Katrin Adamczyk
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Pim W. J. M. Frederix
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Niall Simpson
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Kirsty Robb
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Gregory M. Greetham
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Michael Towrie
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Anthony W. Parker
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Neil T. Hunt
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
26
|
Giammanco CH, Kramer PL, Fayer MD. Dynamics of Dihydrogen Bonding in Aqueous Solutions of Sodium Borohydride. J Phys Chem B 2015; 119:3546-59. [DOI: 10.1021/jp512426y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chiara H. Giammanco
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Patrick L. Kramer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
27
|
Simpson N, Adamczyk K, Hithell G, Shaw DJ, Greetham GM, Towrie M, Parker AW, Hunt NT. The effect on structural and solvent water molecules of substrate binding to ferric horseradish peroxidase. Faraday Discuss 2015; 177:163-79. [DOI: 10.1039/c4fd00161c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast, multi-dimensional infrared spectroscopy, in the form of 2D-IR and pump–probe measurements, has been employed to investigate the effect of substrate binding on the structural dynamics of the horseradish peroxidase (HRP) enzyme. Using nitric oxide bound to the ferric haem of HRP as a sensitive probe of local dynamics, we report measurements of the frequency fluctuations (spectral diffusion) and vibrational lifetime of the NO stretching mode with benzohydroxamic acid (BHA) located in the substrate-binding position at the periphery of the haem pocket, in both D2O and H2O solvents. The results reveal that, with BHA bound to the enzyme, the local structural dynamics are insensitive to H/D exchange. These results are in stark contrast to those found in studies of the substrate-free enzyme, which demonstrated that the local chemical and dynamic environment of the haem ligand is influenced by water molecules. In light of the large changes in solvent accessibility caused by substrate binding, we discuss the potential for varying roles for the solvent in the haem pocket of HRP at different stages along the reaction coordinate of the enzymatic mechanism.
Collapse
Affiliation(s)
- Niall Simpson
- Department of Physics
- University of Strathclyde
- SUPA
- Glasgow
- UK
| | | | - Gordon Hithell
- Department of Physics
- University of Strathclyde
- SUPA
- Glasgow
- UK
| | - Daniel J. Shaw
- Department of Physics
- University of Strathclyde
- SUPA
- Glasgow
- UK
| | - Gregory M. Greetham
- Central Laser Facility, Research Complex at Harwell
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | - Anthony W. Parker
- Central Laser Facility, Research Complex at Harwell
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | - Neil T. Hunt
- Department of Physics
- University of Strathclyde
- SUPA
- Glasgow
- UK
| |
Collapse
|
28
|
Chatterjee P, Bagchi S, Sengupta N. The non-uniform early structural response of globular proteins to cold denaturing conditions: a case study with Yfh1. J Chem Phys 2014; 141:205103. [PMID: 25429964 DOI: 10.1063/1.4901897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanism of cold denaturation in proteins is often incompletely understood due to limitations in accessing the denatured states at extremely low temperatures. Using atomistic molecular dynamics simulations, we have compared early (nanosecond timescale) structural and solvation properties of yeast frataxin (Yfh1) at its temperature of maximum stability, 292 K (Ts), and the experimentally observed temperature of complete unfolding, 268 K (Tc). Within the simulated timescales, discernible "global" level structural loss at Tc is correlated with a distinct increase in surface hydration. However, the hydration and the unfolding events do not occur uniformly over the entire protein surface, but are sensitive to local structural propensity and hydrophobicity. Calculated infrared absorption spectra in the amide-I region of the whole protein show a distinct red shift at Tc in comparison to Ts. Domain specific calculations of IR spectra indicate that the red shift primarily arises from the beta strands. This is commensurate with a marked increase in solvent accessible surface area per residue for the beta-sheets at Tc. Detailed analyses of structure and dynamics of hydration water around the hydrophobic residues of the beta-sheets show a more bulk water like behavior at Tc due to preferential disruption of the hydrophobic effects around these domains. Our results indicate that in this protein, the surface exposed beta-sheet domains are more susceptible to cold denaturing conditions, in qualitative agreement with solution NMR experimental results.
Collapse
Affiliation(s)
- Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sayan Bagchi
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
29
|
Adamczyk K, Simpson N, Greetham GM, Gumiero A, Walsh MA, Towrie M, Parker AW, Hunt NT. Ultrafast infrared spectroscopy reveals water-mediated coherent dynamics in an enzyme active site. Chem Sci 2014; 6:505-516. [PMID: 28936306 PMCID: PMC5588449 DOI: 10.1039/c4sc02752c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 11/24/2022] Open
Abstract
Ultrafast infrared spectroscopy provides insights into the dynamic nature of water in the active sites of catalase and peroxidase enzymes.
Understanding the impact of fast dynamics upon the chemical processes occurring within the active sites of proteins and enzymes is a key challenge that continues to attract significant interest, though direct experimental insight in the solution phase remains sparse. Similar gaps in our knowledge exist in understanding the role played by water, either as a solvent or as a structural/dynamic component of the active site. In order to investigate further the potential biological roles of water, we have employed ultrafast multidimensional infrared spectroscopy experiments that directly probe the structural and vibrational dynamics of NO bound to the ferric haem of the catalase enzyme from Corynebacterium glutamicum in both H2O and D2O. Despite catalases having what is believed to be a solvent-inaccessible active site, an isotopic dependence of the spectral diffusion and vibrational lifetime parameters of the NO stretching vibration are observed, indicating that water molecules interact directly with the haem ligand. Furthermore, IR pump–probe data feature oscillations originating from the preparation of a coherent superposition of low-frequency vibrational modes in the active site of catalase that are coupled to the haem ligand stretching vibration. Comparisons with an exemplar of the closely-related peroxidase enzyme family shows that they too exhibit solvent-dependent active-site dynamics, supporting the presence of interactions between the haem ligand and water molecules in the active sites of both catalases and peroxidases that may be linked to proton transfer events leading to the formation of the ferryl intermediate Compound I. In addition, a strong, water-mediated, hydrogen bonding structure is suggested to occur in catalase that is not replicated in peroxidase; an observation that may shed light on the origins of the different functions of the two enzymes.
Collapse
Affiliation(s)
- Katrin Adamczyk
- Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK .
| | - Niall Simpson
- Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK .
| | - Gregory M Greetham
- Central Laser Facility , Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford , Didcot, Oxon , OX11 0QX , UK
| | - Andrea Gumiero
- Diamond Light Source , Diamond House, Harwell Science and Innovation Campus , Didcot, Oxfordshire , OX11 0DE , UK
| | - Martin A Walsh
- Diamond Light Source , Diamond House, Harwell Science and Innovation Campus , Didcot, Oxfordshire , OX11 0DE , UK
| | - Michael Towrie
- Central Laser Facility , Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford , Didcot, Oxon , OX11 0QX , UK
| | - Anthony W Parker
- Central Laser Facility , Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford , Didcot, Oxon , OX11 0QX , UK
| | - Neil T Hunt
- Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK .
| |
Collapse
|
30
|
Maj M, Oh Y, Park K, Lee J, Kwak KW, Cho M. Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin. J Chem Phys 2014; 140:235104. [DOI: 10.1063/1.4883505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Kel O, Tamimi A, Fayer MD. The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy. J Phys Chem B 2014; 119:8852-62. [DOI: 10.1021/jp503940k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Oksana Kel
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Amr Tamimi
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
32
|
Size-dependent ultrafast structural dynamics inside phospholipid vesicle bilayers measured with 2D IR vibrational echoes. Proc Natl Acad Sci U S A 2014; 111:918-23. [PMID: 24395796 DOI: 10.1073/pnas.1323110111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ultrafast structural dynamics inside the bilayers of dilauroylphosphatidylcholine (DLPC) and dipalmitoylphosphatidylcholine vesicles with 70, 90, and 125 nm diameters were directly measured with 2D IR vibrational echo spectroscopy. The antisymmetric CO stretch of tungsten hexacarbonyl was used as a vibrational probe and provided information on spectral diffusion (structural dynamics) in the alkyl region of the bilayers. Although the CO stretch absorption spectra remain the same, the interior structural dynamics become faster as the size of the vesicles decrease, with the size dependence greater for dipalmitoylphosphatidylcholine than for DLPC. As DLPC vesicles become larger, the interior dynamics approach those of the planar bilayer.
Collapse
|
33
|
Abstract
This Perspective discusses applications of ultrafast transient 2D-IR spectroscopy methods to the study of inorganic excited states.
Collapse
Affiliation(s)
- N. T. Hunt
- Department of Physics
- University of Strathclyde
- Glasgow, UK
| |
Collapse
|
34
|
pH-dependent picosecond structural dynamics in the distal pocket of nitrophorin 4 investigated by 2D IR spectroscopy. J Phys Chem B 2013; 117:15804-11. [PMID: 23885811 DOI: 10.1021/jp407052a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrophorin 4 (NP4) belongs to a family of pH-sensitive, nitric oxide (NO) transporter proteins that undergo a large structural change from a closed to an open conformation at high pH to allow for NO delivery. Measuring the pH-dependent structural dynamics in NP4-NO around the ligand binding site is crucial for developing a mechanistic understanding of NO binding and release. In this study, we use coherent two-dimensional infrared (2D IR) spectroscopy to measure picosecond structural dynamics sampled by the nitrosyl stretch in NP4-NO as a function of pH at room temperature. Our results show that both the closed and open conformers of the protein are present at low (pD 5.1) and high (pD 7.9) pH conditions. The closed and open conformers are characterized by two frequencies of the nitrosyl stretching vibration labeled A0 and A1, respectively. Analysis of the 2D IR line shapes reveals that at pD 5.1, the closed conformer experiences structural fluctuations arising from solvation dynamics on a ∼3 ps time scale. At pD 7.9, both the open and closed conformers exhibit fluctuations on a ∼1 ps time scale. At both pD conditions, the closed conformers maintain a static distribution of structures within the experimental time window of 100 ps. This is in contrast to the open conformer, which is able to interconvert among its substates on a ∼100 ps time scale. Our results directly measure the time scales of solvation dynamics in the distal pocket, the flexibility of the open conformation at high pH, and the rigidity of the closed conformers at both pH conditions. We discuss how the pH-dependent equilibrium structural fluctuations of the nitrosyl ligand measured in this study are related to the uptake and delivery of nitric oxide in NP4.
Collapse
|
35
|
Choi JH, Kwak KW, Cho M. Computational infrared and two-dimensional infrared photon echo spectroscopy of both wild-type and double mutant myoglobin-CO proteins. J Phys Chem B 2013; 117:15462-78. [PMID: 23869523 DOI: 10.1021/jp405210s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The CO stretching mode of both wild-type and double mutant ( T67R / S92D ) MbCO (carbonmonoxymyoglobin) proteins is an ideal infrared (IR) probe for studying the local electrostatic environment inside the myoglobin heme pocket. Recently, to elucidate the conformational switching dynamics between two distinguishable states, extensive IR absorption, IR pump-probe, and two-dimensional (2D) IR spectroscopic studies for various mutant MbCO's have been performed by the Fayer group. They showed that the 2D IR spectroscopy of the double mutant, which has a peroxidase enzyme activity, reveals a rapid chemical exchange between two distinct states, whereas that of the wild-type does not. Despite the fact that a few simulation studies on these systems were already performed and reported, such complicated experimental results have not been fully reproduced nor described in terms of conformational state-to-state transition processes. Here, we first develop a distributed vibrational solvatochromic charge model for describing the CO stretch frequency shift reflecting local electric potential changes. Then, by carrying out molecular dynamic simulations of the two MbCO's and examining their CO frequency trajectories, it becomes possible to identify a proper reaction coordinate consisting of His64 imidazole ring rotation and its distance to the CO ligand. From the 2D surfaces of the resulting potential of mean forces, the spectroscopically distinguished A1 and A3 states of the wild-type as well as two more substates of the double mutant are identified and their vibrational frequencies and distributions are separately examined. Our simulated IR absorption and 2D IR spectra of the two MbCO's are directly compared with the previous experimental results reported by the Fayer group. The chemical exchange rate constants extracted from the two-state kinetic analyses of the simulated 2D IR spectra are in excellent agreement with the experimental values. On the basis of the quantitative agreement between the simulated spectra and experimental ones, we further examine the conformational differences in the heme pockets of the two proteins and show that the double mutation, T67R / S92D , suppresses the A1 population, restricts the imidazole ring rotation, and increases hydrogen-bond strength between the imidazole Nε-H and the oxygen atom of the CO ligand. It is believed that such delicate change of distal His64 imidazole ring dynamics induced by the double mutation may be responsible for its enhanced peroxidase catalytic activity as compared to the wild-type myoglobin.
Collapse
Affiliation(s)
- Jun-Ho Choi
- Department of Chemistry, Korea University , Seoul 136-713, Korea
| | | | | |
Collapse
|
36
|
Kel O, Tamimi A, Thielges MC, Fayer MD. Ultrafast Structural Dynamics Inside Planar Phospholipid Multibilayer Model Cell Membranes Measured with 2D IR Spectroscopy. J Am Chem Soc 2013; 135:11063-74. [DOI: 10.1021/ja403675x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oksana Kel
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Amr Tamimi
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| |
Collapse
|
37
|
Gerace M, Loring RF. An optimized semiclassical approximation for vibrational response functions. J Chem Phys 2013; 138:124104. [PMID: 23556706 DOI: 10.1063/1.4795941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The observables of multidimensional infrared spectroscopy may be calculated from nonlinear vibrational response functions. Fully quantum dynamical calculations of vibrational response functions are generally impractical, while completely classical calculations are qualitatively incorrect at long times. These challenges motivate the development of semiclassical approximations to quantum mechanics, which use classical mechanical information to reconstruct quantum effects. The mean-trajectory (MT) approximation is a semiclassical approach to quantum vibrational response functions employing classical trajectories linked by deterministic transitions representing the effects of the radiation-matter interaction. Previous application of the MT approximation to the third-order response function R(3)(t3, t2, t1) demonstrated that the method quantitatively describes the coherence dynamics of the t3 and t1 evolution times, but is qualitatively incorrect for the waiting-time t2 period. Here we develop an optimized version of the MT approximation by elucidating the connection between this semiclassical approach and the double-sided Feynman diagrams (2FD) that represent the quantum response. Establishing the direct connection between 2FD and semiclassical paths motivates a systematic derivation of an optimized MT approximation (OMT). The OMT uses classical mechanical inputs to accurately reproduce quantum dynamics associated with all three propagation times of the third-order vibrational response function.
Collapse
Affiliation(s)
- Mallory Gerace
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
38
|
Brookes JF, Slenkamp KM, Lynch MS, Khalil M. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy. J Phys Chem A 2013; 117:6234-43. [PMID: 23480848 DOI: 10.1021/jp4005345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.
Collapse
Affiliation(s)
- Jennifer F Brookes
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
39
|
Kumar SKK, Tamimi A, Fayer MD. Dynamics in the interior of AOT lamellae investigated with two-dimensional infrared spectroscopy. J Am Chem Soc 2013; 135:5118-26. [PMID: 23465101 DOI: 10.1021/ja312676e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics inside the organic regions of aerosol-OT (AOT)/water mixtures in the lamellar mesophase, bicontinuous cubic (BC) phase, and in an analogous molecule without the charged sulfonate headgroup are investigated by observing spectral diffusion, orientational relaxation and population relaxation using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy and IR pump-probe experiments on the asymmetric CO stretch of a vibrational probe, tungsten hexacarbonyl (W(CO)6). The water layer thickness between the bilayer planes in the lamellar phase was varied. For comparison, the dynamics of W(CO)6 in the normal liquid bis(2-ethylhexyl) succinate (EHS), which is analogous to AOT but has no charged sulfonate headgroup, were also studied. The 2D IR experiments measure spectral diffusion, which results from the structural evolution of the system. Spectral diffusion is quantified by the frequency-frequency correlation function (FFCF). In addition to a homogeneous component, the FFCFs are biexponential decays with fast and slow time components of ∼12.5 and ∼150 ps in the lamellar phase. Both components of the FFCF are independent of the number of water molecules per headgroup for the lamellae, but they slow somewhat in the BC phase. The dynamics in the ordered phases are in sharp contrast to the dynamics in EHS, which displays fast and slow components of the FFCF of 5 and 80 ps, respectively. As the hydration level of AOT increases, vibrational lifetime decreases, suggesting some change in the local environment of W(CO)6 with water content.
Collapse
Affiliation(s)
- S K Karthick Kumar
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
40
|
Pal S, Bandyopadhyay S. Importance of protein conformational motions and electrostatic anchoring sites on the dynamics and hydrogen bond properties of hydration water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1162-1173. [PMID: 23289748 DOI: 10.1021/la303959m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The microscopic dynamic properties of water molecules present in the vicinity of a protein are expected to be sensitive to its local conformational motions and the presence of polar and charged groups at the surface capable of anchoring water molecules through hydrogen bonds. In this work, we attempt to understand such sensitivity by performing detailed molecular dynamics simulations of the globular protein barstar solvated in aqueous medium. Our calculations demonstrate that enhanced confinement at the protein surface on freezing its local motions leads to increasingly restricted water mobility with long residence times around the secondary structures. It is found that the inability of the surface water molecules to bind with the protein residues by hydrogen bonds in the absence of protein-water (PW) electrostatic interactions is compensated by enhanced water-water hydrogen bonds around the protein with uniform bulklike behaviors. Importantly, it is further noticed that in contrast to the PW hydrogen bond relaxation time scale, the kinetics of the breaking and formation of such bonds are not affected on freezing the protein's conformational motions.
Collapse
Affiliation(s)
- Somedatta Pal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India
| | | |
Collapse
|
41
|
Wong DB, Giammanco CH, Fenn EE, Fayer MD. Dynamics of Isolated Water Molecules in a Sea of Ions in a Room Temperature Ionic Liquid. J Phys Chem B 2013; 117:623-35. [DOI: 10.1021/jp310086s] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Daryl B. Wong
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Chiara H. Giammanco
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Emily E. Fenn
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| |
Collapse
|
42
|
Cheatum CM, Kohen A. Relationship of femtosecond-picosecond dynamics to enzyme-catalyzed H-transfer. Top Curr Chem (Cham) 2013; 337:1-39. [PMID: 23539379 PMCID: PMC4699684 DOI: 10.1007/128_2012_407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
At physiological temperatures, enzymes exhibit a broad spectrum of conformations, which interchange via thermally activated dynamics. These conformations are sampled differently in different complexes of the protein and its ligands, and the dynamics of exchange between these conformers depends on the mass of the group that is moving and the length scale of the motion, as well as restrictions imposed by the globular fold of the enzymatic complex. Many of these motions have been examined and their role in the enzyme function illuminated, yet most experimental tools applied so far have identified dynamics at time scales of seconds to nanoseconds, which are much slower than the time scale for H-transfer between two heavy atoms. This chemical conversion and other processes involving cleavage of covalent bonds occur on picosecond to femtosecond time scales, where slower processes mask both the kinetics and dynamics. Here we present a combination of kinetic and spectroscopic methods that may enable closer examination of the relationship between enzymatic C-H → C transfer and the dynamics of the active site environment at the chemically relevant time scale. These methods include kinetic isotope effects and their temperature dependence, which are used to study the kinetic nature of the H-transfer, and 2D IR spectroscopy, which is used to study the dynamics of transition-state- and ground-state-analog complexes. The combination of these tools is likely to provide a new approach to examine the protein dynamics that directly influence the chemical conversion catalyzed by enzymes.
Collapse
|
43
|
Candelaresi M, Gumiero A, Adamczyk K, Robb K, Bellota-Antón C, Sangal V, Munnoch J, Greetham GM, Towrie M, Hoskisson PA, Parker AW, Tucker NP, Walsh MA, Hunt NT. A structural and dynamic investigation of the inhibition of catalase by nitric oxide. Org Biomol Chem 2013; 11:7778-88. [DOI: 10.1039/c3ob41977k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Remorino A, Hochstrasser RM. Three-dimensional structures by two-dimensional vibrational spectroscopy. Acc Chem Res 2012; 45:1896-905. [PMID: 22458539 PMCID: PMC3392492 DOI: 10.1021/ar3000025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of experiments that can generate molecular movies of changing chemical structures is a major challenge for physical chemistry. But to realize this dream, we not only need to significantly improve existing approaches but also must invent new technologies. Most of the known protein structures have been determined by X-ray diffraction and to lesser extent by NMR. Though powerful, X-ray diffraction presents limitations for acquiring time-dependent structures. In the case of NMR, ultrafast equilibrium dynamics might be inferred from line shapes, but the structures of conformations interconverting on such time scales are not realizable. This Account highlights two-dimensional infrared spectroscopy (2D IR), in particular the 2D vibrational echo, as an approach to time-resolved structure determination. We outline the use of the 2D IR method to completely determine the structure of a protein of the integrin family in a time window of few picoseconds. As a transmembrane protein, this class of structures has proved particularly challenging for the established structural methodologies of X-ray crystallography and NMR. We describe the challenges facing multidimensional spectroscopy and compare it with some other methods of structural biology. Then we succinctly discuss the basic principles of 2D IR methods as they relate to time domain and frequency domain experimental and theoretical properties required for protein structure determination. By means of the example of the transmembrane protein, we describe the essential aspects of combined carbon-13-oxygen-18 isotope labels to create vibrational resonance pairs that allow the determination of protein and peptide structures in motion. Finally, we propose a three-dimensional structure of the αIIb transmembrane homodimer that includes optimum locations of all side chains and backbone atoms of the protein.
Collapse
Affiliation(s)
- Amanda Remorino
- Department of Chemistry, University of Pennsylvania, Philadelphia Pa 19104
| | | |
Collapse
|
45
|
Thielges MC, Fayer MD. Protein dynamics studied with ultrafast two-dimensional infrared vibrational echo spectroscopy. Acc Chem Res 2012; 45:1866-74. [PMID: 22433178 DOI: 10.1021/ar200275k] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins, enzymes, and other biological molecules undergo structural dynamics as an intrinsic part of their biological functions. While many biological processes occur on the millisecond, second, and even longer time scales, the fundamental structural dynamics that eventually give rise to such processes occur on much faster time scales. Many decades ago, chemical kineticists focused on the inverse of the reaction rate constant as the important time scale for a chemical reaction. However, through transition state theory and a vast amount of experimental evidence, we now know that the key events in a chemical reaction can involve structural fluctuations that take a system of reactants to its transition state, the crossing of a barrier, and the eventual relaxation to product states. Such dynamics occur on very fast time scales. Today researchers would like to investigate the fast structural fluctuations of biological molecules to gain an understanding of how biological processes proceed from simple structural changes in biomolecules to the final, complex biological function. The study of the fast structural dynamics of biological molecules requires experiments that operate on the appropriate time scales, and in this Account, we discuss the application of ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy to the study of protein dynamics. The 2D IR vibrational echo experiment is akin to 2D NMR, but it operates on time scales many orders of magnitude faster. In the experiments, a particular vibrational oscillator serves as a vibrational dynamics probe. As the structure of the protein evolves in time, the structural changes are manifested as time-dependent changes in the frequency of the vibrational dynamics probe. The 2D IR vibrational echo experiments can track the vibrational frequency evolution, which we then relate to the time evolution of the protein structure. In particular, we measured protein substate interconversion for mutants of myoglobin using 2D IR chemical exchange spectroscopy and observed well-defined substate interconversion on a sub-100 ps time scale. In another study, we investigated the influence of binding five different substrates to the enzyme cytochrome P450(cam). The various substrates affect the enzyme dynamics differently, and the observed dynamics are correlated with the enzyme's selectivity of hydroxylation of the substrates and with the substrate binding affinity.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| |
Collapse
|
46
|
Chung JK, Thielges MC, Lynch SR, Fayer MD. Fast dynamics of HP35 for folded and urea-unfolded conditions. J Phys Chem B 2012; 116:11024-31. [PMID: 22909017 DOI: 10.1021/jp304058x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The changes in fast dynamics of HP35 with a double CN vibrational dynamics label (HP35-P(2)) as a function of the extent of denaturation by urea were investigated with two-dimensional infrared (2D IR) vibrational echo spectroscopy. Cyanophenylalanine (PheCN) replaces the native phenylalanine at two residues in the hydrophobic core of HP35, providing vibrational probes. NMR data show that HP35-P(2) maintains the native folded structure similar to wild type and that both PheCN residues share essentially the same environment within the peptide. A series of time-dependent 2D IR vibrational echo spectra were obtained for the folded peptide and the increasingly unfolded peptide. Analysis of the time dependence of the 2D spectra yields the system's spectral diffusion, which is caused by the sampling of accessible structures of the peptide under thermal equilibrium conditions. The structural dynamics become faster as the degree of unfolding is increased.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
47
|
Chung JK, Thielges MC, Fayer MD. Conformational dynamics and stability of HP35 studied with 2D IR vibrational echoes. J Am Chem Soc 2012; 134:12118-24. [PMID: 22764745 DOI: 10.1021/ja303017d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two-dimensional infrared (2D IR) vibrational echo spectroscopy was used to measure the fast dynamics of two variants of chicken villin headpiece 35 (HP35). The CN of cyanophenylalanine residues inserted in the hydrophobic core were used as a vibrational probe. Experiments were performed on both singly (HP35-P) and doubly CN-labeled peptide (HP35-P(2)) within the wild-type sequence, as well as on HP-35 containing a singly labeled cyanophenylalanine and two norleucine mutations (HP35-P NleNle). There is a remarkable similarity between the dynamics measured in singly and doubly CN-labeled HP35, demonstrating that the presence of an additional CN vibrational probe does not significantly alter the dynamics of the small peptide. The substitution of two lysine residues by norleucines markedly improves the stability of HP35 by replacing charged with nonpolar residues, stabilizing the hydrophobic core. The results of the 2D IR experiments reveal that the dynamics of HP35-P are significantly faster than those of HP35-P NleNle. These observations suggest that the slower structural fluctuations in the hydrophobic core, indicating a more tightly structured core, may be an important contributing factor to HP35-P NleNle's increased stability.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
48
|
Bagchi S, Boxer SG, Fayer MD. Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy. J Phys Chem B 2012; 116:4034-42. [PMID: 22417088 PMCID: PMC3354990 DOI: 10.1021/jp2122856] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A nitrile-labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1-20, the S-peptide, and a larger fragment including residues 21-124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile-labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions.
Collapse
Affiliation(s)
- Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - M. D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
49
|
Sinha SK, Bandyopadhyay S. Local heterogeneous dynamics of water around lysozyme: a computer simulation study. Phys Chem Chem Phys 2012; 14:899-913. [DOI: 10.1039/c1cp22575h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Adamczyk K, Candelaresi M, Kania R, Robb K, Bellota-Antón C, Greetham GM, Pollard MR, Towrie M, Parker AW, Hoskisson PA, Tucker NP, Hunt NT. The effect of point mutation on the equilibrium structural fluctuations of ferric Myoglobin. Phys Chem Chem Phys 2012; 14:7411-9. [DOI: 10.1039/c2cp23568d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|