1
|
Corteselli EM, Sharafi M, Hondal R, MacPherson M, White S, Lam YW, Gold C, Manuel AM, van der Vliet A, Schneebeli ST, Anathy V, Li J, Janssen-Heininger YMW. Structural and functional fine mapping of cysteines in mammalian glutaredoxin reveal their differential oxidation susceptibility. Nat Commun 2023; 14:4550. [PMID: 37507364 PMCID: PMC10382592 DOI: 10.1038/s41467-023-39664-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Protein-S-glutathionylation is a post-translational modification involving the conjugation of glutathione to protein thiols, which can modulate the activity and structure of key cellular proteins. Glutaredoxins (GLRX) are oxidoreductases that regulate this process by performing deglutathionylation. However, GLRX has five cysteines that are potentially vulnerable to oxidative modification, which is associated with GLRX aggregation and loss of activity. To date, GLRX cysteines that are oxidatively modified and their relative susceptibilities remain unknown. We utilized molecular modeling approaches, activity assays using recombinant GLRX, coupled with site-directed mutagenesis of each cysteine both individually and in combination to address the oxidizibility of GLRX cysteines. These approaches reveal that C8 and C83 are targets for S-glutathionylation and oxidation by hydrogen peroxide in vitro. In silico modeling and experimental validation confirm a prominent role of C8 for dimer formation and aggregation. Lastly, combinatorial mutation of C8, C26, and C83 results in increased activity of GLRX and resistance to oxidative inactivation and aggregation. Results from these integrated computational and experimental studies provide insights into the relative oxidizability of GLRX's cysteines and have implications for the use of GLRX as a therapeutic in settings of dysregulated protein glutathionylation.
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Robert Hondal
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Maximilian MacPherson
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Sheryl White
- Neuroscience Cellular and Molecular Core, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Ying-Wai Lam
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT, 05405, USA
| | - Clarissa Gold
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT, 05405, USA
| | - Allison M Manuel
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Severin T Schneebeli
- Department of Industrial and Physical Pharmacy and Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
2
|
Zhou TP, Deng WH, Wu Y, Liao RZ. QM/MM Calculations Suggested Concerted O‒O Bond Cleavage and Substrate Oxidation by Nonheme Diiron Toluene/o‐xylene Monooxygenase. Chem Asian J 2022; 17:e202200490. [DOI: 10.1002/asia.202200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tai-Ping Zhou
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Wen-Hao Deng
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and technology College of Chemistry and Chemical Engeneering Luoyulu 1037 430074 Wuhan CHINA
| |
Collapse
|
3
|
Yeh CCG, Mokkawes T, Bradley J, Le Brun NE, de Visser S. Second coordination sphere effects on the mechanistic pathways for dioxygen activation by a ferritin: involvement of a Tyr radical and the identification of a cation binding site. Chembiochem 2022; 23:e202200257. [PMID: 35510795 PMCID: PMC9401865 DOI: 10.1002/cbic.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/05/2022] [Indexed: 11/09/2022]
Abstract
Ferritins are ubiquitous diiron enzymes involved in iron(II) detoxification and oxidative stress responses and can act as metabolic iron stores. The overall reaction mechanisms of ferritin enzymes are still unclear, particularly concerning the role of the conserved, near catalytic center Tyr residue. Thus, we carried out a computational study of a ferritin using a large cluster model of well over 300 atoms including its first- and second-coordination sphere. The calculations reveal important insight into the structure and reactivity of ferritins. Specifically, the active site Tyr residue delivers a proton and electron in the catalytic cycle prior to iron(II) oxidation. In addition, the calculations highlight a likely cation binding site at Asp65, which through long-range electrostatic interactions, influences the electronic configuration and charge distributions of the metal center. The results are consistent with experimental observations but reveal novel detail of early mechanistic steps that lead to an unusual mixed-valent iron(III)-iron(II) center.
Collapse
Affiliation(s)
- Chieh-Chih George Yeh
- The University of Manchester, Department of Chemical Engineering, Oxford Road, Manchester, UNITED KINGDOM
| | - Thirakorn Mokkawes
- The University of Manchester, Department of Chemical Engineering, Manchester, UNITED KINGDOM
| | - Justin Bradley
- University of East Anglia, School of Chemistry, UNITED KINGDOM
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry, UNITED KINGDOM
| | - Samuel de Visser
- The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
4
|
Tupec M, Culka M, Machara A, Macháček S, Bím D, Svatoš A, Rulíšek L, Pichová I. Understanding desaturation/hydroxylation activity of castor stearoyl Δ9-Desaturase through rational mutagenesis. Comput Struct Biotechnol J 2022; 20:1378-1388. [PMID: 35386101 PMCID: PMC8940945 DOI: 10.1016/j.csbj.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Rationally designed mutations in the Δ9 desaturase promoted hydroxylation activity. Proton and electron transfer to the active site is crucial for the Δ9D to desaturate Detailed analysis of all enzymatic products of the Δ9D was carried out Insight into the chemo-, and stereoselectivity of non-heme diiron enzymes was obtained
A recently proposed reaction mechanism of soluble Δ9 desaturase (Δ9D) allowed us to identify auxiliary residues His203, Asp101, Thr206 and Cys222 localized near the di-iron active site that are supposedly involved in the proton transfer (PT) to and from the active site. The PT, along with the electron transfer (ET), seems to be crucial for efficient desaturation. Thus, perturbing the major PT chains is expected to impair the native reaction and (potentially) amplify minor reaction channels, such as the substrate hydroxylation. To verify this hypothesis, we mutated the four residues mentioned above into their counterparts present in a soluble methane monooxygenase (sMMO), and determined the reaction products of mutants. We found that the mutations significantly promote residual monohydroxylation activities on stearoyl-CoA, often at the expense of native desaturation activity. The favored hydroxylation positions are C9, followed by C10 and C11. Reactions with unsaturated substrate, oleoyl-CoA, yield erythro-9,10-diol, cis-9,10-epoxide and a mixture of allylic alcohols. Additionally, using 9- and 11-hydroxystearoyl-CoA, we showed that the desaturation reaction can proceed only with the hydroxyl group at position C11, whereas the hydroxylation reaction is possible in both cases, i.e. with hydroxyl at position C9 or C11. Despite the fact that the overall outcome of hydroxylation is rather modest and that it is mostly the desaturation/hydroxylation ratio that is affected, our results broaden understanding of the origin of chemo- and stereoselectivity of the Δ9D and provide further insight into the catalytic action of the NHFe2 enzymes.
Collapse
Affiliation(s)
- Michal Tupec
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Stanislav Macháček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Daniel Bím
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Aleš Svatoš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Corresponding authors.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Corresponding authors.
| |
Collapse
|
5
|
Chandra A, Ansari M, Monte‐Pérez I, Kundu S, Rajaraman G, Ray K. Ligand‐Constraint‐Induced Peroxide Activation for Electrophilic Reactivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anirban Chandra
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai Maharashtra 400 076 India
| | - Inés Monte‐Pérez
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Subrata Kundu
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai Maharashtra 400 076 India
| | - Kallol Ray
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
6
|
Chandra A, Ansari M, Monte-Pérez I, Kundu S, Rajaraman G, Ray K. Ligand-Constraint-Induced Peroxide Activation for Electrophilic Reactivity. Angew Chem Int Ed Engl 2021; 60:14954-14959. [PMID: 33843113 PMCID: PMC8252416 DOI: 10.1002/anie.202100438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Indexed: 12/16/2022]
Abstract
μ‐1,2‐peroxo‐bridged diiron(III) intermediates P are proposed as reactive intermediates in various biological oxidation reactions. In sMMO, P acts as an electrophile, and performs hydrogen atom and oxygen atom transfers to electron‐rich substrates. In cyanobacterial ADO, however, P is postulated to react by nucleophilic attack on electrophilic carbon atoms. In biomimetic studies, the ability of μ‐1,2‐peroxo‐bridged dimetal complexes of Fe, Co, Ni and Cu to act as nucleophiles that effect deformylation of aldehydes is documented. By performing reactivity and theoretical studies on an end‐on μ‐1,2‐peroxodicobalt(III) complex 1 involving a non‐heme ligand system, L1, supported on a Sn6O6 stannoxane core, we now show that a peroxo‐bridged dimetal complex can also be a reactive electrophile. The observed electrophilic chemistry, which is induced by the constraints provided by the Sn6O6 core, represents a new domain for metal−peroxide reactivity.
Collapse
Affiliation(s)
- Anirban Chandra
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India
| | - Inés Monte-Pérez
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Subrata Kundu
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
7
|
Török P, Unjaroen D, Viktória Csendes F, Giorgi M, Browne WR, Kaizer J. A nonheme peroxo-diiron(III) complex exhibiting both nucleophilic and electrophilic oxidation of organic substrates. Dalton Trans 2021; 50:7181-7185. [PMID: 34019062 PMCID: PMC8168641 DOI: 10.1039/d1dt01502h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The complex [FeIII2(μ-O2)(L3)4(S)2]4+ (L3 = 2-(4-thiazolyl)benzimidazole, S = solvent) forms upon reaction of [FeII(L3)2] with H2O2 and is a functional model of peroxo-diiron intermediates invoked during the catalytic cycle of oxidoreductases. The spectroscopic properties of the complex are in line with those of complexes formed with N-donor ligands. [FeIII2(μ-O2)(L3)4(S)2]4+ shows both nucleophilic (aldehydes) and electrophilic (phenol, N,N-dimethylanilines) oxidative reactivity and unusually also electron transfer oxidation. A bidentate ligand based iron complex shows nucleophillic and electrophillice reactivity in the oxidation of organic substrates.![]()
Collapse
Affiliation(s)
- Patrik Török
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8200 Veszprém, Hungary.
| | - Duenpen Unjaroen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Flóra Viktória Csendes
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8200 Veszprém, Hungary.
| | - Michel Giorgi
- Aix-Marseille Université, FR1739, Spectropole, Campus St Jérome, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8200 Veszprém, Hungary.
| |
Collapse
|
8
|
Kripli B, Szávuly M, Csendes FV, Kaizer J. Functional models of nonheme diiron enzymes: reactivity of the μ-oxo-μ-1,2-peroxo-diiron(iii) intermediate in electrophilic and nucleophilic reactions. Dalton Trans 2020; 49:1742-1746. [PMID: 31967142 DOI: 10.1039/c9dt04551a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The reactivity of the previously reported peroxo-adduct [FeIII2(μ-O)(μ-1,2-O2)(IndH)2(solv)2]2+ (1) (IndH = 1,3-bis(2-pyridyl-imino)isoindoline) has been investigated in nucleophilic (e.g., deformylation of alkyl and aryl alkyl aldehydes) and electrophilic (e.g. oxidation of phenols) stoichiometric reactions as biomimics of ribonucleotide reductase (RNR-R2) and aldehyde deformylating oxygenase (ADO) enzymes. Based on detailed kinetic and mechanistic studies, we have found further evidence for the ambiphilic behaviour of the peroxo intermediates proposed for diferric oxidoreductase enzymes.
Collapse
Affiliation(s)
- Balázs Kripli
- Department of Chemistry, University of Pannonia, H-8201 Veszprém, Hungary.
| | | | | | | |
Collapse
|
9
|
Bím D, Chalupský J, Culka M, Solomon EI, Rulíšek L, Srnec M. Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Δ 9-Desaturase. J Am Chem Soc 2020; 142:10412-10423. [PMID: 32406236 DOI: 10.1021/jacs.0c01786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A full understanding of the catalytic action of non-heme iron (NHFe) and non-heme diiron (NHFe2) enzymes is still beyond the grasp of contemporary computational and experimental techniques. Many of these enzymes exhibit fascinating chemo-, regio-, and stereoselectivity, in spite of employing highly reactive intermediates which are necessary for activations of most stable chemical bonds. Herein, we study in detail one intriguing representative of the NHFe2 family of enzymes: soluble Δ9 desaturase (Δ9D), which desaturates rather than performing the thermodynamically favorable hydroxylation of substrate. Its catalytic mechanism has been explored in great detail by using QM(DFT)/MM and multireference wave function methods. Starting from the spectroscopically observed 1,2-μ-peroxo diferric P intermediate, the proton-electron uptake by P is the favored mechanism for catalytic activation, since it allows a significant reduction of the barrier of the initial (and rate-determining) H-atom abstraction from the stearoyl substrate as compared to the "proton-only activated" pathway. Also, we ruled out that a Q-like intermediate (high-valent diamond-core bis-μ-oxo-[FeIV]2 unit) is involved in the reaction mechanism. Our mechanistic picture is consistent with the experimental data available for Δ9D and satisfies fairly stringent conditions required by Nature: the chemo-, stereo-, and regioselectivity of the desaturation of stearic acid. Finally, the mechanisms evaluated are placed into a broader context of NHFe2 chemistry, provided by an amino acid sequence analysis through the families of the NHFe2 enzymes. Our study thus represents an important contribution toward understanding the catalytic action of the NHFe2 enzymes and may inspire further work in NHFe(2) biomimetic chemistry.
Collapse
Affiliation(s)
- Daniel Bím
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 182 23, Czech Republic.,Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Edward I Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 182 23, Czech Republic
| |
Collapse
|
10
|
Wang J, Ma Y, Wang X, Zhang Y, Tan H, Li X, Chen G. Theoretical study on the catalytic mechanism of human deoxyhypusine hydroxylase. Phys Chem Chem Phys 2020; 22:22736-22745. [DOI: 10.1039/d0cp03598j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deoxyhypusine hydroxylase is a critical enzyme for hypusination of eukaryotic translation initiation factor 5A.
Collapse
Affiliation(s)
- Junkai Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yan Ma
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Xixi Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Ying Zhang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
11
|
Kripli B, Csendes FV, Török P, Speier G, Kaizer J. Stoichiometric Aldehyde Deformylation Mediated by Nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase. Chemistry 2019; 25:14290-14294. [PMID: 31448834 DOI: 10.1002/chem.201903727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/11/2022]
Abstract
The reactivity of the previously reported peroxo adduct [FeIII 2 (μ-O2 )(MeBzim-Py)4 (CH3 CN)2 ]4+ (1) (MeBzim-Py=2-(2'-pyridyl)-N-methylbenzimidazole) towards aldehyde substrates including phenylacetaldehyde (PAA), hydrocinnamaldehyde (HCA), propionaldehyde (PA), 2-phenylpropionaldehyde (PPA), cyclohexanecarboxaldehyde (CCA), and para-substituted benzaldehydes (benzoyl chlorides) has been investigated. Complex 1 proved to be a nucleophilic oxidant in aldehyde deformylation reaction. These models, including detailed kinetic and mechanistic studies, may serve as the first biomimics of aldehyde deformylating oxygenase (ADO) enzymes.
Collapse
Affiliation(s)
- Balázs Kripli
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | | | - Patrik Török
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | - Gábor Speier
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | - József Kaizer
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| |
Collapse
|
12
|
Osborne CD, Haritos VS. Beneath the surface: Evolution of methane activity in the bacterial multicomponent monooxygenases. Mol Phylogenet Evol 2019; 139:106527. [PMID: 31173882 DOI: 10.1016/j.ympev.2019.106527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/09/2023]
Abstract
The bacterial multicomponent monooxygenase (BMM) family has evolved to oxidise a wide array of hydrocarbon substrates of importance to environmental emissions and biotechnology: foremost amongst these is methane, which requires among the most powerful oxidant in biology to activate. To understand how the BMM evolved methane oxidation activity, we investigated the changes in the enzyme family at different levels: operonic, phylogenetic analysis of the catalytic hydroxylase, subunit or folding factor presence, and sequence-function analysis across the entirety of the BMM phylogeny. Our results show that the BMM evolution of new activities was enabled by incremental increases in oxidative power of the active site, and these occur in multiple branches of the hydroxylase phylogenetic tree. While the hydroxylase primary sequence changes that resulted in increased oxidative power of the enzyme appear to be minor, the principle evolutionary advances enabling methane activity occurred in the other components of the BMM complex and in the recruitment of stability proteins. We propose that enzyme assembly and stabilization factors have independently-evolved multiple times in the BMM family to support enzymes that oxidise increasingly difficult substrates. Herein, we show an important example of evolution of catalytic function where modifications to the active site and substrate accessibility, which are the usual focus of enzyme evolution, are overshadowed by broader scale changes to structural stabilization and non-catalytic unit development. Retracing macroscale changes during enzyme evolution, as demonstrated here, should find ready application to other enzyme systems and in protein design.
Collapse
Affiliation(s)
- Craig D Osborne
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton 3800, Australia
| | - Victoria S Haritos
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton 3800, Australia.
| |
Collapse
|
13
|
He R, Su Y, Ma RC, Zhuang S. Characterization of toluene metabolism by methanotroph and its effect on methane oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16816-16824. [PMID: 29616477 DOI: 10.1007/s11356-018-1863-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Methanotrophs not only oxidize CH4, but also can oxidize a relatively broad range of other substrates, including trichloroethylene, alkanes, alkenes, and aromatic compounds. In this study, Methylosinus sporium was used as a model organism to characterize toluene metabolism by methanotrophs. Reverse transcription quantitative PCR analysis showed that toluene enhanced the mmoX expression of M. sporium. When the toluene concentration was below 2000 mg m-3, the kinetics of toluene metabolism by M. sporium conformed to the Michaelis-Menten equation (Vmax = 0.238 g gdry weight-1 h-1, K m = 545.2 mg m-3). The use of a solid-phase extraction technique followed by a gas chromatography-mass spectrometry analysis and molecular docking calculation showed that toluene was likely to primarily bind the di-iron center structural region of soluble methane monooxygenase (sMMO) hydroxylase and then be oxidized to o-cresol. Although M. sporium oxidized toluene, it did not incorporate toluene into its biomass. The coexistence of toluene and CH4 could influence CH4 oxidation, the growth of methanotrophs, and the distribution of CH4-derived carbon, which were related to the ratio of the toluene concentration to biomass. These results would be helpful to understand the metabolism of CH4 and non-methane volatile organic compounds in the environment.
Collapse
Affiliation(s)
- Ruo He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Yao Su
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shulin Zhuang
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Jasniewski AJ, Komor AJ, Lipscomb JD, Que L. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. J Am Chem Soc 2017; 139:10472-10485. [PMID: 28673082 PMCID: PMC5568637 DOI: 10.1021/jacs.7b05389] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlIP). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlIP is not consistent with the μ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as μ-η2:η1 based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlIP. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm-1, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a μ-1,1-peroxo ligand that is bound symmetrically between the irons. The (μ-oxo)(μ-1,1-peroxo)diferric core structure associated with CmlIP is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Park K, Li N, Kwak Y, Srnec M, Bell CB, Liu LV, Wong SD, Yoda Y, Kitao S, Seto M, Hu M, Zhao J, Krebs C, Bollinger JM, Solomon EI. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF. J Am Chem Soc 2017; 139:7062-7070. [PMID: 28457126 DOI: 10.1021/jacs.7b02997] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binuclear non-heme iron enzymes activate O2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. This activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States.,Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Yeonju Kwak
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Martin Srnec
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Caleb B Bell
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Lei V Liu
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Shaun D Wong
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | | | - Shinji Kitao
- Research Reactor Institute, Kyoto University , Kumatori-cho, Osaka 590-0494, Japan
| | - Makoto Seto
- Research Reactor Institute, Kyoto University , Kumatori-cho, Osaka 590-0494, Japan
| | - Michael Hu
- Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford, California 94309, United States
| |
Collapse
|
17
|
Pietra F. On Dioxygen and Substrate Access to Soluble Methane Monooxygenases: An all-Atom Molecular Dynamics Investigation in Water Solution. Chem Biodivers 2016; 14. [DOI: 10.1002/cbdv.201600158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Pietra
- Accademia Lucchese di Scienze, Lettere e Arti, Classe di Scienze; Palazzo Pretorio IT-55100 Lucca
| |
Collapse
|
18
|
Rokob TA. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc 2016; 138:14623-14638. [PMID: 27682344 DOI: 10.1021/jacs.6b06987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygenation of aromatic rings using O2 is catalyzed by several non-heme carboxylate-bridged diiron enzymes. In order to provide a general mechanistic description for these reactions, computational studies were carried out at the ONIOM(B3LYP/BP86/Amber) level on the non-heme diiron enzyme benzoyl coenzyme A epoxidase, BoxB. The calculations revealed four possible pathways for attacking the aromatic ring: (a) electrophilic (2e-) attack by a bis(μ-oxo)-diiron(IV) species (Q pathway); (b) electrophilic (2e-) attack via the σ* orbital of a μ-η2:η2-peroxo-diiron(III) intermediate (Pσ* pathway); (c) radical (1e-) attack via the π*-orbital of a superoxo-diiron(II,III) species (Pπ* pathway); (d) radical (1e-) attack of a partially quenched bis(μ-oxo)-diiron(IV) intermediate (Q' pathway). The results allowed earlier work of de Visser on olefin epoxidation by diiron complexes and QM-cluster studies of Liao and Siegbahn on BoxB to be put into a broader perspective. Parallels with epoxidation using organic peracids were also examined. Specifically for the BoxB enzyme, the Q pathway was found to be the most preferred, but the corresponding bis(μ-oxo)-diiron(IV) species is significantly destabilized and not expected to be directly observable. Epoxidation via the Pσ* pathway represents an energetically somewhat higher lying alternative; possible strategies for experimental discrimination are discussed. The selectivity toward epoxidation is shown to stem from a combination of inherent electronic properties of the thioacyl substituent and enzymatic constraints. Possible implications of the results for toluene monooxygenases are considered as well.
Collapse
Affiliation(s)
- Tibor András Rokob
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
19
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Jasniewski AJ, Engstrom LM, Vu VV, Park MH, Que L. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. J Biol Inorg Chem 2016; 21:605-18. [PMID: 27380180 PMCID: PMC4990465 DOI: 10.1007/s00775-016-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Lisa M Engstrom
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Van V Vu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Protein effects in non-heme iron enzyme catalysis: insights from multiscale models. J Biol Inorg Chem 2016; 21:645-57. [DOI: 10.1007/s00775-016-1374-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
|
22
|
Mono- and binuclear non-heme iron chemistry from a theoretical perspective. J Biol Inorg Chem 2016; 21:619-44. [DOI: 10.1007/s00775-016-1357-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
23
|
Jayapal P, Ansari A, Rajaraman G. Computational Examination on the Active Site Structure of a (Peroxo)diiron(III) Intermediate in the Amine Oxygenase AurF. Inorg Chem 2015; 54:11077-82. [PMID: 26588098 DOI: 10.1021/acs.inorgchem.5b00872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we report the first computational investigation on the structure and properties of the (peroxo)diiron(III) intermediate of the AurF enzyme. Our calculations predict that, in the oxidized state of the AurF enzyme, the peroxo ligand is depicted in a μ-1,1-coordination mode with a protonated bridging ligand and is not in a μ-η(2):η(2) or μ-1,2 mode. Computed spectral data for the μ-1,1-coordination mode correlate well with experimental observations and unravel the potential of the energetics-spectroscopic approach adapted here.
Collapse
Affiliation(s)
- Prabha Jayapal
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| |
Collapse
|
24
|
Dinda S, Genest A, Rösch N. O2 Activation and Catalytic Alcohol Oxidation by Re Complexes with Redox-Active Ligands: A DFT Study of Mechanism. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shrabani Dinda
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
| | - Alexander Genest
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
| | - Notker Rösch
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
- Department Chemie and Catalysis Research
Center, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
25
|
Dalle KE, Meyer F. Modelling Binuclear Metallobiosites: Insights from Pyrazole-Supported Biomimetic and Bioinspired Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Han Z, Sakai N, Böttger LH, Klinke S, Hauber J, Trautwein AX, Hilgenfeld R. Crystal Structure of the Peroxo-diiron(III) Intermediate of Deoxyhypusine Hydroxylase, an Oxygenase Involved in Hypusination. Structure 2015; 23:882-892. [PMID: 25865244 DOI: 10.1016/j.str.2015.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Deoxyhypusine hydroxylase (DOHH) is a non-heme diiron enzyme involved in the posttranslational modification of a critical lysine residue of eukaryotic translation initiation factor 5A (eIF-5A) to yield the unusual amino acid residue hypusine. This modification is essential for the role of eIF-5A in translation and in nuclear export of a group of specific mRNAs. The diiron center of human DOHH (hDOHH) forms a peroxo-diiron(III) intermediate (hDOHHperoxo) when its reduced form reacts with O2. hDOHHperoxo has a lifetime exceeding that of the peroxo intermediates of other diiron enzymes by several orders of magnitude. Here we report the 1.7-Å crystal structures of hDOHHperoxo and a complex with glycerol. The structure of hDOHHperoxo reveals the presence of a μ-1,2-peroxo-diiron(III) species at the active site. Augmented by UV/Vis and Mössbauer spectroscopic studies, the crystal structures offer explanations for the extreme longevity of hDOHHperoxo and illustrate how the enzyme specifically recognizes its only substrate, deoxyhypusine-eIF-5A.
Collapse
Affiliation(s)
- Zhenggang Han
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Naoki Sakai
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Lars H Böttger
- Institute of Physics, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Sebastián Klinke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany; German Center for Infection Research (DZIF) c/o Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Alfred X Trautwein
- Institute of Physics, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF) c/o Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
27
|
Sazinsky MH, Lippard SJ. Methane Monooxygenase: Functionalizing Methane at Iron and Copper. Met Ions Life Sci 2015; 15:205-56. [DOI: 10.1007/978-3-319-12415-5_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Chalupský J, Rokob TA, Kurashige Y, Yanai T, Solomon EI, Rulíšek L, Srnec M. Reactivity of the binuclear non-heme iron active site of Δ⁹ desaturase studied by large-scale multireference ab initio calculations. J Am Chem Soc 2014; 136:15977-91. [PMID: 25313991 DOI: 10.1021/ja506934k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The results of density matrix renormalization group complete active space self-consistent field (DMRG-CASSCF) and second-order perturbation theory (DMRG-CASPT2) calculations are presented on various structural alternatives for the O-O and first C-H activating step of the catalytic cycle of the binuclear nonheme iron enzyme Δ(9) desaturase. This enzyme is capable of inserting a double bond into an alkyl chain by double hydrogen (H) atom abstraction using molecular O2. The reaction step studied here is presumably associated with the highest activation barrier along the full pathway; therefore, its quantitative assessment is of key importance to the understanding of the catalysis. The DMRG approach allows unprecedentedly large active spaces for the explicit correlation of electrons in the large part of the chemically important valence space, which is apparently conditio sine qua non for obtaining well-converged reaction energetics. The derived reaction mechanism involves protonation of the previously characterized 1,2-μ peroxy Fe(III)Fe(III) (P) intermediate to a 1,1-μ hydroperoxy species, which abstracts an H atom from the C10 site of the substrate. An Fe(IV)-oxo unit is generated concomitantly, supposedly capable of the second H atom abstraction from C9. In addition, several popular DFT functionals were compared to the computed DMRG-CASPT2 data. Notably, many of these show a preference for heterolytic C-H cleavage, erroneously predicting substrate hydroxylation. This study shows that, despite its limitations, DMRG-CASPT2 is a significant methodological advancement toward the accurate computational treatment of complex bioinorganic systems, such as those with the highly open-shell diiron active sites.
Collapse
Affiliation(s)
- Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Kodera M, Tsuji T, Yasunaga T, Kawahara Y, Hirano T, Hitomi Y, Nomura T, Ogura T, Kobayashi Y, Sajith PK, Shiota Y, Yoshizawa K. Roles of carboxylate donors in O–O bond scission of peroxodi-iron(iii) to high-spin oxodi-iron(iv) with a new carboxylate-containing dinucleating ligand. Chem Sci 2014. [DOI: 10.1039/c3sc51541a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Carboxylate donor stabilizes the peroxo state in dioxygen activation via reversible O–O bond scission of peroxodi-iron(iii) to high spin oxodi-iron(iv).
Collapse
Affiliation(s)
- Masahito Kodera
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Tomokazu Tsuji
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Tomohiro Yasunaga
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Yuka Kawahara
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Tomoya Hirano
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Takashi Nomura
- Department of Life Science
- University of Hyogo
- Hyogo 678-1297, Japan
| | - Takashi Ogura
- Department of Life Science
- University of Hyogo
- Hyogo 678-1297, Japan
| | - Yoshio Kobayashi
- Graduate School of Informatics and Engineering
- The University of Electro-Communications
- Tokyo 182-8585, Japan
| | - P. K. Sajith
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Perivolaris A, Stoumpos CC, Karpinska J, Ryder AG, Frost JM, Mason K, Prescimone A, Slawin AMZ, Kessler VG, Mathieson JS, Cronin L, Brechin EK, Papaefstathiou GS. A family of [Ni8] cages templated by μ6-peroxide from dioxygen activation. Inorg Chem Front 2014. [DOI: 10.1039/c4qi00048j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
[Ni8] cages templated by η3:η3:μ6-O22− from O2 activation: the ligand found oxidized within the cages.
Collapse
Affiliation(s)
- Alexandros Perivolaris
- Laboratory of Inorganic Chemistry
- Department of Chemistry
- National and Kapodistrian University of Athens
- 157 71 Zografou, Greece
| | - Constantinos C. Stoumpos
- Laboratory of Inorganic Chemistry
- Department of Chemistry
- National and Kapodistrian University of Athens
- 157 71 Zografou, Greece
| | - Jolanta Karpinska
- Nanoscale Biophotonics Laboratory
- School of Chemistry
- National University of Ireland
- Galway, Ireland
| | - Alan G. Ryder
- Nanoscale Biophotonics Laboratory
- School of Chemistry
- National University of Ireland
- Galway, Ireland
| | - Jamie M. Frost
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh, UK
| | - Kevin Mason
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh, UK
| | | | | | - Vadim G. Kessler
- Department of Chemistry
- Swedish University of Agricultural Sciences
- 750 07 Uppsala, Sweden
| | | | - Leroy Cronin
- WestCHEM
- School of Chemistry
- The University of Glasgow
- Glasgow, UK
| | - Euan K. Brechin
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh, UK
| | - Giannis S. Papaefstathiou
- Laboratory of Inorganic Chemistry
- Department of Chemistry
- National and Kapodistrian University of Athens
- 157 71 Zografou, Greece
| |
Collapse
|
31
|
Su Y, Xia FF, Tian BH, Li W, He R. Microbial community and function of enrichment cultures with methane and toluene. Appl Microbiol Biotechnol 2013; 98:3121-31. [PMID: 24136469 DOI: 10.1007/s00253-013-5297-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
Abstract
The interaction effect of co-existence of toluene and CH4 on community and activity of methanotrophs and toluene-degrading bacteria was characterized in three consortia enriched with CH4 and toluene (MT), toluene (T), and CH4 (M), respectively, in this study. The CH4 oxidation activity in the enrichment culture of MT was significantly lower than that of M at the end of the experiment (P = 0.001). The toluene degradation rate could be enhanced by continuous addition of CH4 and toluene in the initial days, but it was inhibited in the later days. Phylogenetic analysis of 16S rRNA genes showed that Proteobacteria and Bacteroidetes were dominant in the three enriched consortia, but the community of methanotrophs and toluene-degrading bacteria was significantly affected by the co-existence of CH4 and toluene. Both Methylosinus (91.8 %) and Methylocystis (8.2 %) were detected in the enrichment culture of MT, while only Methylocystis species were detected in M. The toluene-degrading bacteria including Burkholderia, Flavobacteria, Microbacterium, and Azoarcus were all detected in the enrichment culture of T. However, only Azoarcus was found in the enrichment culture of MT. Significantly higher contents of extracellular polymeric substances polysaccharose and protein in the enrichment culture of MT than that of T and M suggested that a higher environmental stress occurred in the enrichment culture of MT.
Collapse
Affiliation(s)
- Yao Su
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
32
|
Srnec M, Rokob TA, Schwartz JK, Kwak Y, Rulíšek L, Solomon EI. Structural and Spectroscopic Properties of the Peroxodiferric Intermediate of Ricinus communis Soluble Δ9 Desaturase. Inorg Chem 2012; 51:2806-20. [DOI: 10.1021/ic2018067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Martin Srnec
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Tibor András Rokob
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Jennifer K. Schwartz
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| | - Yeonju Kwak
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| |
Collapse
|
33
|
Do LH, Lippard SJ. Evolution of strategies to prepare synthetic mimics of carboxylate-bridged diiron protein active sites. J Inorg Biochem 2011; 105:1774-85. [PMID: 22113107 PMCID: PMC3232320 DOI: 10.1016/j.jinorgbio.2011.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
We present a comprehensive review of research conducted in our laboratory in pursuit of the long-term goal of reproducing the structures and reactivity of carboxylate-bridged diiron centers used in biology to activate dioxygen for the conversion of hydrocarbons to alcohols and related products. This article describes the evolution of strategies devised to achieve these goals and illustrates the challenges in getting there. Particular emphasis is placed on controlling the geometry and coordination environment of the diiron core, preventing formation of polynuclear iron clusters, maintaining the structural integrity of model complexes during reactions with dioxygen, and tuning the ligand framework to stabilize desired oxygenated diiron species. Studies of the various model systems have improved our understanding of the electronic and physical characteristics of carboxylate-bridged diiron units and their reactivity toward molecular oxygen and organic moieties. The principles and lessons that have emerged from these investigations will guide future efforts to develop more sophisticated diiron protein model complexes.
Collapse
Affiliation(s)
- Loi H. Do
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A
| |
Collapse
|
34
|
Gao L, Tu Y, Wegman P, Wingren S, Eriksson LA. A Mechanistic Hypothesis for the Cytochrome P450-Catalyzed Cis–Trans Isomerization of 4-Hydroxytamoxifen: An Unusual Redox Reaction. J Chem Inf Model 2011; 51:2293-301. [DOI: 10.1021/ci2001082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Gao
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Yaoquan Tu
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Pia Wegman
- Department of Health and Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Sten Wingren
- Department of Health and Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Leif A. Eriksson
- School of Chemistry, National University of Ireland - Galway, Ireland
| |
Collapse
|
35
|
Do LH, Wang H, Tinberg CE, Dowty E, Yoda Y, Cramer SP, Lippard SJ. Characterization of a synthetic peroxodiiron(III) protein model complex by nuclear resonance vibrational spectroscopy. Chem Commun (Camb) 2011; 47:10945-7. [PMID: 21897991 DOI: 10.1039/c1cc13836g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational spectrum of an η(1),η(1)-1,2-peroxodiiron(III) complex was measured by nuclear resonance vibrational spectroscopy and fit using an empirical force field analysis. Isotopic (18)O(2) labelling studies revealed a feature involving motion of the {Fe(2)(O(2))}(4+) core that was not previously observed by resonance Raman spectroscopy.
Collapse
Affiliation(s)
- Loi H Do
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Song WJ, Lippard SJ. Mechanistic studies of reactions of peroxodiiron(III) intermediates in T201 variants of toluene/o-xylene monooxygenase hydroxylase. Biochemistry 2011; 50:5391-9. [PMID: 21595439 PMCID: PMC3116272 DOI: 10.1021/bi200340f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Site-directed mutagenesis studies of a strictly conserved T201 residue in the active site of toluene/o-xylene monooxygenase hydroxylase (ToMOH) revealed that a single mutation can facilitate kinetic isolation of two distinctive peroxodiiron(III) species, designated T201(peroxo) and ToMOH(peroxo), during dioxygen activation. Previously, we characterized both oxygenated intermediates by UV-vis and Mössbauer spectroscopy, proposed structures from DFT and QM/MM computational studies, and elucidated chemical steps involved in dioxygen activation through the kinetic studies of T201(peroxo) formation. In this study, we investigate the kinetics of T201(peroxo) decay to explore the reaction mechanism of the oxygenated intermediates following O(2) activation. The decay rates of T201(peroxo) were monitored in the absence and presence of external (phenol) or internal (tryptophan residue in an I100W variant) substrates under pre-steady-state conditions. Three possible reaction models for the formation and decay of T201(peroxo) were evaluated, and the results demonstrate that this species is on the pathway of arene oxidation and appears to be in equilibrium with ToMOH(peroxo).
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
37
|
Abstract
The controlled oxidation of methane to methanol is a chemical transformation of great value, particularly in the pursuit of alternative fuels, but the reaction remains underutilized industrially because of inefficient and costly synthetic procedures. In contrast, methane monooxygenase enzymes (MMOs) from methanotrophic bacteria achieve this chemistry efficiently under ambient conditions. In this Account, we discuss the first observable step in the oxidation of methane at the carboxylate-bridged diiron active site of the soluble MMO (sMMO), namely, the reductive activation of atmospheric O(2). The results provide benchmarks against which the dioxygen activation mechanisms of other bacterial multicomponent monooxygenases can be measured. Molecular oxygen reacts rapidly with the reduced diiron(II) cen-ter of the hydroxylase component of sMMO (MMOH). The first spectroscopically characterized intermediate that results from this process is a peroxodiiron(III) species, P*, in which the iron atoms have identical environments. P* converts to a second peroxodiiron(III) unit, H(peroxo), in a process accompanied by the transfer of a proton, probably with the assistance of a residue near the active site. Proton-promoted O-O bond scission and rearrangement of the diiron core then leads to a diiron(IV) unit, termed Q, that is directly responsible for the oxidation of methane to methanol. In one section of this Account, we provide a detailed discussion of these processes, with particular emphasis on possible structures of the intermediates. The geometries of P* and H(peroxo) are currently unknown, and recent synthetic modeling chemistry has highlighted the need for further structural characterization of Q, currently assigned as a di(μ-oxo)diiron(IV) "diamond core." In another section of the Account, we discuss in detail proton transfer during the O(2) activation events. The role of protons in promoting O-O bond cleavage, thereby initiating the conversion of H(peroxo) to Q, was previously a controversial topic. Recent studies of the mechanism, covering a range of pH values and in D(2)O instead of H(2)O, confirmed conclusively that the transfer of protons, possibly at or near the active site, is necessary for both P*-to-H(peroxo) and H(peroxo)-to-Q conversions. Specific mechanistic insights into these processes are provided. In the final section of the Account, we present our view of experiments that need to be done to further define crucial aspects of sMMO chemistry. Here our goal is to detail the challenges that we and others face in this research, particularly with respect to some long-standing questions about the system, as well as approaches that might be used to solve them.
Collapse
Affiliation(s)
- Christine E. Tinberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|