1
|
Zhao YF, Xie WL, He K, Li HP, Pan J, Xu JH. Continuous Flow Microreactors for the High-efficiency Enzymatic Synthesis of 10-Hydroxystearic Acid from Oleic Acid. Chembiochem 2024; 25:e202400345. [PMID: 39087277 DOI: 10.1002/cbic.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Converting fatty acids into specialty chemicals is sustainable but hindered by the low efficiency and thermal instability of current oleic acid hydratases, along with mass transfer limitations in emulsion reactions. This study introduces an optimized continuous flow micro-reactor (CFMR) that efficiently transforms oleic acid at low (15 g L-1) and high (50 g L-1) concentrations, improving reaction efficiency and overcoming key conversion barriers. The first CFMR model showed reaction speeds surpassing traditional batch stirred tank reactors (BSTR). Optimizations were performed on three key components: liquid storage, mixer, and reaction section of the CFMR, with each round's best conditions carried into the next. This achieved a space-time yield of 597 g L-1 d-1 at a 15 g L-1 oleic acid load. To further enhance the yield, we optimized the emulsifier system to solve incomplete emulsification and developed a two-component feed microreactor (TCFMR) that addressed mass transfer limitations caused by the product at high substrate loads, reaching a 91 % conversion of 50 g L-1 oleic acid in 30 minutes, with a space-time yield of 2312 g L-1 d-1. These advancements represent significant progress in utilizing fatty acids and advancing sustainable chemical synthesis.
Collapse
Affiliation(s)
- Yi-Fan Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Wen-Liang Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Kai He
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
2
|
Yao X, Wang Z, Qian M, Deng Q, Sun P. Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors. Molecules 2024; 29:3651. [PMID: 39125055 PMCID: PMC11314161 DOI: 10.3390/molecules29153651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Microstructured reactors offer fast chemical engineering transfer and precise microfluidic control, enabling the determination of reactions' kinetic parameters. This review examines recent advancements in measuring microreaction kinetics. It explores kinetic modeling, reaction mechanisms, and intrinsic kinetic equations pertaining to two types of microreaction: esterification and transesterification reactions involving acids, bases, or biocatalysts. The utilization of a micro packed-bed reactor successfully achieves a harmonious combination of the micro-dispersion state and the reaction kinetic characteristics. Additionally, this review presents micro-process simulation software and explores the advanced integration of microreactors with spectroscopic analyses for reaction monitoring and data acquisition. Furthermore, it elaborates on the control principles of the micro platform. The superiority of online measurement, automation, and the digitalization of the microreaction process for kinetic measurements is highlighted, showcasing the vast prospects of artificial intelligence applications.
Collapse
Affiliation(s)
- Xingjun Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhenxue Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ming Qian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qiulin Deng
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Peiyong Sun
- Beijing Institute of Petrochemical Technology, Daxing District, Beijing 102617, China;
| |
Collapse
|
3
|
Montalbo RCK, Wu MJ, Tu HL. One-step flow synthesis of size-controlled polymer nanogels in a fluorocarbon microfluidic chip. RSC Adv 2024; 14:11258-11265. [PMID: 38590347 PMCID: PMC11000227 DOI: 10.1039/d4ra01956c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
Synthetic polymer nanoparticles (NPs) with biomimetic properties are ideally suited for different biomedical applications such as drug delivery and direct therapy. However, bulk synthetic approaches can suffer from poor reproducibility and scalability when precise size control or multi-step procedures are required. Herein, we report an integrated microfluidic chip for the synthesis of polymer NPs. The chip could sequentially perform homopolymer synthesis and subsequent crosslinking into NPs without intermediate purification. This was made possible by fabrication of the chip with a fluorinated elastomer and incorporation of two microfluidic mixers. The first was a long channel with passive mixing features for the aqueous RAFT synthesis of stimuli-responsive polymers in ambient conditions. The polymers were then directly fed into a hydrodynamic flow focusing (HFF) junction that rapidly mixed them with a crosslinker solution to produce NPs. Compared to microfluidic systems made of PDMS or glass, our chip had better compatibility and facile fabrication. The polymers were synthesized with high monomer conversion and the NP size was found to be influenced by the flow rate ratio between the crosslinker solution and polymer solution. This allowed for the size to be predictably controlled by careful adjustment of the fluid flow rates. The size of the NPs and their stimuli-responses were studied using DLS and SEM imaging. This microfluidic chip design can potentially streamline and provide some automation for the bottom-up synthesis of polymer NPs while offering on-demand size control.
Collapse
Affiliation(s)
- Reynaldo Carlos K Montalbo
- Institute of Chemistry, Academia Sinica Taipei 11529 Taiwan
- Nanoscience and Technology, Taiwan International Graduate Program, Academia Sinica Taipei 11529 Taiwan
- Department of Engineering and System Science, National Tsing-Hua University Hsinchu 300044 Taiwan
| | - Meng-Jie Wu
- Institute of Chemistry, Academia Sinica Taipei 11529 Taiwan
- Department of Chemistry, National Cheng-Kung University Tainan 70101 Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica Taipei 11529 Taiwan
- Nanoscience and Technology, Taiwan International Graduate Program, Academia Sinica Taipei 11529 Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University Taiwan
| |
Collapse
|
4
|
Enders A, Grünberger A, Bahnemann J. Towards Small Scale: Overview and Applications of Microfluidics in Biotechnology. Mol Biotechnol 2024; 66:365-377. [PMID: 36515858 PMCID: PMC10881759 DOI: 10.1007/s12033-022-00626-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Thanks to recent and continuing technological innovations, modern microfluidic systems are increasingly offering researchers working across all fields of biotechnology exciting new possibilities (especially with respect to facilitating high throughput analysis, portability, and parallelization). The advantages offered by microfluidic devices-namely, the substantially lowered chemical and sample consumption they require, the increased energy and mass transfer they offer, and their comparatively small size-can potentially be leveraged in every sub-field of biotechnology. However, to date, most of the reported devices have been deployed in furtherance of healthcare, pharmaceutical, and/or industrial applications. In this review, we consider examples of microfluidic and miniaturized systems across biotechnology sub-fields. In this context, we point out the advantages of microfluidics for various applications and highlight the common features of devices and the potential for transferability to other application areas. This will provide incentives for increased collaboration between researchers from different disciplines in the field of biotechnology.
Collapse
Affiliation(s)
- Anton Enders
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Alexander Grünberger
- Institute of Process Engineering in Life Sciences: Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany.
| |
Collapse
|
5
|
Valotta A, Stelzer D, Reiter T, Kroutil W, Gruber-Woelfler H. A multistep (semi)-continuous biocatalytic setup for the production of polycaprolactone. REACT CHEM ENG 2024; 9:713-727. [PMID: 38433980 PMCID: PMC10903532 DOI: 10.1039/d3re00536d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 03/05/2024]
Abstract
Biocatalysis has gained increasing importance as an eco-friendly alternative for the production of bulk and fine chemicals. Within this paradigm, Baeyer Villiger monoxygenases (BVMOs) serve as enzymatic catalysts that provide a safe and sustainable route to the conventional synthesis of lactones, such as caprolactone, which is employed for the production of polycaprolactone (PCL), a biocompatible polymer for medicinal applications. In this work, we present a three-step, semi-continuous production of PCL using an entirely biocatalytic process, highlighting the merits of continuous manufacturing for enhancing biocatalysis. First, caprolactone is produced in batch from cyclohexanol using a coenzymatic cascade involving an alcohol dehydrogenase (ADH) and BVMO. Different process parameters and aeration modes were explored to optimize the cascade's productivity. Secondly, the continuous extraction of caprolactone into an organic solvent, needed for the polymerization step, was optimized. 3D-printed mixers were applied to enhance the mass transfer between the organic and the aqueous phases. Lastly, we investigated the ring-opening polymerization of caprolactone to PCL catalyzed by Candida antarctica lipase B (CAL-B), with a focus on eco-friendly solvents like cyclopentyl-methyl-ether (CPME). Space-time-yields up to 58.5 g L-1 h-1 were achieved with our overall setup. By optimizing the individual process steps, we present an efficient and sustainable pathway for PCL production.
Collapse
Affiliation(s)
- Alessia Valotta
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| | - Daniela Stelzer
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| | - Tamara Reiter
- Department of Chemistry, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Department of Chemistry, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Heidrun Gruber-Woelfler
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| |
Collapse
|
6
|
Yang L, Sun Y, Zhang L. Microreactor Technology: Identifying Focus Fields and Emerging Trends by Using CiteSpace II. Chempluschem 2023; 88:e202200349. [PMID: 36482287 DOI: 10.1002/cplu.202200349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Indexed: 11/28/2022]
Abstract
Microreactors have gained widespread attention from academia and industrial researchers due to their exceptionally fast mass and heat transfer and flexible control. In this work, CiteSpace software was used to systematically analyze the relevant literature to gain a comprehensively understand on the research status of microreactors in various fields. The results show that the research depth and application scope of microreactors are continuing to expand. The top 10 most popular research fields are photochemistry, pharmaceutical intermediates, multistep flow synthesis, mass transfer, computational fluid dynamics, μ-TAS (micro total analysis system), nanoparticles, biocatalysis, hydrogen production, and solid-supported reagents. The evolution trends of current focus areas are examined, including photochemistry, mass transfer, biocatalysis and hydrogen production and their milestone literature is analyzed in detail. This article demonstrates the development of different fields of microreactors technology and highlights the unending opportunities and challenges offered by this fascinating technology.
Collapse
Affiliation(s)
- Lin Yang
- School of Economics and Management, School of Intellectual Property, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Yutao Sun
- School of Economics and Management, School of Intellectual Property, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Lijing Zhang
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| |
Collapse
|
7
|
Cheng K, Lu S, Wang K, Luo G. Green and sustainable synthesis of poly(δ-valerolactone) with a TBD catalyzed ring-opening polymerization reaction. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and sustainable method is proposed for the TBD catalyzed ring-opening polymerization of δ-valerolactone.
Collapse
Affiliation(s)
- Kai Cheng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shiyao Lu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Yeo J, Woo J, Choi S, Kwon K, Lee JK, Kim M. Comprehensive studies of continuous flow reversible addition–fragmentation chain transfer copolymerization and its application for photoimaging materials. Polym Chem 2022. [DOI: 10.1039/d2py00542e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thorough studies of RAFT copolymerization in a continuous flow to gain deeper insights into kinetics, reactivity, and applicability were conducted with monomers and solvents utilizable for chemically amplified resist systems.
Collapse
Affiliation(s)
- Jiyeong Yeo
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jihoon Woo
- Program in Environment and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seungyeon Choi
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiyoung Kwon
- Program in Environment and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Kyun Lee
- Program in Environment and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
9
|
|
10
|
|
11
|
Nikulin M, Švedas V. Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules 2021; 26:2750. [PMID: 34067052 PMCID: PMC8124709 DOI: 10.3390/molecules26092750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Trends in the dynamically developing application of biocatalysis for the synthesis and modification of polymers over the past 5 years are considered, with an emphasis on the production of biodegradable, biocompatible and functional polymeric materials oriented to medical applications. The possibilities of using enzymes not only as catalysts for polymerization but also for the preparation of monomers for polymerization or oligomers for block copolymerization are considered. Special attention is paid to the prospects and existing limitations of biocatalytic production of new synthetic biopolymers based on natural compounds and monomers from biomass, which can lead to a huge variety of functional biomaterials. The existing experience and perspectives for the integration of bio- and chemocatalysis in this area are discussed.
Collapse
Affiliation(s)
- Maksim Nikulin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, bldg. 40, 119991 Moscow, Russia;
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Lenin Hills 1, bldg. 73, 119991 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Lenin Hills 1, bldg. 4, 119991 Moscow, Russia
| |
Collapse
|
12
|
Liu Y, Yin F, Hu X, Zhu N, Guo K. Protecting-group-free synthesis of thiol-functionalized degradable polyesters. Polym Chem 2021. [DOI: 10.1039/d1py00014d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protecting-group-free synthesis of thiol-functionalized degradable polyesters has been developed by using chemoselective catalysis and microflow technology.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Fan Yin
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
- College of Materials Science and Engineering
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
13
|
Naramittanakul A, Buttranon S, Petchsuk A, Chaiyen P, Weeranoppanant N. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00189b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implementing immobilized biocatalysts in continuous-flow systems can enable a sustainable process through enhanced enzyme stability, better transport and process continuity as well as simplified recycle and downstream processing.
Collapse
Affiliation(s)
- Apisit Naramittanakul
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
14
|
Abstract
Biocatalysts provide a number of advantages such as high selectivity, the ability to operate under mild reaction conditions and availability from renewable resources that are of interest in the development of bioreactors for applications in the pharmaceutical and other sectors. The use of oxidoreductases in biocatalytic reactors is primarily focused on the use of NAD(P)-dependent enzymes, with the recycling of the cofactor occurring via an additional enzymatic system. The use of electrochemically based systems has been limited. This review focuses on the development of electrochemically based biocatalytic reactors. The mechanisms of mediated and direct electron transfer together with methods of immobilising enzymes are briefly reviewed. The use of electrochemically based batch and flow reactors is reviewed in detail with a focus on recent developments in the use of high surface area electrodes, enzyme engineering and enzyme cascades. A future perspective on electrochemically based bioreactors is presented.
Collapse
|
15
|
Liu Y, Song L, Feng N, Jiang W, Jin Y, Li X. Recent advances in the synthesis of biodegradable polyesters by sustainable polymerization: lipase-catalyzed polymerization. RSC Adv 2020; 10:36230-36240. [PMID: 35517080 PMCID: PMC9056969 DOI: 10.1039/d0ra07138b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, enzymatic polymerization has dramatically developed and gradually broadened as a creative methodology in the construction of polymeric materials with tailor-made structures and properties. Compared with transition metal catalyst polymerizations, enzymatic polymerization is more attractive in the biomedicine field due to the metal-free residue, good biocompatibility, and few by-products. Meanwhile, enzymatic polymerization has far more activity towards macrolides. In this review, the synthesis of lipase-catalyzed polymer materials is systematically summarized, focusing on the synthesis of the complex and well-defined polymers. The enzymatic polyester synthesis was then discussed concerning the different reaction types, including ring-opening polymerization, polycondensation, a combination of ring-opening polymerization with polycondensation, and chemoenzymatic polymerization. Besides, exploration of novel biocatalysts and reaction media was also described, with particular emphasis on the enzymes obtained via immobilization or protein engineering strategies, green solvents, and reactors. Finally, recent developments in catalytic kinetics and mechanistic studies through the use of spectroscopy, mathematics, and computer techniques have been introduced. Besides, we addressed the remaining central issues in enzymatic polymerization and discussed current studies aimed at providing answers.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| | - Lijie Song
- First Clinical Hospital, Jilin Province Academy of Traditional Chinese Medicine Changchun 130021 China
| | - Na Feng
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences Zhengzhou Henan 450052 China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences Zhengzhou Henan 450052 China
| | - Yongri Jin
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| | - Xuwen Li
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| |
Collapse
|
16
|
Razak N, Firmansyah S, Annuar M. Effects of microfluidization on kinetic parameter values of lipase hydrolysis reaction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zaquen N, Rubens M, Corrigan N, Xu J, Zetterlund PB, Boyer C, Junkers T. Polymer Synthesis in Continuous Flow Reactors. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101256] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Alimi OA, Akinnawo CA, Onisuru OR, Meijboom R. 3-D printed microreactor for continuous flow oxidation of a flavonoid. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00089-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Du LH, Chen PF, Long RJ, Xue M, Luo XP. A sustainable innovation for the tandem synthesis of sugar-containing coumarin derivatives catalyzed by lipozyme TL IM from Thermomyces lanuginosus in continuous-flow microreactors. RSC Adv 2020; 10:13252-13259. [PMID: 35492096 PMCID: PMC9051562 DOI: 10.1039/d0ra00879f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/08/2020] [Indexed: 01/14/2023] Open
Abstract
We developed an efficient and environmentally friendly two-step tandem methodology for the synthesis of sugar-containing coumarin derivatives catalyzed by lipozyme TL IM from Thermomyces lanuginosus in continuous-flow microreactors. Compared to those observed for other methods, the salient features of this work including green reaction conditions, short residence time (50 min), and catalysts are more readily available and the biocatalysis reaction process is efficient and easy to control. This two-step tandem synthesis of coumarin derivatives using the continuous-flow technology is a proof of concept that opens the use of enzymatic microreactors in coumarin derivative biotransformations. An effective and environmentally friendly two-step tandem protocol for the synthesis of sugar-containing coumarin derivatives catalyzed by lipozyme TL IM in continuous-flow microreactors has been developed.![]()
Collapse
Affiliation(s)
- Li-Hua Du
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86 18969069399
| | - Ping-Feng Chen
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86 18969069399
| | - Rui-Jie Long
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86 18969069399
| | - Miao Xue
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86 18969069399
| | - Xi-Ping Luo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University Hangzhou 311300 China
| |
Collapse
|
20
|
Continuous flow photoinduced phenothiazine derivatives catalyzed atom transfer radical polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Liu Y, Zhu N, Hu X, Huang W, Wu J, Bin X, Qiu J, Duan J, Fang Z, Guo K. Continuous flow rare earth phenolates catalyzed chemoselective ring-opening polymerization. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Zhu Y, Chen Q, Shao L, Jia Y, Zhang X. Microfluidic immobilized enzyme reactors for continuous biocatalysis. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00217k] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review investigates strategies for employing μ-IMERs for continuous biocatalysis via a top-down approach.
Collapse
Affiliation(s)
- Yujiao Zhu
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - Qingming Chen
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - Liyang Shao
- Department of Electrical and Electronic Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed Signal VLSI
- Institute of Microelectronics
- University of Macau
- Macau
- China
| | - Xuming Zhang
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| |
Collapse
|
23
|
Jiao S, Li F, Yu H, Shen Z. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl Microbiol Biotechnol 2019; 104:1001-1012. [DOI: 10.1007/s00253-019-10284-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023]
|
24
|
Engel J, Cordellier A, Huang L, Kara S. Enzymatic Ring‐Opening Polymerization of Lactones: Traditional Approaches and Alternative Strategies. ChemCatChem 2019. [DOI: 10.1002/cctc.201900976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jennifer Engel
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Alex Cordellier
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Lei Huang
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| |
Collapse
|
25
|
Szelwicka A, Zawadzki P, Sitko M, Boncel S, Czardybon W, Chrobok A. Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Szelwicka
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Magdalena Sitko
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
26
|
Liu X, Meng XY, Xu Y, Dong T, Zhang DY, Guan HX, Zhuang Y, Wang J. Enzymatic synthesis of 1-caffeoylglycerol with deep eutectic solvent under continuous microflow conditions. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Affiliation(s)
- Jian Deng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
28
|
Lu S, Wang K. Kinetic study of TBD catalyzed δ-valerolactone polymerization using a gas-driven droplet flow reactor. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00046a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction kinetics of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) catalyzed δ-valerolactone polymerization was determined using a gas-driven droplet reactor.
Collapse
Affiliation(s)
- Shiyao Lu
- The State Key Lab of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Kai Wang
- The State Key Lab of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
29
|
Gancheva T, Virgilio N. Tailored macroporous hydrogel–nanoparticle nanocomposites for monolithic flow-through catalytic reactors. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00337h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly porous poly(N-isopropylacrylamide) PNIPAam hydrogel monoliths with tunable microstructures and comprising gold, silver or palladium nanoparticles, display significant catalytic activity when used in flow-through microreactors.
Collapse
Affiliation(s)
- Teodora Gancheva
- CREPEC
- Department of Chemical Engineering
- Polytechnique Montréal
- Québec
- Canada
| | - Nick Virgilio
- CREPEC
- Department of Chemical Engineering
- Polytechnique Montréal
- Québec
- Canada
| |
Collapse
|
30
|
Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications. Top Curr Chem (Cham) 2018; 376:44. [DOI: 10.1007/s41061-018-0224-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
|
31
|
Bolivar JM, Valikhani D, Nidetzky B. Demystifying the Flow: Biocatalytic Reaction Intensification in Microstructured Enzyme Reactors. Biotechnol J 2018; 14:e1800244. [PMID: 30091533 DOI: 10.1002/biot.201800244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Indexed: 12/27/2022]
Abstract
Continuous (flow) reactors have drawn a wave of renewed interest in biocatalysis. Many studies find that the flow reactor offers enhanced conversion efficiency. What the reported reaction intensification actually consists in, however, often remains obscure. Here, a canonical microreactor design for heterogeneously catalyzed continuous biotransformations, featuring flow microchannels that contain the enzyme immobilized on their wall surface are examined. Glycosylations by sucrose phosphorylase are used to assess the potential for reaction intensification due to microscale effects. Key variables are identified, and their corresponding relationship equations, to describe, and optimize, the interplay between reaction characteristics, microchannel geometry and reactor operation. The maximum space-time-yield (STY_max) scales directly with the enzyme activity immobilized on the available wall surface. Timescale analysis, comparing the characteristic times of reaction (τreac ) and diffusion (τdiff ) to the mean residence time (τres ), reveals operational conditions for optimum reactor output. Theoretical insight into determinants of microreactor performance is applied to biocatalytic syntheses of α-d-glucose 1-phosphate and α-glucosyl glycerol. Process boundaries for enzyme showing, respectively, high (80 U mg-1 ) and low (4 U mg-1 ) specific activities are thus established and options for process design revealed. Opportunities, and limitations, of the application of principles of microscale flow chemistry to biocatalytic transformations are made evident.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, Graz, Austria
| | - Donya Valikhani
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, Graz, Austria
| |
Collapse
|
32
|
Abstract
The continuous flow synthesis of active pharmaceutical ingredients, value-added chemicals, and materials has grown tremendously over the past ten years. This revolution in chemical manufacturing has resulted from innovations in both new methodology and technology. This field, however, has been predominantly focused on synthetic organic chemistry, and the use of biocatalysts in continuous flow systems is only now becoming popular. Although immobilized enzymes and whole cells in batch systems are common, their continuous flow counterparts have grown rapidly over the past two years. With continuous flow systems offering improved mixing, mass transfer, thermal control, pressurized processing, decreased variation, automation, process analytical technology, and in-line purification, the combination of biocatalysis and flow chemistry opens powerful new process windows. This Review explores continuous flow biocatalysts with emphasis on new technology, enzymes, whole cells, co-factor recycling, and immobilization methods for the synthesis of pharmaceuticals, value-added chemicals, and materials.
Collapse
Affiliation(s)
- Joshua Britton
- Departments of Chemistry, Molecular Biology, and Biochemistry, University of California, Irvine, CA 92697-2025, USA.
| | | | | |
Collapse
|
33
|
Enzymatic Synthesis of Thioesters from Thiols and Vinyl Esters in a Continuous-Flow Microreactor. Catalysts 2018. [DOI: 10.3390/catal8060249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
34
|
Hardwick T, Ahmed N. Advances in electro- and sono-microreactors for chemical synthesis. RSC Adv 2018; 8:22233-22249. [PMID: 35541743 PMCID: PMC9081238 DOI: 10.1039/c8ra03406k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
The anatomy of electrochemical flow microreactors is important to safely perform chemical reactions in order to obtain pure and high yielding substances in a controlled and precise way that excludes the use of supporting electrolytes. Flow microreactors are advantageous in handling unstable intermediates compared to batch techniques and have efficient heat/mass transfer. Electrode nature (cathode and anode) and their available exposed surface area to the reaction mixture, parameters of the spacer, flow rate and direction greatly affects the efficiency of the electrochemical reactor. Solid formation during reactions may result in a blockage and consequently decrease the overall yield, thus limiting the use of microreactors in the field of electrosynthesis. This problem could certainly be overcome by application of ultrasound to break the solids for consistent flow. In this review, we discuss in detail the aforementioned issues, the advances in microreactor technology for chemical synthesis, with possible application of sonochemistry to deal with solid formations. Various examples of flow methods for electrosynthesis through microreactors have been explained in this review, which would definitely help to meet future demands for efficient synthesis and production of various pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Tomas Hardwick
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Nisar Ahmed
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
35
|
Zhu N, Hu X, Fang Z, Guo K. Continuous Flow Photoinduced Reversible Deactivation Radical Polymerization. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Xin Hu
- College of Materials Science and Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| |
Collapse
|
36
|
Liu AL, Li ZQ, Wu ZQ, Xia XH. Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device. Talanta 2018; 182:544-548. [DOI: 10.1016/j.talanta.2018.02.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/22/2023]
|
37
|
Kecskemeti A, Gaspar A. Particle-based immobilized enzymatic reactors in microfluidic chips. Talanta 2018; 180:211-228. [DOI: 10.1016/j.talanta.2017.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
38
|
Xiao X, Siepenkoetter T, Whelan R, Salaj-Kosla U, Magner E. A continuous fluidic bioreactor utilising electrodeposited silica for lipase immobilisation onto nanoporous gold. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K. Enzymatic Continuous Flow Synthesis of Thiol-Terminated Poly(δ-Valerolactone) and Block Copolymers. Macromol Rapid Commun 2018; 39:e1700807. [PMID: 29450925 DOI: 10.1002/marc.201700807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Indexed: 11/08/2022]
Abstract
Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence.
Collapse
Affiliation(s)
- Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Weijun Huang
- College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Xin Hu
- College of Materials Science and Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
40
|
Veneral JG, de Oliveira D, Ferreira SR, Oliveira JV. Continuous enzymatic synthesis of polycaprolactone in packed bed reactor using pressurized fluids. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.09.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Reis MH, Davidson CLG, Leibfarth FA. Continuous-flow chemistry for the determination of comonomer reactivity ratios. Polym Chem 2018. [DOI: 10.1039/c7py01938f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Continuous-flow chemistry provides an operationally simple and reproducible method for the determination of comonomer reactivity ratios in a single afternoon.
Collapse
Affiliation(s)
- Marcus H. Reis
- Department of Chemistry
- The University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Cullen L. G. Davidson
- Department of Chemistry
- The University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Frank A. Leibfarth
- Department of Chemistry
- The University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|
42
|
Zhou BY, Lin XY, Wang K, Luo GS. Technology for an Energy-Saving and Fast Synthesis of Polyvinyl Butyral in a Microreactor System. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bai Yang Zhou
- The
State Key Laboratory of Chemical Engineering, Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| | - Xi Yan Lin
- The
State Key Laboratory of Chemical Engineering, Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
- China
Science and Technology Exchange Center, Ministry of Science and Technology of China, Beijing 100045, China
| | - Kai Wang
- The
State Key Laboratory of Chemical Engineering, Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| | - Guang Sheng Luo
- The
State Key Laboratory of Chemical Engineering, Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Liu Y, Jiang X. Why microfluidics? Merits and trends in chemical synthesis. LAB ON A CHIP 2017; 17:3960-3978. [PMID: 28913530 DOI: 10.1039/c7lc00627f] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intrinsic limitations of conventional batch synthesis have hindered its applications in both solving classical problems and exploiting new frontiers. Microfluidic technology offers a new platform for chemical synthesis toward either molecules or materials, which has promoted the progress of diverse fields such as organic chemistry, materials science, and biomedicine. In this review, we focus on the improved performance of microreactors in handling various situations, and outline the trend of microfluidic synthesis (microsynthesis, μSyn) from simple microreactors to integrated microsystems. Examples of synthesizing both chemical compounds and micro/nanomaterials show the flexible applications of this approach. We aim to provide strategic guidance for the rational design, fabrication, and integration of microdevices for synthetic use. We critically evaluate the existing challenges and future opportunities associated with this burgeoning field.
Collapse
Affiliation(s)
- Yong Liu
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | | |
Collapse
|
44
|
Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification. Trends Biotechnol 2017; 36:73-88. [PMID: 29054312 DOI: 10.1016/j.tibtech.2017.09.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Biocatalysis has widened its scope and relevance since new molecular tools, including improved expression systems for proteins, protein and metabolic engineering, and rational techniques for immobilization, have become available. However, applications are still sometimes hampered by low productivity and difficulties in scaling up. A practical and reasonable step to improve the performances of biocatalysts (including both enzymes and whole-cell systems) is to use them in flow reactors. This review describes the state of the art on the design and use of biocatalysis in flow reactors. The encouraging successes of this enabling technology are critically discussed, highlighting new opportunities, problems to be solved and technological advances.
Collapse
|
45
|
Enzymatic ring opening copolymerization of globalide and ε-caprolactone under supercritical conditions. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Montanier CY, Chabot N, Emond S, Guieysse D, Remaud-Siméon M, Peruch F, André I. Engineering of Candida antarctica lipase B for poly(ε-caprolactone) synthesis. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Okawa A, Yoshida R, Isozaki T, Shigesato Y, Matsushita Y, Suzuki T. Photocatalytic oxidation of benzene in a microreactor with immobilized TiO2 thin films deposited by sputtering. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
48
|
Gong A, Zhu CT, Xu Y, Wang FQ, Tsabing DK, Wu FA, Wang J. Moving and unsinkable graphene sheets immobilized enzyme for microfluidic biocatalysis. Sci Rep 2017; 7:4309. [PMID: 28655888 PMCID: PMC5487366 DOI: 10.1038/s41598-017-04216-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/11/2017] [Indexed: 01/15/2023] Open
Abstract
Enzymatic catalysis in microreactors has attracted growing scientific interest because of high specific surface enabling heat and mass transfer and easier control of reaction parameters in microreactors. However, two major challenges that limit their application are fast inactivation and the inability to the biocatalysts in microchannel reactors. A fluid and unsinkable immobilized enzyme were firstly applied in a microchannel reactor for biocatalysis in this study. Functionalized forms of graphene-immobilized naringinase flowing in microchannels have yielded excellent results for isoquercitrin production. A maximum yield of 92.24 ± 3.26% was obtained after 20 min in a microchannel reactor. Ten cycles of enzymatic hydrolysis reaction were successively completed and an enzyme activity above 85.51 ± 2.76% was maintained. The kinetic parameter V m/K m increased to 1.9-fold and reaction time was decreased to 1/3 compared with that in a batch reactor. These results indicated that the moving and unsinkable graphene sheets immobilized enzyme with a high persistent specificity and a mild catalytic characteristic enabled the repetitive use of enzyme and significant cost saving for the application of enzyme catalysis. Thus, the developed method has provided an efficient and simple approach for the productive and repeatable microfluidic biocatalysis.
Collapse
Affiliation(s)
- An Gong
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, P.R. China
| | - Chang-Tong Zhu
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, P.R. China
| | - Yan Xu
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, P.R. China
| | - Fang-Qin Wang
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, P.R. China
| | - D'assise Kinfack Tsabing
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, P.R. China
| | - Fu-An Wu
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, P.R. China.,Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, P.R. China
| | - Jun Wang
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, P.R. China. .,Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, P.R. China.
| |
Collapse
|
49
|
Britton J, Dyer RP, Majumdar S, Raston CL, Weiss GA. Ten-Minute Protein Purification and Surface Tethering for Continuous-Flow Biocatalysis. Angew Chem Int Ed Engl 2017; 56:2296-2301. [PMID: 28133915 PMCID: PMC5480406 DOI: 10.1002/anie.201610821] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/20/2016] [Indexed: 11/07/2022]
Abstract
Nature applies enzymatic assembly lines to synthesize bioactive compounds. Inspired by such capabilities, we have developed a facile method for spatially segregating attached enzymes in a continuous-flow, vortex fluidic device (VFD). Fused Hisn -tags at the protein termini allow rapid bioconjugation and consequent purification through complexation with immobilized metal affinity chromatography (IMAC) resin. Six proteins were purified from complex cell lysates to average homogeneities of 76 %. The most challenging to purify, tobacco epi-aristolochene synthase, was purified in only ten minutes from cell lysate to near homogeneity (>90 %). Furthermore, this "reaction-ready" system demonstrated excellent stability during five days of continuous-flow processing. Towards multi-step transformations in continuous flow, proteins were arrayed as ordered zones on the reactor surface allowing segregation of catalysts. Ordering enzymes into zones opens up new opportunities for continuous-flow biosynthesis.
Collapse
Affiliation(s)
- Joshua Britton
- Departments of Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-2025, USA
- Centre for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, 5001, Australia
| | - Rebekah P Dyer
- Departments of Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-2025, USA
| | - Sudipta Majumdar
- Departments of Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-2025, USA
| | - Colin L Raston
- Centre for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, 5001, Australia
| | - Gregory A Weiss
- Departments of Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-2025, USA
| |
Collapse
|
50
|
Britton J, Dyer RP, Majumdar S, Raston CL, Weiss GA. Ten-Minute Protein Purification and Surface Tethering for Continuous-Flow Biocatalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joshua Britton
- Departments of Chemistry, Molecular Biology and Biochemistry; University of California; Irvine CA 92697-2025 USA
- Centre for NanoScale Science and Technology; Flinders University; Bedford Park Adelaide 5001 Australia
| | - Rebekah P. Dyer
- Departments of Chemistry, Molecular Biology and Biochemistry; University of California; Irvine CA 92697-2025 USA
| | - Sudipta Majumdar
- Departments of Chemistry, Molecular Biology and Biochemistry; University of California; Irvine CA 92697-2025 USA
| | - Colin L. Raston
- Centre for NanoScale Science and Technology; Flinders University; Bedford Park Adelaide 5001 Australia
| | - Gregory A. Weiss
- Departments of Chemistry, Molecular Biology and Biochemistry; University of California; Irvine CA 92697-2025 USA
| |
Collapse
|