1
|
Napolitano S, Pokharna A, Glockshuber R, Gossert AD. The trans-to-cis proline isomerization in E. coli Trx folding is accelerated by trans prolines. Biophys J 2021; 120:5207-5218. [PMID: 34736898 DOI: 10.1016/j.bpj.2021.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/17/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022] Open
Abstract
The conserved fold of thioredoxin (Trx)-like thiol/disulfide oxidoreductases contains an invariant cis-proline residue (P76 in Escherichia coli Trx) that is essential for Trx function and that is responsible for the folding rate-limiting step. E. coli Trx contains four additional prolines, which are all in the trans conformation in the native state. Notably, a recent study revealed that replacement of all four trans prolines in Trx by alanines (Trx variant Trx1P) further slowed the rate-limiting step 25-fold, indicating that one or several of the four trans prolines accelerate the trans-to-cis transition of P76 in Trx wild-type (wt). Here, we characterized the folding kinetics of Trx variants containing cisP76 and one or several of the natural trans prolines of Trx wt with NMR spectroscopy. First, we demonstrate that the isomerization reaction in Trx1P is a pure two-state transition between two distinct tertiary structures, in which all observed NMR resonances changes follow the same first-order kinetics. Moreover, we show that trans-P68 is the critical residue responsible for the faster folding of wt Trx relative to the single-proline (P76) variant Trx1P, as the two-proline variant Trx2P(P76P68) already folds seven times faster than Trx1P. trans-P34 also accelerates trans-to-cis isomerization of P76, albeit to a smaller extent. Overall, the results demonstrate that trans prolines can significantly modulate the kinetics of rate-limiting trans-to-cis proline isomerization in protein folding. Finally, we discuss possible mechanisms of acceleration and the potential significance of a protein-internal folding acceleration mechanism for Trx in a living cell.
Collapse
Affiliation(s)
| | - Aditya Pokharna
- Institute of Molecular Biology and Biophysics, Zürich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Zürich, Switzerland.
| | - Alvar D Gossert
- Institute of Molecular Biology and Biophysics, Zürich, Switzerland; Biomolecular NMR Spectroscopy Platform, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
3
|
Chen JL, Wang X, Xiao YH, Su XC. Resonance Assignments of Lowly Populated and Unstable Enzyme Intermediate Complex under Real-Time Conditions. Chembiochem 2019; 20:2738-2742. [PMID: 31136055 DOI: 10.1002/cbic.201900240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 11/08/2022]
Abstract
Unstable and low-abundance protein complexes represent a large family of transient protein complexes that are difficult to characterize, even by means of high-resolution NMR spectroscopy. A method to assign the NMR signals of these unstable complexes through a combination of selective isotope labeling of amino acids in a protein and site-specific labeling the protein with a paramagnetic tag is presented herein. By using this method, the resonances of unstable thioester intermediate complex (lifetime <5 h and highest concentration ≈20 μm) generated by Staphylococcus aureus sortase A and its peptide substrate under a real-time reaction have been assigned.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu-Hao Xiao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
4
|
Ikeya T, Ban D, Lee D, Ito Y, Kato K, Griesinger C. Solution NMR views of dynamical ordering of biomacromolecules. Biochim Biophys Acta Gen Subj 2017; 1862:287-306. [PMID: 28847507 DOI: 10.1016/j.bbagen.2017.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND To understand the mechanisms related to the 'dynamical ordering' of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells. SCOPE OF REVIEW In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges. MAJOR CONCLUSIONS Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques. GENERAL SIGNIFICANCE For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Teppei Ikeya
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0373, Japan; CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0373, Japan; CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
| | - Christian Griesinger
- Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
5
|
Franco R, Favier A, Schanda P, Brutscher B. Optimized fast mixing device for real-time NMR applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:125-129. [PMID: 28595119 PMCID: PMC5542027 DOI: 10.1016/j.jmr.2017.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/29/2017] [Indexed: 05/03/2023]
Abstract
We present an improved fast mixing device based on the rapid mixing of two solutions inside the NMR probe, as originally proposed by Hore and coworkers (J. Am. Chem. Soc. 125 (2003) 12484-12492). Such a device is important for off-equilibrium studies of molecular kinetics by multidimensional real-time NMR spectrsocopy. The novelty of this device is that it allows removing the injector from the NMR detection volume after mixing, and thus provides good magnetic field homogeneity independently of the initial sample volume placed in the NMR probe. The apparatus is simple to build, inexpensive, and can be used without any hardware modification on any type of liquid-state NMR spectrometer. We demonstrate the performance of our fast mixing device in terms of improved magnetic field homogeneity, and show an application to the study of protein folding and the structural characterization of transiently populated folding intermediates.
Collapse
Affiliation(s)
- Rémi Franco
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
| | - Adrien Favier
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
| | - Paul Schanda
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.
| |
Collapse
|
6
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
7
|
Kumar A, Balbach J. Real-time protein NMR spectroscopy and investigation of assisted protein folding. Biochim Biophys Acta Gen Subj 2014; 1850:1965-72. [PMID: 25497212 DOI: 10.1016/j.bbagen.2014.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND During protein-folding reactions toward the native structure, short-lived intermediate states can be populated. Such intermediates expose hydrophobic patches and can self-associate leading to non-productive protein misfolding. A major focus of current research is the characterization of short-lived intermediates and how molecular chaperones enable productive folding. Real-time NMR spectroscopy, together with the development of advanced methods, is reviewed here and the potential these methods have to characterize intermediate states as well as interactions with molecular chaperone proteins at single-residue resolution is highlighted. SCOPE OF REVIEW Various chaperone interactions can guide the protein-folding reaction and thus are important for protein structure formation, stability, and activity of their substrates. Chaperone-assisted protein folding, characterization of intermediates, and their molecular interactions using real-time NMR spectroscopy will be discussed. Additionally, recent advances in NMR methods employed for characterization of high-energy intermediates will be discussed. MAJOR CONCLUSIONS Real-time NMR combines high resolution with kinetic information of protein reactions, which can be employed not only for protein-folding studies and the characterization of folding intermediates but also to investigate the molecular mechanisms of assisted protein folding. GENERAL SIGNIFICANCE Real-time NMR spectroscopy remains an effective tool to reveal structural details about the interaction between chaperones and transient intermediates. Methodologically, it provides in-depth understanding of how kinetic intermediates and their thermodynamics contribute to the protein-folding reaction. This review summarizes the most recent advances in this field. This article is part of a Special Issue titled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Amit Kumar
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther Universität Halle-Wittenberg, Halle D-06120, Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther Universität Halle-Wittenberg, Halle D-06120, Germany.
| |
Collapse
|
8
|
Gil-Caballero S, Favier A, Brutscher B. HNCA+, HNCO+, and HNCACB+ experiments: improved performance by simultaneous detection of orthogonal coherence transfer pathways. JOURNAL OF BIOMOLECULAR NMR 2014; 60:1-9. [PMID: 25056271 DOI: 10.1007/s10858-014-9847-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Three experiments, BEST-TROSY HNCA+, HNCO+ and HNCACB+ are presented for sequential backbone resonance assignment of (13)C, (15)N labelled proteins. The novelty of these experiments with respect to conventional pulse sequences is the detection of additional orthogonal coherence transfer pathways that results in enhanced sensitivity for sequential correlations without significantly compromising the intensity of intra-residue correlation peaks. In addition, a 2-step phase cycle separates peaks originating from the orthogonal coherence transfer pathways in 2 sub-spectra, thus providing similar information as obtained from performing a pair of sequential and intra-residue correlation experiments.
Collapse
Affiliation(s)
- Sergio Gil-Caballero
- Institut de Biologie Structurale, Université Grenoble 1, 71 Avenue des Martyrs, 38044, Grenoble Cedex 9, France
| | | | | |
Collapse
|
9
|
Generation of a Highly Active Folding Enzyme by Combining a Parvulin-Type Prolyl Isomerase from SurA with an Unrelated Chaperone Domain. J Mol Biol 2013; 425:4089-98. [DOI: 10.1016/j.jmb.2013.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022]
|
10
|
Yamasaki K, Obara Y, Hasegawa M, Tanaka H, Yamasaki T, Wakuda T, Okada M, Kohzuma T. Real-Time NMR Monitoring of Protein-Folding Kinetics by a Recycle Flow System for Temperature Jump. Anal Chem 2013; 85:9439-43. [DOI: 10.1021/ac401579e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research
Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuji Obara
- Institute of Applied
Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Manabu Hasegawa
- Hitachi Research
Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi, Ibaraki 319-1292, Japan
| | - Hideki Tanaka
- Hitachi Research
Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi, Ibaraki 319-1292, Japan
| | - Tomoko Yamasaki
- Biomedical Research
Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Wakuda
- Hitachi Research
Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi, Ibaraki 319-1292, Japan
| | - Michiya Okada
- Tsukuba Innovation
Arena, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8562, Japan
| | - Takamitsu Kohzuma
- Institute of Applied
Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
11
|
Measuring dynamic and kinetic information in the previously inaccessible supra-τ(c) window of nanoseconds to microseconds by solution NMR spectroscopy. Molecules 2013; 18:11904-37. [PMID: 24077173 PMCID: PMC6270068 DOI: 10.3390/molecules181011904] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/28/2013] [Accepted: 09/17/2013] [Indexed: 11/16/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool that has enabled experimentalists to characterize molecular dynamics and kinetics spanning a wide range of time-scales from picoseconds to days. This review focuses on addressing the previously inaccessible supra-tc window (defined as τ(c) < supra-τ(c) < 40 μs; in which tc is the overall tumbling time of a molecule) from the perspective of local inter-nuclear vector dynamics extracted from residual dipolar couplings (RDCs) and from the perspective of conformational exchange captured by relaxation dispersion measurements (RD). The goal of the first section is to present a detailed analysis of how to extract protein dynamics encoded in RDCs and how to relate this information to protein functionality within the previously inaccessible supra-τ(c) window. In the second section, the current state of the art for RD is analyzed, as well as the considerable progress toward pushing the sensitivity of RD further into the supra-τ(c) scale by up to a factor of two (motion up to 25 μs). From the data obtained with these techniques and methodology, the importance of the supra-τ(c) scale for protein function and molecular recognition is becoming increasingly clearer as the connection between motion on the supra-τ(c) scale and protein functionality from the experimental side is further strengthened with results from molecular dynamics simulations.
Collapse
|
12
|
Rennella E, Brutscher B. Fast Real-Time NMR Methods for Characterizing Short-Lived Molecular States. Chemphyschem 2013; 14:3059-70. [DOI: 10.1002/cphc.201300339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Indexed: 12/22/2022]
|
13
|
Zoldák G, Geitner AJ, Schmid FX. The Prolyl Isomerase SlyD Is a Highly Efficient Enzyme but Decelerates the Conformational Folding of a Client Protein. J Am Chem Soc 2013; 135:4372-9. [DOI: 10.1021/ja311775a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gabriel Zoldák
- Laboratorium
für Biochemie und Bayreuther Zentrum
für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Anne-Juliane Geitner
- Laboratorium
für Biochemie und Bayreuther Zentrum
für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Franz X. Schmid
- Laboratorium
für Biochemie und Bayreuther Zentrum
für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
14
|
NMR as a tool to identify and characterize protein folding intermediates. Arch Biochem Biophys 2013; 531:90-9. [DOI: 10.1016/j.abb.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/20/2022]
|
15
|
Rennella E, Cutuil T, Schanda P, Ayala I, Forge V, Brutscher B. Real-Time NMR Characterization of Structure and Dynamics in a Transiently Populated Protein Folding Intermediate. J Am Chem Soc 2012; 134:8066-9. [DOI: 10.1021/ja302598j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Enrico Rennella
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| | - Thomas Cutuil
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| | - Paul Schanda
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| | - Isabel Ayala
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| | - Vincent Forge
- DSV-iRTSV, Laboratoire de Chimie
et Biologie des Métaux, Université Grenoble 1, CEA,
CNRS, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| |
Collapse
|