1
|
Wang D, Liu X, Sun J, Han Y, Yan CG. Base-Mediated Annulation of ortho-Iminophenols and ortho-Vinylphenols with MBH Carbonates of Isatins: Straightforward Access to Dihydrobenzofuran and Benzofuran Derivatives. J Org Chem 2024; 89:15472-15489. [PMID: 39404088 DOI: 10.1021/acs.joc.4c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
We have developed a convenient synthetic protocol for efficient construction of significant dihydrobenzofuran and benzofuran scaffolds by Lewis base-mediated annulation reaction ortho-iminophenols and ortho-vinylphenols with MBH carbonates of isatins under mild and metal-free conditions. The selective generation of different kinds of dihydrobenzofuran and benzofuran derivatives was successfully achieved by employing different substituted isatin-derived MBH carbonates with ortho-N-tosyliminophenols and ortho-vinylphenols. The features included broad substrate scopes, excellent functional group compatibility, high molecular diversity, and atomic economy.
Collapse
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xing Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
2
|
Ashraf R, Zahoor AF, Ali KG, Nazeer U, Saif MJ, Mansha A, Chaudhry AR, Irfan A. Development of novel transition metal-catalyzed synthetic approaches for the synthesis of a dihydrobenzofuran nucleus: a review. RSC Adv 2024; 14:14539-14581. [PMID: 38708111 PMCID: PMC11066739 DOI: 10.1039/d4ra01830c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
The synthesis of dihydrobenzofuran scaffolds bears pivotal significance in the field of medicinal chemistry and organic synthesis. These heterocyclic scaffolds hold immense prospects owing to their significant pharmaceutical applications as they are extensively employed as essential precursors for constructing complex organic frameworks. Their versatility and importance make them an interesting subject of study for researchers in the scientific community. While exploring their synthesis, researchers have unveiled various novel and efficient pathways for assembling the dihydrobenzofuran core. In the wake of extensive data being continuously reported each year, we have outlined the recent updates (post 2020) on novel methodological accomplishments employing the efficient catalytic role of several transition metals to forge dihydrobenzofuran functionalities.
Collapse
Affiliation(s)
- Rabia Ashraf
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P. O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Li X, Yue SH, Tan ZY, Liu SB, Luo DX, Zhou YJ, Liang XW. Catalytic asymmetric carbenoid α-C-H insertion of ether. RSC Adv 2024; 14:15167-15177. [PMID: 38741618 PMCID: PMC11090019 DOI: 10.1039/d4ra02206h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Significant advancements have been made in catalytic asymmetric α-C-H bond functionalization of ethers via carbenoid insertion over the past decade. Effective asymmetric catalytic systems, featuring a range of chiral metal catalysts, have been established for the enantioselective synthesis of diverse ether substrates. This has led to the generation of various enantioenriched, highly functionalized oxygen-containing structural motifs, facilitating their application in the asymmetric synthesis of bioactive natural products.
Collapse
Affiliation(s)
- Xin Li
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - San-Hong Yue
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University Changsha 410013 China
| | - Zi-Yang Tan
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Shu-Bo Liu
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University Changsha 410013 China
| | - De-Xiang Luo
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Ying-Jun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Xiao-Wei Liang
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University Changsha 410013 China
| |
Collapse
|
4
|
Wu YJ, Chen JH, Teng MY, Li X, Jiang TY, Huang FR, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Annulation of Benzylamines with Alkynes: Application to the Modular and Asymmetric Syntheses of Bioactive Molecules. J Am Chem Soc 2023; 145:24499-24505. [PMID: 38104268 DOI: 10.1021/jacs.3c10714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The transition metal-catalyzed enantioselective C-H functionalization strategy has revolutionized the logic of natural product synthesis. However, previous applications have heavily relied on the use of noble metal catalysts such as rhodium and palladium. Herein, we report the efficient synthesis of C1-chiral 1,2-dihydroisoquinolines (DHIQs) via enantioselective C-H/N-H annulation of picolinamides with alkynes catalyzed by a more sustainable and cheaper 3d metal catalyst, cobalt(II) acetate tetrahydrate. A wide range of enantiomerically enriched DHIQs were obtained in good yields with excellent enantioselectivities (up to 98% yield and >99% ee). The robustness and synthetic potential of this method were demonstrated by the modular and asymmetric syntheses of several tetrahydroisoquinoline alkaloids, including (S)-norlaudanosine, (S)-laudanosine, (S)-xylopinine, (S)-sebiferine, and (S)-cryptostyline II, and the asymmetric syntheses of key intermediates of (+)-solifenacin, FR115427, and (+)-NPS R-568.
Collapse
Affiliation(s)
- Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tian-Yu Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Sinha SK, Ghosh P, Jain S, Maiti S, Al-Thabati SA, Alshehri AA, Mokhtar M, Maiti D. Transition-metal catalyzed C-H activation as a means of synthesizing complex natural products. Chem Soc Rev 2023; 52:7461-7503. [PMID: 37811747 DOI: 10.1039/d3cs00282a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Over the past few decades, the advent of C-H activation has led to a rethink among chemists about the synthetic strategies employed for multi-step transformations. Indeed, deploying innovative and masterful tricks against the numerous classical organic transformations has been the need of the hour. Despite this, the immense importance of C-H activation remains unfulfilled unless the methodology can be deployed for large-scale industrial processes and towards the concise, step-economic synthesis of prodigious natural products and pharmaceutical drugs. Lately, the growing potential of C-H activation methodology has indeed driven the pioneers of synthetic organic chemists into finding more efficient methods to accelerate the synthesis of such complex molecular scaffolds. This review aims to draw a general overview of the various C-H activation procedures that have been adopted for synthesizing these vast majority of structurally complicated natural products. Our objective lies in drawing a complete picture and taking the readers through the synthesis of a series of such complex organic compounds by simplified techniques, making it step-economic on a larger scale and thus instigating the readers to trigger the use of such methodology and uncover new, unique patterns for future synthesis of such natural products.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shubhanshu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh - 466114, India
| | - Shaeel A Al-Thabati
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdulmohsen Ali Alshehri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohamed Mokhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
6
|
Zhao Z, Wang J, Du Z, Li Y, Sun Q, Jin H. Kinetic Resolution of β-Alkyl Phenylethylamine Derivatives through Palladium-Catalyzed, Nosylamide-Directed C-H Olefination. Molecules 2023; 28:molecules28041852. [PMID: 36838841 PMCID: PMC9967062 DOI: 10.3390/molecules28041852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Palladium-catalyzed C-H activation reactions have attracted the attention of organic researchers due to their unique high selectivity, broad functional group tolerance, and high efficiency, and they are widely used in natural products and asymmetric synthesis. Here, we report an example of enantioselective C-H alkenylation between β-alkyl phenylethylamine compounds and styrenes with Boc-L-lle-OH as the ligand and nosylamide as the directing group. This reaction is applicable to styrene containing various electron-deficient and electron-donating substitutions and may be utilized for the synthesis of benzoazepine compounds.
Collapse
Affiliation(s)
- Zeng Zhao
- School of Pharmacy, Shanghai jiaotong University, Shanghai 200240, China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhiteng Du
- Department of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuzhu Li
- School of Pharmacy, Shanghai jiaotong University, Shanghai 200240, China
| | - Qingyan Sun
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- Correspondence: (Q.S.); (H.J.)
| | - Huizi Jin
- School of Pharmacy, Shanghai jiaotong University, Shanghai 200240, China
- Correspondence: (Q.S.); (H.J.)
| |
Collapse
|
7
|
Wang D, Sun J, Han Y, Sun Q, Yan CG. An Access to Highly Functionalized Dihydrobenzofuran Spirooxindole Scaffolds. Org Lett 2022; 24:7790-7795. [PMID: 36239308 DOI: 10.1021/acs.orglett.2c03123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed an efficient protocol for the construction of polycyclic dihydrobenzofuran spirooxindole scaffolds via base promoted cascade annulation of Morita-Baylis-Hillman (MBH) carbonates of isatins with ortho-hydroxychalcones or ortho-hydroxy-β-nitrostyrenes. The complex polycyclic compounds were conveniently synthesized in satisfactory yields and with high diastereoselectivity. This protocol provides a swift and convenient approach for the assembly of diverse highly functionalized dihydrobenzofuran spirooxindoles and also features broad substrate scope, high molecular convergence, and excellent atomic economy.
Collapse
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiu Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
8
|
Panja S, Ahsan S, Pal T, Kolb S, Ali W, Sharma S, Das C, Grover J, Dutta A, Werz DB, Paul A, Maiti D. Non-directed Pd-catalysed electrooxidative olefination of arenes. Chem Sci 2022; 13:9432-9439. [PMID: 36093017 PMCID: PMC9383708 DOI: 10.1039/d2sc03288k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022] Open
Abstract
The Fujiwara-Moritani reaction is a powerful tool for the olefination of arenes by Pd-catalysed C-H activation. However, the need for superstoichiometric amounts of toxic chemical oxidants makes the reaction unattractive from an environmental and atom-economical view. Herein, we report the first non-directed and regioselective olefination of simple arenes via an electrooxidative Fujiwara-Moritani reaction. The versatility of this operator-friendly approach was demonstrated by a broad substrate scope which includes arenes, heteroarenes and a variety of olefins. Electroanalytical studies suggest the involvement of a Pd(ii)/Pd(iv) catalytic cycle via a Pd(iii) intermediate.
Collapse
Affiliation(s)
- Subir Panja
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Salman Ahsan
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Tanay Pal
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Simon Kolb
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Wajid Ali
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Sulekha Sharma
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Chandan Das
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Jagrit Grover
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Arnab Dutta
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Amit Paul
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Debabrata Maiti
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| |
Collapse
|
9
|
Li QZ, Hou SH, Kang JC, Lian PF, Hao Y, Chen C, Zhou J, Ding TM, Zhang SY. Bioinspired Palladium-Catalyzed Intramolecular C(sp 3 )-H Activation for the Collective Synthesis of Proline Natural Products. Angew Chem Int Ed Engl 2022; 61:e202207088. [PMID: 35751877 DOI: 10.1002/anie.202207088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 12/18/2022]
Abstract
Bioinspired palladium-catalyzed intramolecular cyclization of amino acid derivatives containing a vinyl iodide moiety by C-H activation enabled rapid access to a wide range of functionalized proline derivatives with an exocyclic olefin. To demonstrate the practicality of this methodology, the functionalized prolines were used as intermediates for the synthesis of several natural products: lucentamycin A, oxotomaymycin, oxoprothracarcin, and barmumycin.
Collapse
Affiliation(s)
- Quan-Zhe Li
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Si-Hua Hou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Hao
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Chen
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Li QZ, Hou SH, Kang JC, Lian PF, Hao Y, Chen C, Zhou J, Ding TM, Zhang SY. Bioinspired Palladium‐Catalyzed Intramolecular C(sp3)−H Activation for the Collective Synthesis of Proline Natural Products. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Quan-Zhe Li
- Shanghai Jiao Tong University Chemistry CHINA
| | - Si-Hua Hou
- SJTU: Shanghai Jiao Tong University CHEMISTRY CHINA
| | | | | | - Yu Hao
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | - Chao Chen
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | - Jia Zhou
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | | | - Shu-Yu Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan RoadB329 Chemsitry BuildingShanghai Jiao Tong University 200240 Shanghai CHINA
| |
Collapse
|
11
|
Nambu H, Amano R, Tamura T, Yakura T. Rhodium(II)‐Catalyzed Site‐Selective Intramolecular Insertion of Aryldiazoacetates into Unactivated Primary C−H Bond: A Direct Route to 2‐Unsubstituted Indanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hisanori Nambu
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Ryoya Amano
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Takafumi Tamura
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Takayuki Yakura
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| |
Collapse
|
12
|
Carral-Menoyo A, Sotomayor N, Lete E. Palladium-catalyzed oxidative arene C–H alkenylation reactions involving olefins. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Dutta S, Bhattacharya T, Geffers FJ, Bürger M, Maiti D, Werz DB. Pd-catalysed C-H functionalisation of free carboxylic acids. Chem Sci 2022; 13:2551-2573. [PMID: 35340865 PMCID: PMC8890104 DOI: 10.1039/d1sc05392b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Pd-catalysed C-H functionalisation of free carboxylic acids has drawn significant attention over the last few years due to the predominance of carboxylic acid moieties in pharmaceuticals and agrochemicals. But their coordinating ability was overlooked and masked by exogenous directing groups for a long time. Even other crucial roles of carboxylic acids as additives and steric inducers that directly influence the mode of a reaction have been widely neglected. This review aims to embrace all of the diverse aspects of carboxylic acids except additive and steric effects by concisely and systematically describing their versatile role in Pd-catalysed proximal and distal C-H activation reactions that could be implemented in the pharmaceutical and agrochemical industries. In addition, the mechanistic perspectives along with several recent strategies developed in the last few years discussed here will serve as educational resources for future research.
Collapse
Affiliation(s)
- Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Finn J Geffers
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| | - Marcel Bürger
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| |
Collapse
|
15
|
Zhang X, Sivaguru P, Zanoni G, Han X, Tong M, Bi X. Catalytic Asymmetric C(sp 3)–H Carbene Insertion Approach to Access Enantioenriched 3-Fluoroalkyl 2,3-Dihydrobenzofurans. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Xinyue Han
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Minghui Tong
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
17
|
Sukowski V, Jia W, Diest R, Borselen M, Fernández‐Ibáñez MÁ. S,O‐Ligand‐Promoted Pd‐Catalyzed C−H Olefination of Anisole Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wen‐Liang Jia
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Rianne Diest
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Manuela Borselen
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
18
|
Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2,3-dihydrobenzofuran derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Lam NYS, Wu K, Yu JQ. Advancing the Logic of Chemical Synthesis: C-H Activation as Strategic and Tactical Disconnections for C-C Bond Construction. Angew Chem Int Ed Engl 2021; 60:15767-15790. [PMID: 33073459 PMCID: PMC8177825 DOI: 10.1002/anie.202011901] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Indexed: 12/13/2022]
Abstract
The design of synthetic routes by retrosynthetic logic is decisively influenced by the transformations available. Transition-metal-catalyzed C-H activation has emerged as a powerful strategy for C-C bond formation, with myriad methods developed for diverse substrates and coupling partners. However, its uptake in total synthesis has been tepid, partially due to their apparent synthetic intractability, as well as a lack of comprehensive guidelines for implementation. This Review addresses these issues and offers a guide to identify retrosynthetic opportunities to generate C-C bonds by C-H activation processes. By comparing total syntheses accomplished using traditional approaches and recent C-H activation methods, this Review demonstrates how C-H activation enabled C-C bond construction has led to more efficient retrosynthetic strategies, as well as the execution of previously unattainable tactical maneuvers. Finally, shortcomings of existing processes are highlighted; this Review illustrates how some highlighted total syntheses can be further economized by adopting next-generation ligand-enabled approaches.
Collapse
Affiliation(s)
- Nelson Y S Lam
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kevin Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
20
|
Lu Z, Zhang Q, Ke M, Hu S, Xiao X, Chen F. TfOH-Catalyzed [4 + 1] Annulation of p-Quinone Methides with α-Aryl Diazoacetates: Straightforward Access to Highly Functionalized 2,3-Dihydrobenzofurans. J Org Chem 2021; 86:7625-7635. [PMID: 33993694 DOI: 10.1021/acs.joc.1c00672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a methodology for the greatly efficient construction of significant 2,3-dihydrobenzofuran scaffolds bearing a quaternary carbon center at the C2 position by means of [4 + 1] annulation reactions between p-quinone methides and α-aryl diazoacetates as C1 synthons through organocatalysis by readily accessible TfOH catalyst under mild and transition metal-free conditions. This metal-free protocol furnishes an operationally simple and swift process for the free assembly of diverse highly functionalized 2,3-dihydrobenzofurans and also features broad substrate scope, excellent functional group compatibility, and environmental friendliness. Mechanistic investigation suggested that the reaction undergoes a rapid cascade protonation/intermolecular Michael addition/intramolecular substitution process.
Collapse
Affiliation(s)
- Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qingchun Zhang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
21
|
Das J, Mal DK, Maji S, Maiti D. Recent Advances in External-Directing-Group-Free C–H Functionalization of Carboxylic Acids without Decarboxylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dibya Kanti Mal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
22
|
Lam NYS, Wu K, Yu J. Advancing the Logic of Chemical Synthesis: C−H Activation as Strategic and Tactical Disconnections for C−C Bond Construction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011901] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nelson Y. S. Lam
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kevin Wu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
23
|
Zhuang Z, Herron AN, Liu S, Yu JQ. Rapid Construction of Tetralin, Chromane, and Indane Motifs via Cyclative C-H/C-H Coupling: Four-Step Total Synthesis of (±)-Russujaponol F. J Am Chem Soc 2021; 143:687-692. [PMID: 33395528 DOI: 10.1021/jacs.0c12484] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of practical C-H/C-H coupling reactions remains a challenging yet appealing synthetic venture because it circumvents the need to prefunctionalize both coupling partners for the generation of C-C bonds. Herein we report a cyclative C(sp3)-H/C(sp2)-H coupling reaction of free aliphatic acids enabled by a cyclopentane-based mono-N-protected β-amino acid ligand. This reaction uses inexpensive sodium percarbonate (Na2CO3·1.5H2O2) as the sole oxidant and generates water as the only byproduct. A range of biologically important scaffolds, including tetralins, chromanes, and indanes, can be easily prepared by this protocol. Finally, the synthetic application of this methodology is demonstrated by the concise total synthesis of (±)-russujaponol F in a four-step sequence starting from readily available phenylacetic acid and pivalic acid through sequential functionalizations of four C-H bonds.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shuang Liu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Xie S, Li Y, Liu P, Sun P. Visible Light-Induced Radical Addition/Annulation to Construct Phenylsulfonyl-Functionalized Dihydrobenzofurans Involving an Intramolecular 1,5-Hydrogen Atom Transfer Process. Org Lett 2020; 22:8774-8779. [PMID: 33147046 DOI: 10.1021/acs.orglett.0c03038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible light-induced radical cascade reaction of 2-alkynylarylethers with sodium sulfinates was established for the synthesis of sulfonyl-functionalized dihydrobenzofurans, and an intramolecular 1,5-hydrogen atom transfer was involved in this transformation. This process provided an efficient and convenient C-C formation protocol for the construction of a dihydrobenzofuran ring. Various substituents on 2-alkynylarylethers and sodium sulfinates were tolerated in the reaction, and the corresponding products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shentong Xie
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yifan Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Huo X, Han J, Yan X, Zhang H, Xiong J, Liu J, Wang X, Li H, Huo L. Pd‐Catalyzed
ortho
‐C−H Olefination of Benzenesulfonamides Directed by 7‐Azaindole. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xing Huo
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry Lanzhou University 222 South Tianshui Road Lanzhou 730000, Gansu P. R. China
| | - Jun Han
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry Lanzhou University 222 South Tianshui Road Lanzhou 730000, Gansu P. R. China
| | - Xiaoxiao Yan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry Lanzhou University 222 South Tianshui Road Lanzhou 730000, Gansu P. R. China
| | - Heng Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry Lanzhou University 222 South Tianshui Road Lanzhou 730000, Gansu P. R. China
| | - Juan Xiong
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry Lanzhou University 222 South Tianshui Road Lanzhou 730000, Gansu P. R. China
| | - Jian Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry Lanzhou University 222 South Tianshui Road Lanzhou 730000, Gansu P. R. China
| | - Xiaolei Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry Lanzhou University 222 South Tianshui Road Lanzhou 730000, Gansu P. R. China
| | - Huilin Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry Lanzhou University 222 South Tianshui Road Lanzhou 730000, Gansu P. R. China
| | - Leiming Huo
- The Neurosurgery of the First Hospital of Lanzhou University Lanzhou University 1 West Donggang Road Lanzhou 730000, Gansu P. R. China
| |
Collapse
|
26
|
Shao NQ, Chen YH, Li C, Wang DH. Synthesis of γ-Lactams via Pd(II)-Catalyzed C(sp 3)-H Olefination Using a Self-Cleaving Polyfluoroethylsulfinyl Directing Group. Org Lett 2020; 22:7141-7146. [PMID: 32875802 DOI: 10.1021/acs.orglett.0c00326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A monodentate directing group, 2-chlorotetrafluoroethylsulfinylmide (-NHSOCF2CF2Cl), for inert C(sp3)-H bond activation is reported. This directing group shows efficient ability in Pd(II)-catalyzed C(sp3)-H olefination. The desired olefination products undergo subsequent Michael addition and in situ expulsion of the auxiliary to provide the free NH γ-lactam products. Preliminary mechanistic studies reveal that the auxiliary group is crucial for C(sp3)-H activation.
Collapse
Affiliation(s)
- Nan-Qi Shao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Rd., Shanghai 200032, China
| | - Yu-Hao Chen
- School of Biotechnology & Health Sciences, Wuyi University, 22 Dongcheng Vill., Jiangmen, Guangdong 529020, China
| | - Chen Li
- School of Biotechnology & Health Sciences, Wuyi University, 22 Dongcheng Vill., Jiangmen, Guangdong 529020, China
| | - Dong-Hui Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Rd., Shanghai 200032, China
| |
Collapse
|
27
|
Baudoin O. Mehrfache katalytische C‐H‐Bindungsfunktionalisierungen in der Naturstoffsynthese. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 CH-4056 Basel Schweiz
| |
Collapse
|
28
|
Baudoin O. Multiple Catalytic C-H Bond Functionalization for Natural Product Synthesis. Angew Chem Int Ed Engl 2020; 59:17798-17809. [PMID: 32220111 DOI: 10.1002/anie.202001224] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 01/17/2023]
Abstract
In the past decade, multiple catalytic C-H bond functionalization has been successfully applied in natural product synthesis as a strategy to reduce the number of steps, increase overall yield and employ more easily available starting materials. This minireview presents selected examples making use of multiple C-H bond functionalization in conceptually different ways. First, linear syntheses are discussed, wherein multiple C-H functionalization is employed either from simple (hetero)cyclic cores, at a late stage, or to build polycyclic systems. Second, the use of multiple C-H functionalization as a strategic tool in convergent synthesis to access and couple complex fragments is discussed. Information on the scalability of the employed methods is provided when available. The presented cases indicate that multiple C-H functionalization strategies should play a great role to shape the future synthesis of functional complex molecules with improved sustainability.
Collapse
Affiliation(s)
- Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| |
Collapse
|
29
|
Wu F, Zhang J, Song F, Wang S, Guo H, Wei Q, Dai H, Chen X, Xia X, Liu X, Zhang L, Yu JQ, Lei X. Chrysomycin A Derivatives for the Treatment of Multi-Drug-Resistant Tuberculosis. ACS CENTRAL SCIENCE 2020; 6:928-938. [PMID: 32607440 PMCID: PMC7318084 DOI: 10.1021/acscentsci.0c00122] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Indexed: 05/02/2023]
Abstract
Tuberculosis (TB) is a life-threatening disease resulting in an estimated 10 million new infections and 1.8 million deaths annually, primarily in underdeveloped countries. The economic burden of TB has been estimated as approximately 12 billion USD annually in direct and indirect costs. Additionally, multi-drug-resistant (MDR) and extreme-drug-resistant (XTR) TB strains resulting in about 250 000 deaths annually are now widespread, increasing pressure on the identification of new anti-TB agents that operate by a novel mechanism of action. Chrysomycin A is a rare C-aryl glycoside first discovered over 60 years ago. In a recent high-throughput screen, we found that chrysomycin A has potent anti-TB activity, with minimum inhibitory concentration (MIC) = 0.4 μg/mL against MDR-TB strains. However, chrysomycin A is obtained in low yields from fermentation of Streptomyces, and the mechanism of action of this compound is unknown. To facilitate the mechanism of action and preclinical studies of chrysomycin A, we developed a 10-step, scalable synthesis of the isolate and its two natural congeners polycarcin V and gilvocarcin V. The synthetic sequence was enabled by the implementation of two sequential C-H functionalization steps as well as a late-stage C-glycosylation. In addition, >10 g of the advanced synthetic intermediate has been prepared, which greatly facilitated the synthesis of 33 new analogues to date. The structure-activity relationship was subsequently delineated, leading to the identification of derivatives with superior potency against MDR-TB (MIC = 0.08 μg/mL). The more potent derivatives contained a modified carbohydrate residue which suggests that further optimization is additionally possible. The chemistry we report here establishes a platform for the development of a novel class of anti-TB agents active against drug-resistant pathogens.
Collapse
Affiliation(s)
- Fan Wu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jing Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fuhang Song
- CAS
Key Laboratory of Pathogenic Microbiology & Immunology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
| | - Sanshan Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Guo
- CAS
Key Laboratory of Pathogenic Microbiology & Immunology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
| | - Qi Wei
- CAS
Key Laboratory of Pathogenic Microbiology & Immunology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
| | - Huanqin Dai
- CAS
Key Laboratory of Pathogenic Microbiology & Immunology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
| | - Xiangyin Chen
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuekui Xia
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key
Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250013, China
| | - Xueting Liu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- CAS
Key Laboratory of Pathogenic Microbiology & Immunology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key
Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250013, China
| | - Jin-Quan Yu
- The
Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Shao Q, Wu K, Zhuang Z, Qian S, Yu JQ. From Pd(OAc) 2 to Chiral Catalysts: The Discovery and Development of Bifunctional Mono-N-Protected Amino Acid Ligands for Diverse C-H Functionalization Reactions. Acc Chem Res 2020; 53:833-851. [PMID: 32227915 DOI: 10.1021/acs.accounts.9b00621] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functionalization of unactivated carbon-hydrogen bonds is a transformative strategy for the rapid construction of molecular complexity given the ubiquitous presence of C-H bonds in organic molecules. It represents a powerful tool for accelerating the synthesis of natural products and bioactive compounds while reducing the environmental and economic costs of synthesis. At the same time, the ubiquity and strength of C-H bonds also present major challenges toward the realization of transformations that are both highly selective and efficient. The development of practical C-H functionalization reactions has thus remained a compelling yet elusive goal in organic chemistry for over a century.Specifically, the capability to form useful new C-C, C-N, C-O, and C-X bonds via direct C-H functionalization would have wide-ranging impacts in organic synthesis. Palladium is especially attractive as a catalyst for such C-H functionalizations because of the diverse reactivity of intermediate palladium-carbon bonds. Early efforts using cyclopalladation with Pd(OAc)2 and related salts led to the development of many Pd-catalyzed C-H functionalization reactions. However, Pd(OAc)2 and other simple Pd salts perform only racemic transformations, which prompted a long search for effective chiral catalysts dating back to the 1970s. Pd salts also have low reactivity with synthetically useful substrates. To address these issues, effective and reliable ligands capable of accelerating and improving the selectivity of Pd-catalyzed C-H functionalizations are needed.In this Account, we highlight the discovery and development of bifunctional mono-N-protected amino acid (MPAA) ligands, which make great strides toward addressing these two challenges. MPAAs enable numerous Pd(II)-catalyzed C(sp2)-H and C(sp3)-H functionalization reactions of synthetically relevant substrates under operationally practical conditions with excellent stereoselectivity when applicable. Mechanistic studies indicate that MPAAs operate as unique bifunctional ligands for C-H activation in which both the carboxylate and amide are coordinated to Pd. The N-acyl group plays an active role in the C-H cleavage step, greatly accelerating C-H activation. The rigid MPAA chelation also results in a predictable transfer of chiral information from a single chiral center on the ligand to the substrate and permits the development of a rational stereomodel to predict the stereochemical outcome of enantioselective reactions.We also describe the application of MPAA-enabled C-H functionalization in total synthesis and provide an outlook for future development in this area. We anticipate that MPAAs and related next-generation ligands will continue to stimulate development in the field of Pd-catalyzed C-H functionalization.
Collapse
Affiliation(s)
- Qian Shao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kevin Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shaoqun Qian
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Zhao Q, Jin JK, Wang J, Zhang FL, Wang YF. Radical α-addition involved electrooxidative [3 + 2] annulation of phenols and electron-deficient alkenes. Chem Sci 2020; 11:3909-3913. [PMID: 34122860 PMCID: PMC8152790 DOI: 10.1039/d0sc01078b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An electrooxidative [3 + 2] annulation of phenols and electron-deficient alkenes for the synthesis of C3-functionalized 2-aryl-2,3-dihydrobenzofuran derivatives was achieved. The ring construction starts by a unique α-addition of carbon radicals derived from anodic oxidation of phenols to electron-deficient alkenes. The subsequent anodic oxidation of the resulting alkyl radical intermediates followed by trapping with the phenolic hydroxy group assembles the 2,3-dihydrobenzofuran core. Such a pathway enables the installation of various electrophilic functionalities including alkoxycarbonyl, alkylaminocarbonyl, trifluoromethyl, and cyano groups at the C-3 of the 2,3-dihydrobenzofuran framework, which is unattainable by other intermolecular reactions. The application of this method for a rapid synthesis of a bioactive natural product is demonstrated. An electrooxidative [3 + 2] annulation between phenols and electron-deficient alkenes for the synthesis of C3-functionalized 2-aryl-2,3-dihydrobenzofuran derivatives is described.![]()
Collapse
Affiliation(s)
- Qiang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Ji-Kang Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Jie Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Feng-Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yi-Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
32
|
Rh(III)-Catalyzed C–H Bond Activation for the Construction of Heterocycles with sp3-Carbon Centers. Catalysts 2019. [DOI: 10.3390/catal9100823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rh(III)-catalyzed C–H activation features mild reaction conditions, good functional group tolerance, high reaction efficiency, and regioselectivity. Recently, it has attracted tremendous attention and has been employed to synthesize various heterocycles, such as indoles, isoquinolines, isoquinolones, pyrroles, pyridines, and polyheterocycles, which are important privileged structures in biological molecules, natural products, and agrochemicals. In this short review, we attempt to present an overview of recent advances in Rh(III)-mediated C–H bond activation to generate diverse heterocyclic scaffolds with sp3 carbon centers.
Collapse
|
33
|
Tan JP, Yu P, Wu JH, Chen Y, Pan J, Jiang C, Ren X, Zhang HS, Wang T. Bifunctional Phosphonium Salt Directed Enantioselective Formal [4 + 1] Annulation of Hydroxyl-Substituted para-Quinone Methides with α-Halogenated Ketones. Org Lett 2019; 21:7298-7302. [DOI: 10.1021/acs.orglett.9b02560] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chunhui Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hong-Su Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
34
|
Gholami H, Kulshrestha A, Favor OK, Staples RJ, Borhan B. Total Synthesis of (-)-Salinosporamide A via a Late Stage C-H Insertion. Angew Chem Int Ed Engl 2019; 58:10110-10113. [PMID: 30887693 DOI: 10.1002/anie.201900340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 01/24/2023]
Abstract
The synthesis of (-)-salinosporamide A, a proteasome inhibitor, is described. The synthesis highlights the assembly of a densely decorated pyrrolidinone core via an aza-Payne/hydroamination sequence. Central to the success of the synthesis is a late-stage C-H insertion reaction to functionalize a sterically encumbered secondary carbon. The latter functionalization leads to an enabling transformation where most of the prototypical strategies failed.
Collapse
Affiliation(s)
- Hadi Gholami
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
| | - Aman Kulshrestha
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
| | - Olivia K Favor
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
| | - Richard J Staples
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
| |
Collapse
|
35
|
Tundo P, Musolino M, Aricò F. Dialkyl Carbonates in the Green Synthesis of Heterocycles. Front Chem 2019; 7:300. [PMID: 31134180 PMCID: PMC6514103 DOI: 10.3389/fchem.2019.00300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the use of dialkyl carbonates (DACs) as green reagents and solvents for the synthesis of several 5- and 6-membered heterocycles including: tetrahydrofuran and furan systems, pyrrolidines, indolines, isoindolines, 1,4-dioxanes, piperidines, and cyclic carbamates. Depending on the heterocycle investigated, the synthetic approach used was different. Tetrahydrofuran systems, pyrrolidines, indolines, isoindoline, and 1,4-dioxanes were synthesized using dimethyl carbonate (DMC) as sacrificial molecule (BAc2/BAl2 mechanism). Cyclic carbamates, namely 1,3-oxazin-2-ones, were prepared employing DACs as carbonylating agents, either by BAc2/BAl2 mechanism or through a double BAc2 mechanism. Piperidines were synthetized taking advantage of the anchimeric effect of a new family of dialkyl carbonates, i.e., mustard carbonates. Finally, in the case 5-hydroxymethylfurfural (HMF), DMC has been employed as efficient extracting solvent of this extensively investigated bio-based platform chemical from the reaction mixture. These synthetic approaches demonstrate, once again, the great versatility of DACs and their-yet to be fully explored-potential as green reagents and solvents in the synthesis of heterocycles.
Collapse
Affiliation(s)
- Pietro Tundo
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Scientifico, Venice, Italy
- Institute for the Chemistry of Organometallic Compounds (ICCOM), National Research Council of Italy (CNR), Florence, Italy
| | - Manuele Musolino
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Scientifico, Venice, Italy
| | - Fabio Aricò
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Scientifico, Venice, Italy
| |
Collapse
|
36
|
Fan J, Yao QJ, Liu YH, Liao G, Zhang S, Shi BF. Asymmetric Total Synthesis of TAN-1085 Facilitated by Pd-Catalyzed Atroposelective C–H Olefination. Org Lett 2019; 21:3352-3356. [DOI: 10.1021/acs.orglett.9b01099] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yan-Hua Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Gang Liao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shuo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
37
|
Gholami H, Kulshrestha A, Favor OK, Staples RJ, Borhan B. Total Synthesis of (−)‐Salinosporamide A via a Late Stage C−H Insertion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hadi Gholami
- Department of ChemistryMichigan State University E. Lansing MI 48824 USA
| | - Aman Kulshrestha
- Department of ChemistryMichigan State University E. Lansing MI 48824 USA
| | - Olivia K. Favor
- Department of ChemistryMichigan State University E. Lansing MI 48824 USA
| | - Richard J. Staples
- Department of ChemistryMichigan State University E. Lansing MI 48824 USA
| | - Babak Borhan
- Department of ChemistryMichigan State University E. Lansing MI 48824 USA
| |
Collapse
|
38
|
Chen Z, Pitchakuntla M, Jia Y. Synthetic approaches to natural products containing 2,3-dihydrobenzofuran skeleton. Nat Prod Rep 2019; 36:666-690. [DOI: 10.1039/c8np00072g] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review describes the synthetic approaches to natural products containing the 2,3-dihydrobenzofuran (2,3-DHB) skeleton.
Collapse
Affiliation(s)
- Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
39
|
Abrams DJ, Provencher PA, Sorensen EJ. Recent applications of C-H functionalization in complex natural product synthesis. Chem Soc Rev 2018; 47:8925-8967. [PMID: 30426998 DOI: 10.1039/c8cs00716k] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, recent examples featuring C-H functionalization in the synthesis of complex natural products are discussed. A focus is given to the way in which C-H functionalization can influence the logical process of retrosynthesis, and the review is organized by the type and method of C-H functionalization.
Collapse
Affiliation(s)
- Dylan J Abrams
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | | | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
40
|
Liang G, Rong J, Sun W, Chen G, Jiang Y, Loh TP. Synthesis of Polyaromatic Rings: Rh(III)-Catalyzed [5 + 1] Annulation of Enaminones with Vinyl Esters through C–H Bond Functionalization. Org Lett 2018; 20:7326-7331. [DOI: 10.1021/acs.orglett.8b03284] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaohui Liang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wangbin Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Gengjia Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
41
|
Fang L, Zhao F, Hu S, Han L, Hu X, Wang M, Sun Q, Wu H. Dynamic Kinetic Resolution for Construction of Three Transannular Stereocenters of Dihydrobenzofuranols. J Org Chem 2018; 83:12213-12220. [PMID: 30222352 DOI: 10.1021/acs.joc.8b01613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A handy and effective method was established to obtain the cis-2,3-dihydrobenzofuranols having three stereocenters, involving asymmetric transfer hydrogenation of benzofuranones via dynamic kinetic resolution. The general applicability of this method was examined with different benzofuran-3-(2 H)-ones, and stereoselectivities of 85-99% ee and up to 98/2 dr were obtained.
Collapse
Affiliation(s)
- Lizhen Fang
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , People's Republic of China
| | - Fangfei Zhao
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , People's Republic of China
| | - Shuyu Hu
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , People's Republic of China
| | - Lili Han
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , People's Republic of China
| | - Xiaojing Hu
- The Third Affiliated Hospital of Xinxiang Medical University , Xinxiang , Henan 453003 , People's Republic of China
| | - Mingyong Wang
- School of Laboratory Medicine , Xinxiang Medical University , Xinxiang , Henan 453003 , People's Republic of China
| | - Qianqian Sun
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , People's Republic of China
| | - Huipan Wu
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , People's Republic of China
| |
Collapse
|
42
|
Zheng Y, Song W, Zhu Y, Wei B, Xuan L. Total synthesis of lithospermic acid using Fe-catalyzed Cross-Dehydrogenative-Coupling reaction and Pd-catalyzed ester-directed C H olefination. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Affiliation(s)
| | - Giuseppe Zanoni
- Dipartimento di Chimica; Università di Pavia; Viale Taramelli 10 27100 Pavia Italy
| | - Debabrata Maiti
- Department of Chemistry; IIT Bombay; Powai Mumbai 400076 India
- Dipartimento di Chimica; Università di Pavia; Viale Taramelli 10 27100 Pavia Italy
| |
Collapse
|
44
|
Transition metal catalyzed C-H activation for the synthesis of medicinally relevant molecules: A Review. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1468-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Kim HT, Lee W, Kim E, Joo JM. C−H Alkenylation of Pyrroles by Electronically Matching Ligand Control. Chem Asian J 2018; 13:2418-2422. [DOI: 10.1002/asia.201800558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Hyun Tae Kim
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| | - Woohyeong Lee
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| | - Eunmin Kim
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| |
Collapse
|
46
|
Ning XQ, Lou SJ, Mao YJ, Xu ZY, Xu DQ. Nitrate-promoted Selective C-H Fluorination of Benzamides and Benzeneacetamides. Org Lett 2018; 20:2445-2448. [PMID: 29634276 DOI: 10.1021/acs.orglett.8b00793] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile and site-selective nitrate-promoted C-H bond fluorination using various weak coordinating amides as intrinsic directing groups was developed. Diverse tertiary and secondary amides underwent selective aromatic C-H bond fluorination, which features broad substrate scope, good regioselectivity, and mild conditions. Moreover, the late-stage C-H bond fluorination of the challenging benzeneacetamides via distal directing was reported for the first time.
Collapse
Affiliation(s)
- Xing-Qian Ning
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| |
Collapse
|
47
|
Annamalai P, Hsu KC, Raju S, Hsiao HC, Chou CW, Lin GY, Hsieh CM, Chen PL, Liu YH, Chuang SC. Palladium(II)-Catalyzed Mono- and Bis-alkenylation of N-Acetyl-2-aminobiaryls through Regioselective C-H Bond Activation. J Org Chem 2018. [PMID: 29521504 DOI: 10.1021/acs.joc.8b00194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We developed palladium-catalyzed oxidative coupling of olefins with N-acyl 2-aminobiaryls through a sequence of ortho C-H bond activation/alkene insertion/reductive elimination. Furthermore, we controlled the selectivity of mono- and bis-alkenylation products with the solvent effect. The developed protocol was promising for a broad substrate scope ranging from activated olefins with a wide variety of functional groups to unactivated olefins.
Collapse
Affiliation(s)
| | - Kou-Chi Hsu
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Selvam Raju
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Huan-Chang Hsiao
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Chih-Wei Chou
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Gu-Ying Lin
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Cheng-Ming Hsieh
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Pei-Ling Chen
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30013
| | - Yi-Hung Liu
- Instrumentation Center , National Taiwan University , Taipei , Taiwan 30010
| | - Shih-Ching Chuang
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| |
Collapse
|
48
|
Wu K, Xie ZP, Cui DM, Zhang C. Formal total synthesis of salvianolic acid N. Org Biomol Chem 2018; 16:832-837. [DOI: 10.1039/c7ob03025h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Salvianolic acid N was synthesized starting from 3,4-dimethoxybenzaldehyde in 11 steps and with an overall yield of 11%. The key reaction steps were the Wittig reaction for Z-stereoselectivity, the copper catalyzed intramolecular cyclization for seven membered ring skeleton, and the deprotected allylic group with Pd catalysis.
Collapse
Affiliation(s)
- Kong Wu
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Zhong Pao Xie
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Dong-Mei Cui
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Chen Zhang
- School of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
49
|
Zhi Y, Zhao K, von Essen C, Rissanen K, Enders D. Synthesis of trans-disubstituted-2,3-dihydrobenzofurans by a formal [4 + 1] annulation between para-quinone methides and sulfonium salts. Org Chem Front 2018. [DOI: 10.1039/c8qo00008e] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An efficient protocol for the synthesis of trans-disubstituted-2,3-dihydrobenzofurans through [4 + 1] annulation of para-quinone methides with sulfonium salts has been developed.
Collapse
Affiliation(s)
- Ying Zhi
- Institute of Organic Chemistry
- RWTH Aachen University
- Aachen
- Germany
| | - Kun Zhao
- Institute of Organic Chemistry
- RWTH Aachen University
- Aachen
- Germany
| | | | - Kari Rissanen
- Department of Chemistry
- University of Jyväskylä
- 40014 Jyväskylä
- Finland
| | - Dieter Enders
- Institute of Organic Chemistry
- RWTH Aachen University
- Aachen
- Germany
| |
Collapse
|
50
|
Zhai S, Qiu S, Chen X, Wu J, Zhao H, Tao C, Li Y, Cheng B, Wang H, Zhai H. 2-(1-Methylhydrazinyl)pyridine as a reductively removable directing group in a cobalt-catalyzed C(sp2)–H bond alkenylation/annulation cascade. Chem Commun (Camb) 2018; 54:98-101. [DOI: 10.1039/c7cc08533h] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new application of 2-(1-methylhydrazinyl)pyridine as a reductively bidentate directing group to directing cobalt-catalyzed C(sp2)–H alkenylation/annulation to form isoquinoline backbones.
Collapse
|