1
|
Ren H, Yang BQ, Shi J, Wu W, Jiang B, Chi Q. Copper-Catalyzed Tunable Oxygenative Rearrangement of Tetrahydrocarbazoles. Chemistry 2024; 30:e202401293. [PMID: 38828487 DOI: 10.1002/chem.202401293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Herein, we report a general copper-catalyzed method for the tunable oxygenative rearrangement of tetrahydrocarbazoles to cyclopentyl-bearing spiroindolin-2-ones and spiroindolin-3-ones. The method demonstrates excellent chemoselectivity, regioselectivity, and product control simply by using the H2O and O2 as oxygen source, respectively. This open-flask method is safe and simple to operate, and no other chemical oxidants are required. Besides, inspired from the unique pathway of 1, 2-migration rearrangement, a highly controllable hydroxylation of indoles for the construction of C3a-hydroxyl iminium indolines was also developed. Mechanistic experiments suggest that a single-electron transfer-induced oxidation process is responsible for the tunable selectivity control.
Collapse
Affiliation(s)
- Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Bing-Qing Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Biaobiao Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| |
Collapse
|
2
|
Champagne SE, Chiang CH, Gemmel PM, Brooks CL, Narayan ARH. Biocatalytic Stereoselective Oxidation of 2-Arylindoles. J Am Chem Soc 2024; 146:2728-2735. [PMID: 38237569 PMCID: PMC11214688 DOI: 10.1021/jacs.3c12393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
3-Hydroxyindolenines can be used to access several structural motifs that are featured in natural products and pharmaceutical compounds, yet the chemical synthesis of 3-hydroxyindolenines is complicated by overoxidation, rearrangements, and complex product mixtures. The selectivity possible in enzymatic reactions can overcome these challenges and deliver enantioenriched products. Herein, we present the development of an asymmetric biocatalytic oxidation of 2-arylindole substrates aided by a curated library of flavin-dependent monooxygenases (FDMOs) sampled from an ancestral sequence space, a sequence similarity network, and a deep-learning-based latent space model. From this library of FDMOs, a previously uncharacterized enzyme, Champase, from the Valley fever fungus, Coccidioides immitis strain RS, was found to stereoselectively catalyze the oxidation of a variety of substituted indole substrates. The promiscuity of this enzyme is showcased by the oxidation of a wide variety of substituted 2-arylindoles to afford the respective 3-hydroxyindolenine products in moderate to excellent yields and up to 95:5 er.
Collapse
Affiliation(s)
- Sarah E. Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chang-Hwa Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Philipp M. Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Enhanced Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Poursaitidis ET, Gkizis PL, Triandafillidi I, Kokotos CG. Organocatalytic activation of hydrogen peroxide: towards green and sustainable oxidations. Chem Sci 2024; 15:1177-1203. [PMID: 38274062 PMCID: PMC10806817 DOI: 10.1039/d3sc05618j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The advent of organocatalysis provided an additional option in every researcher's arsenal, towards the development of elegant and sustainable protocols for various organic transformations. Oxidation reactions are considered to be key in organic synthesis since oxygenated functionalities appear in many natural products. Hydrogen peroxide is categorized as a green oxidant, since its only by-product is water, offering novel opportunities for the development of green and sustainable protocols. In this review article, we intend to present recent developments in the field of the organocatalytic activation of hydrogen peroxide, providing useful insight into the applied oxidative protocols. At the same time, we will present some interesting mechanistic studies, providing information on the oxygen transfer processes.
Collapse
Affiliation(s)
- Efthymios T Poursaitidis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
4
|
Li S, Liu X, Tung CH, Liu L. Late-Stage Chemo- and Enantioselective Oxidation of Indoles to C3-Monosubstituted Oxindoles. J Am Chem Soc 2023. [PMID: 38038721 DOI: 10.1021/jacs.3c11742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Catalytic asymmetric preparation of chiral 3-monosubstituted oxindoles represents a significant challenge in synthetic chemistry due to the ease of racemization of the tertiary stereocenter through enolization. Here, we describe a general titanium-catalyzed chemo- and enantioselective indole oxidation to produce a diverse set of chiral 3-monosubstituted oxindoles with up to 96% yield, 99% ee, and with a substrate/catalyst ratio of 10,000 by using the combination of a simple titanium(salan) catalyst with green and atom-economic terminal oxidant H2O2. The mild approach tolerates a broad range of functional groups, enabling late-stage asymmetric diversification of a series of commercial drugs and natural products together with late-stage asymmetric construction of a wide set of enzyme antagonists, all of which are difficult to achieve through existing methods.
Collapse
Affiliation(s)
- Song Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xigong Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
5
|
Perumal K, Lee J, Annes SB, Ramesh S, Rangarajan TM, Mathew B, Kim H. An efficient method to access spiro pseudoindoxyl ketones: evaluation of indoxyl and their N-benzylated derivatives for inhibition of the activity of monoamine oxidases. RSC Adv 2023; 13:24925-24935. [PMID: 37614797 PMCID: PMC10442599 DOI: 10.1039/d3ra03641c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
A simple, metal-free approach was developed to obtain novel pseudoindoxyl derivatives. The reaction was mediated by tBuOK on tetrahydrocarbazole 8 in dimethyl sulfoxide (DMSO) at room temperature through the hydroxylation of the indole double bond and a subsequent pinacol-type rearrangement. Spiro pseudoindoxyl compounds and their N-benzylated derivatives were assessed for their inhibitory activities against monoamine oxidase (MAO) enzymes. Based on half-maximal inhibitory concentration (IC50) values, 13 compounds were found to have higher inhibitory activity against MAO-B than against MAO-A. With regard to MAO-B inhibition, 11f showed the best inhibitory activity, with an IC50 value of 1.44 μM, followed by 11h (IC50 = 1.60 μM), 11j (IC50 = 2.78 μM), 11d (IC50 = 2.81 μM), and 11i (IC50 = 3.02 μM). Compound 11f was a competitive inhibitor with a Ki value of 0.51 ± 0.023 μM. In a reversibility experiment using dialysis, 11f showed effective recovery of MAO-B inhibition similar to that of safinamide. These experiments suggested that 11f was a potent, reversible, and competitive inhibitor of MAO-B activity.
Collapse
Affiliation(s)
- Karuppaiah Perumal
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jiseong Lee
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - T M Rangarajan
- Department of Chemistry, Sri Venkateswara College, University of Delhi New Delhi India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi 682 041 India
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| |
Collapse
|
6
|
Lee Y, Nam YS, Kim SY, Ki JE, Lee HG. Mechanistic duality of indolyl 1,3-heteroatom transposition. Chem Sci 2023; 14:7688-7698. [PMID: 37476715 PMCID: PMC10355096 DOI: 10.1039/d3sc00716b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
A novel mechanistic duality has been revealed from the indolyl 1,3-heteroatom transposition (IHT) of N-hydroxyindole derivatives. A series of in-depth mechanistic investigations suggests that two separate mechanisms are operating simultaneously. Moreover, the relative contribution of each mechanistic pathway, the energy barrier for each pathway, and the identity of the primary pathway were shown to be the functions of the electronic properties of the substrate system. Based on the mechanistic understanding obtained, a mechanism-driven strategy for the general and efficient introduction of a heteroatom at the 3-position of indole has been developed. The reaction developed exhibits a broad substrate scope to provide the products in various forms of the functionalised indole. Moreover, the method is applicable to the introduction of both oxygen- and nitrogen-based functional groups.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Chemistry, Seoul National University 1, Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| | - Yun Seung Nam
- Department of Chemistry, Seoul National University 1, Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| | - Soo Young Kim
- Department of Chemistry, Seoul National University 1, Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| | - Jeong Eun Ki
- Department of Chemistry, Seoul National University 1, Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University 1, Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| |
Collapse
|
7
|
Chen Y, Yang R, Xiao F, Xu T, Mao G, Deng GJ. Copper-Catalyzed Synthesis of 3-Aryl-9 H-imidazo[1,5- a]indol-9-ones Using Oxygen as the Sole Oxidant. Org Lett 2023; 25:3702-3707. [PMID: 37184361 DOI: 10.1021/acs.orglett.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A three-component strategy was developed for 3-phenyl-9H-imidazo[1,5-a]indol-9-one preparation from indole-2-carboxaldehydes, aromatic aldehydes, and ammonium acetate under copper catalysis conditions. In this process, a new five-membered ring was formed and the C3 position in the indole substrate was selectively oxidized into a ketone skeleton using oxygen as the sole oxidant and ammonium acetate as the nitrogen source. Furthermore, same products also could be achieved from indole-2-carboxaldehydes and benzyl amines under similar reaction conditions.
Collapse
Affiliation(s)
- Yufeng Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ruitong Yang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Tianci Xu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
8
|
Zhao D, Pan Y, Guo S, Chen X, Hou H, Han Y, Yan C, Shi Y, Zhu S. Copper-Catalyzed Oxidative Dearomatized Oxyalkylation of Indoles with Alcohols: Synthesis of 3-Alkoxy-2-Oxindoles. J Org Chem 2022; 87:16867-16872. [DOI: 10.1021/acs.joc.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Liu J, Li L, Bu X, Yuan Y, Wang X, Sun R, Zhou MD, Wang H. Mn( iii)-Catalyzed cascade cyclization reaction of o-acyl aromatic isocyanides with boronic acids. Org Chem Front 2022. [DOI: 10.1039/d2qo00271j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A Mn(iii)-catalyzed cascade cyclization of o-acyl aromatic isocyanides with boronic acids was examined to give a series of 3-hydroxyindolenines in single-step. This cascade process involved a transmetalation/nucleophilic addition/intramolecular cyclization sequence.
Collapse
Affiliation(s)
- Jingya Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, China
| | - Yu Yuan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xin Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ran Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - He Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| |
Collapse
|
10
|
Genome Evolution from Random Ligation of RNAs of Autocatalytic Sets. Int J Mol Sci 2021; 22:ijms222413526. [PMID: 34948321 PMCID: PMC8707343 DOI: 10.3390/ijms222413526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The evolutionary origin of the genome remains elusive. Here, I hypothesize that its first iteration, the protogenome, was a multi-ribozyme RNA. It evolved, likely within liposomes (the protocells) forming in dry-wet cycling environments, through the random fusion of ribozymes by a ligase and was amplified by a polymerase. The protogenome thereby linked, in one molecule, the information required to seed the protometabolism (a combination of RNA-based autocatalytic sets) in newly forming protocells. If this combination of autocatalytic sets was evolutionarily advantageous, the protogenome would have amplified in a population of multiplying protocells. It likely was a quasispecies with redundant information, e.g., multiple copies of one ribozyme. As such, new functionalities could evolve, including a genetic code. Once one or more components of the protometabolism were templated by the protogenome (e.g., when a ribozyme was replaced by a protein enzyme), and/or addiction modules evolved, the protometabolism became dependent on the protogenome. Along with increasing fidelity of the RNA polymerase, the protogenome could grow, e.g., by incorporating additional ribozyme domains. Finally, the protogenome could have evolved into a DNA genome with increased stability and storage capacity. I will provide suggestions for experiments to test some aspects of this hypothesis, such as evaluating the ability of ribozyme RNA polymerases to generate random ligation products and testing the catalytic activity of linked ribozyme domains.
Collapse
|
11
|
Abstract
We report the first total synthesis of (-)-kopsifoline A and (+)-kopsifoline E. Our synthetic strategy features a biogenetically inspired regioselective C17-functionalization of a versatile intermediate containing the pentacyclic core of aspidosperma alkaloids. The vinylogous urethane substructure of this intermediate affords (-)-kopsifoline D via C3-C21 bond formation under the Mitsunobu reaction conditions, while it enables selective C17-functionalization en route to (-)-kopsifoline A and (+)-kopsifoline E.
Collapse
Affiliation(s)
- In-Soo Myeong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nadide Hazal Avci
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Pan HP, Zhu ZQ, Qiu ZW, Liu HF, Ma JD, Li BQ, Feng N, Ma AJ, Peng JB, Zhang XZ. Dearomatization of 2,3-Disubstituted Indoles via 1,8-Addition of Propargylic (Aza)- para-Quinone Methides. J Org Chem 2021; 86:16518-16534. [PMID: 34714074 DOI: 10.1021/acs.joc.1c01857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dearomatization of indole is a useful strategy to access indolimines: a motif widely exists in biologically active molecules and natural products. Herein, an efficient method for the dearomatization of 2,3-disubstituted indoles to generate diverse indolimines with tetrasubstituted allenes is described. This work accomplishes dearomatization of 2,3-disubstituted indoles through 1,8-addition of (aza)-para-quinone methides, which are generated in situ from propargylic alcohols. A series of synthetically useful indolimines containing quaternary carbon centers and tetrasubstituted allenes can be accessed in good yields (up to 99%). Additionally, the separability of product isomers, diversified product transformations, and easy scale-up of the reaction demonstrate the potential application of this method.
Collapse
Affiliation(s)
- Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jiong-Dong Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
13
|
Di Matteo P, Bortolami M, Feroci M, Scarano V, Petrucci R. Electrochemical Transformations of Methylxanthines in Non‐Aqueous Medium. ChemElectroChem 2021. [DOI: 10.1002/celc.202100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Di Matteo
- Department of Chemical Engineering Materials Environment Sapienza University of Rome Via Eudossiana 18 00184 Rome Italy
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Vincenzo Scarano
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| |
Collapse
|
14
|
Fan G, Wasuwanich P, Furst AL. Biohybrid Systems for Improved Bioinspired, Energy-Relevant Catalysis. Chembiochem 2021; 22:2353-2367. [PMID: 33594779 DOI: 10.1002/cbic.202100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Biomimetic catalysts, ranging from small-molecule metal complexes to supramolecular assembles, possess many exciting properties that could address salient challenges in industrial-scale manufacturing. Inspired by natural enzymes, these biohybrid catalytic systems demonstrate superior characteristics, including high activity, enantioselectivity, and enhanced aqueous solubility, over their fully synthetic counterparts. However, instability and limitations in the prediction of structure-function relationships are major drawbacks that often prevent the application of biomimetic catalysts outside of the laboratory. Despite these obstacles, recent advances in synthetic enzyme models have improved our understanding of complicated biological enzymatic processes and enabled the production of catalysts with increased efficiency. This review outlines important developments and future prospects for the design and application of bioinspired and biohybrid systems at multiple length scales for important, biologically relevant, clean energy transformations.
Collapse
Affiliation(s)
- Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Pris Wasuwanich
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Tang Y, Miller SJ. Catalytic Enantioselective Synthesis of Pyridyl Sulfoximines. J Am Chem Soc 2021; 143:9230-9235. [PMID: 34124892 DOI: 10.1021/jacs.1c04431] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With unique chemical and biological activity, sulfoximines have attracted enormous attention in the past decades, whereas limited reports exist for their synthesis via asymmetric catalysis. We report the synthesis of chiral sulfoximines through the desymmetrizing N-oxidation of pyridyl sulfoximines using an aspartic acid-containing peptide catalyst. Various mono- and bis-pyridyl sulfoximine oxides are obtained with up to 99:1 er. The directing group introduced on the substrate highly enhances the enantioinduction and could be easily removed to give the free N-H sulfoximines. Additionally, peptides with methyl ester and the methyl amide C-terminal protecting group give the opposite enantiomers of the product. A binding model is proposed to explain this phenomenon.
Collapse
Affiliation(s)
- Yu Tang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
16
|
Abstract
The total synthesis of (±)-hinckdentine A is described herein. A cyanide-catalyzed imino-Stetter reaction of the aldimine derived from ethyl 2-amino-3,5-dibromocinnamate and 5-bromo-2-nitrobenzaldehyde followed by oxidative rearrangement afforded a 2,2-disubstituted 3-indolinone derivative containing the carbon skeleton and all of the functional groups present in the natural product correctly positioned, including three bromine atoms. Subsequent D-ring formation and seven-membered C-ring construction completed the total synthesis of hinckdentine A.
Collapse
Affiliation(s)
- Jiye Jeon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Eun Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
|
18
|
Qian C, Li P, Sun J. Catalytic Enantioselective Synthesis of Spirooxindoles by Oxidative Rearrangement of Indoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chenxiao Qian
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
19
|
Qian C, Li P, Sun J. Catalytic Enantioselective Synthesis of Spirooxindoles by Oxidative Rearrangement of Indoles. Angew Chem Int Ed Engl 2021; 60:5871-5875. [DOI: 10.1002/anie.202015175] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Chenxiao Qian
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
20
|
Blom AEM, Su JY, Repka LM, Reisman SE, Dougherty DA. Synthesis and Biological Evaluation of Pyrroloindolines as Positive Allosteric Modulators of the α1β2γ2 GABA A Receptor. ACS Med Chem Lett 2020; 11:2204-2211. [PMID: 33214830 DOI: 10.1021/acsmedchemlett.0c00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are key mediators of central inhibitory neurotransmission and have been implicated in several disorders of the central nervous system. Some positive allosteric modulators (PAMs) of this receptor provide great therapeutic benefits to patients. However, adverse effects remain a challenge. Selective targeting of GABAA receptors could mitigate this problem. Here, we describe the synthesis and functional evaluation of a novel series of pyrroloindolines that display significant modulation of the GABAA receptor, acting as PAMs. We found that halogen incorporation at the C5 position greatly increased the PAM potency relative to the parent ligand, while substitutions at other positions generally decreased potency. Mutagenesis studies suggest that the binding site lies at the top of the transmembrane domain.
Collapse
Affiliation(s)
- Annet E M Blom
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Justin Y Su
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lindsay M Repka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E Reisman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
21
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
22
|
Petsi M, Zografos AL. 2,5-Diketopiperazine Catalysts as Activators of Dioxygen in Oxidative Processes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marina Petsi
- Department of Chemistry, Main University Campus, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexandros L. Zografos
- Department of Chemistry, Main University Campus, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
23
|
Liang X, Liu D, Sun H, Jiang C, Chen H, Niu L, Mahato K, Abdelilah T, Zhang H, Lei A. Electrochemical Selective Oxidative Functionalization of Caffeine. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xing‐An Liang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - Dingdong Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - He Sun
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - Chongyu Jiang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - Hong Chen
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - Linbin Niu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - Karuna Mahato
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - Takfaoui Abdelilah
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - Heng Zhang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072, Hubei People's Republic of China
| |
Collapse
|
24
|
Fraley AE, Caddell Haatveit K, Ye Y, Kelly SP, Newmister SA, Yu F, Williams RM, Smith JL, Houk KN, Sherman DH. Molecular Basis for Spirocycle Formation in the Paraherquamide Biosynthetic Pathway. J Am Chem Soc 2020; 142:2244-2252. [PMID: 31904957 DOI: 10.1021/jacs.9b09070] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The paraherquamides are potent anthelmintic natural products with complex heptacyclic scaffolds. One key feature of these molecules is the spiro-oxindole moiety that lends a strained three-dimensional architecture to these structures. The flavin monooxygenase PhqK was found to catalyze spirocycle formation through two parallel pathways in the biosynthesis of paraherquamides A and G. Two new paraherquamides (K and L) were isolated from a ΔphqK strain of Penicillium simplicissimum, and subsequent enzymatic reactions with these compounds generated two additional metabolites, paraherquamides M and N. Crystal structures of PhqK in complex with various substrates provided a foundation for mechanistic analyses and computational studies. While it is evident that PhqK can react with various substrates, reaction kinetics and molecular dynamics simulations indicated that the dioxepin-containing paraherquamide L is the favored substrate. Through this effort, we have elucidated a key step in the biosynthesis of the paraherquamides and provided a rationale for the selective spirocyclization of these powerful anthelmintic agents.
Collapse
Affiliation(s)
| | - Kersti Caddell Haatveit
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | | | | | | | | | - Robert M Williams
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,University of Colorado Cancer Center , Aurora , Colorado 80045 , United States
| | | | - K N Houk
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | | |
Collapse
|
25
|
Sheng FT, Wang JY, Tan W, Zhang YC, Shi F. Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Org Chem Front 2020. [DOI: 10.1039/d0qo01124j] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives and their applications in total synthesis of natural products, and gives some insights into challenging issues in this research field.
Collapse
Affiliation(s)
- Feng-Tao Sheng
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Jing-Yi Wang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Wei Tan
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
26
|
Yu J, Lin JH, Yu D, Du R, Xiao JC. Oxidation of difluorocarbene and subsequent trifluoromethoxylation. Nat Commun 2019; 10:5362. [PMID: 31767850 PMCID: PMC6877537 DOI: 10.1038/s41467-019-13359-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
As a versatile intermediate, difluorocarbene is an electron-deficient transient species, meaning that its oxidation would be challenging. Herein we show that the oxidation of difluorocarbene could occur smoothly to generate carbonyl fluoride. The oxidation process is confirmed by successful trifluoromethoxylation, 18O-trifluoromethoxylation, the observation of AgOCF3 species, and DFT calculations. Difluorocarbene is a versatile and efficient intermediate for fluorine incorporation. Here, the authors show that difluorocarbene can be oxidized to carbonyl fluoride and this process is confirmed in 18O-trifluoromethoxylation reactions, by observation of AgOCF3 species and theory.
Collapse
Affiliation(s)
- Jiao Yu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Donghai Yu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Ruobing Du
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
| |
Collapse
|
27
|
Hsieh SY, Tang Y, Crotti S, Stone EA, Miller SJ. Catalytic Enantioselective Pyridine N-Oxidation. J Am Chem Soc 2019; 141:18624-18629. [PMID: 31656070 PMCID: PMC6926419 DOI: 10.1021/jacs.9b10414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The catalytic, enantioselective N-oxidation of substituted pyridines is described. The approach is predicated on a biomolecule-inspired catalytic cycle wherein high levels of asymmetric induction are provided by aspartic-acid-containing peptides as the aspartyl side chain shuttles between free acid and peracid forms. Desymmetrizations of bis(pyridine) substrates bearing a remote pro-stereogenic center substituted with a group capable of hydrogen bonding to the catalyst are demonstrated. Our approach presents a new entry into chiral pyridine frameworks in a heterocycle-rich molecular environment. Representative functionalizations of the enantioenriched pyridine N-oxides further document the utility of this approach. Demonstration of the asymmetric N-oxidation in two venerable drug-like scaffolds, Loratadine and Varenicline, show the likely generality of the method for highly variable and distinct chiral environments, while also revealing that the approach is applicable to both pyridines and 1,4-pyrazines.
Collapse
Affiliation(s)
- Sheng-Ying Hsieh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Yu Tang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Simone Crotti
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
28
|
Abstract
Oxidation of indoles is a fundamental organic transformation to deliver a variety of synthetically and pharmaceutically valuable nitrogen-containing compounds. Prior methods require the use of either organic oxidants (meta-chloroperoxybenzoic acid, N-bromosuccinimide, t-BuOCl) or stoichiometric toxic transition metals [Pb(OAc)4, OsO4, CrO3], which produced oxidant-derived by-products that are harmful to human health, pollute the environment and entail immediate purification. A general catalysis protocol using safer oxidants (H2O2, oxone, O2) is highly desirable. Herein, we report a unified, efficient halide catalysis for three oxidation reactions of indoles using oxone as the terminal oxidant, namely oxidative rearrangement of tetrahydro-β-carbolines, indole oxidation to 2-oxindoles, and Witkop oxidation. This halide catalysis protocol represents a general, green oxidation method and is expected to be used widely due to several advantageous aspects including waste prevention, less hazardous chemical synthesis, and sustainable halide catalysis. Indole oxidation represents a fundamental organic transformation delivering valuable nitrogen compounds. Here, the authors report a general halide catalysis protocol applied to three classes of oxidation reactions of indoles with oxone as a sustainable terminal oxidant.
Collapse
|
29
|
Morrill LA, Susick RB, Chari JV, Garg NK. Total Synthesis as a Vehicle for Collaboration. J Am Chem Soc 2019; 141:12423-12443. [PMID: 31356068 DOI: 10.1021/jacs.9b05588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
"Collaboration" is not the first word most would associate with the field of total synthesis. In fact, the spirit of total synthesis is all-too-often reputed as being more competitive, rather than collaborative, sometimes even within individual laboratories. However, recent studies in total synthesis have inspired a number of collaborative efforts that strategically blend synthetic methodology, biocatalysis, biosynthesis, computational chemistry, and drug discovery with complex molecule synthesis. This Perspective highlights select recent advances in these areas, including collaborative syntheses of chlorolissoclimide, nigelladine A, artemisinin, ingenol, hippolachnin A, communesin A, and citrinalin B. The legendary Woodward-Eschenmoser collaboration that led to the total synthesis of vitamin B12 is also discussed.
Collapse
Affiliation(s)
- Lucas A Morrill
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Robert B Susick
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Jason V Chari
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
30
|
Jia S, Dong G, Ao C, Jiang X, Hu W. Rhodium-Catalyzed Formal C-O Insertion in Carbene/Alkyne Metathesis Reactions: Synthesis of 3-Substituted 3 H-Indol-3-ols. Org Lett 2019; 21:4322-4326. [PMID: 31120759 DOI: 10.1021/acs.orglett.9b01492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient and novel rhodium-catalyzed formal C-O insertion reaction of alkyne-tethered diazo compounds for the synthesis of 3 H-indol-3-ols is described. A type of donor/donor rhodium carbene generated in situ via a carbene/alkyne metathesis (CAM) process is the key intermediate and terminates in a unique transformation different from donor/acceptor carbenoids. In addition, 18O-labeling experiments indicate that intramolecular oxygen-atom transfer from the amide group to the carbon-carbon triple bond occurs during this transformation.
Collapse
Affiliation(s)
- Shikun Jia
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Guizhi Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Chaoqun Ao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Xianxing Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| |
Collapse
|
31
|
Liu Q, Li C, Lu Z, Huang G, Ye J, Gao Y, Chen H. A Direct Approach to 3‐Azo‐Substituted 2‐Oxindoles at Room Temperature by Nickel‐Catalyzed Oxidative Coupling Reaction. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qing Liu
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Cailong Li
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Zhenxin Lu
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Gaofeng Huang
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Jinxiang Ye
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Yu Gao
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Haijun Chen
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
32
|
Gutte B, Klauser S. Design of catalytic polypeptides and proteins. Protein Eng Des Sel 2018; 31:457-470. [PMID: 31241746 DOI: 10.1093/protein/gzz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 11/13/2022] Open
Abstract
The first part of this review article lists examples of complete, empirical de novo design that made important contributions to the development of the field and initiated challenging projects. The second part of this article deals with computational design of novel enzymes in native protein scaffolds; active designs were refined through random and site-directed mutagenesis producing artificial enzymes with nearly native enzyme- like activities against a number of non-natural substrates. Combining aspects of de novo design and biological evolution of nature's enzymes has started and will accelerate the development of novel enzyme activities.
Collapse
Affiliation(s)
- B Gutte
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - S Klauser
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| |
Collapse
|
33
|
Ravi O, Ramaraju A, Sridhar B, Bathula SR. Copper-Catalyzed Domino C−C Bond Cleavage of 2,3-Unsubstituted Indoles/Indolines and Oxindoles via
Oxidation and Directed Insertion of 2-Aminopyridines: Direct Access to Quinazolinediones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Owk Ravi
- Organic Synthesis and Process Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Andhavaram Ramaraju
- Organic Synthesis and Process Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Balasubramanian Sridhar
- X-ray Crystallography Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad 500007 India
| | - Surendar Reddy Bathula
- Organic Synthesis and Process Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| |
Collapse
|
34
|
Abstract
Self-assembly of molecules often results in new emerging properties. Even very short peptides can self-assemble into structures with a variety of physical and structural characteristics. Remarkably, many peptide assemblies show high catalytic activity in model reactions reaching efficiencies comparable to those found in natural enzymes by weight. In this review, we discuss different strategies used to rationally develop self-assembled peptide catalysts with natural and unnatural backbones as well as with metal-containing cofactors.
Collapse
Affiliation(s)
- O Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
35
|
Lauwick H, Sun Y, Akdas-Kilig H, Dérien S, Achard M. Access to 3-Oxindoles from Allylic Alcohols and Indoles. Chemistry 2018. [DOI: 10.1002/chem.201800348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hortense Lauwick
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| | - Yang Sun
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| | - Huriye Akdas-Kilig
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| | - Sylvie Dérien
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| | - Mathieu Achard
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| |
Collapse
|
36
|
Triandafillidi I, Tzaras DI, Kokotos CG. Green Organocatalytic Oxidative Methods using Activated Ketones. ChemCatChem 2018. [DOI: 10.1002/cctc.201800013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ierasia Triandafillidi
- Laboratory of Organic Chemistry; Department of Chemistry; National and Kapodistrian University of Athens, Panepistimiopolis; 15771 Athens Greece
| | - Dimitrios Ioannis Tzaras
- Laboratory of Organic Chemistry; Department of Chemistry; National and Kapodistrian University of Athens, Panepistimiopolis; 15771 Athens Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry; Department of Chemistry; National and Kapodistrian University of Athens, Panepistimiopolis; 15771 Athens Greece
| |
Collapse
|
37
|
Copper-catalyzed asymmetric dearomative borylation: new pathway to optically active heterocyclic compounds. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Chiral N-heterocyclic organoboronates represent promising intermediates for the preparation of various bioactive and pharmaceutical compounds. We recently reported the first asymmetric dearomative borylation of indoles by copper-catalyzed borylation. Then we further developed dearomatization/enantioselective borylation sequence. Chiral 3-boryl-tetrahydropyridines and chiral boryl-tetrahydroquinolines via the copper(I)-catalyzed regio-, diastereo- and enantioselective borylation of 1,2-dihydropyridines and 1,2-dihydroquinilines, which were prepared by the partial reduction of the corresponding pyridine or quinoline derivatives. This dearomatization/enantioselective borylation procedures provide a direct access to chiral piperidines and tetrahydroquinolines from readily available pyridines or quinolines in combination with the stereospecific transformation of the stereogenic C–B bond.
Collapse
|
38
|
Abstract
This review discusses various biological and chemical aspects of the non-monoterpenoid azepinoindole class of alkaloids, including their isolation, biosynthesis and total synthesis.
Collapse
Affiliation(s)
- Ashley C. Lindsay
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
| | - Se Hun Kim
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
| |
Collapse
|
39
|
Vicens L, Costas M. Biologically inspired oxidation catalysis using metallopeptides. Dalton Trans 2018; 47:1755-1763. [DOI: 10.1039/c7dt03657d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metalloenzymes can catalyze the oxidation of hydrocarbons with high efficiency and selectivity. For this reason, they are taken as inspiration for the development of new catalyst. A promising strategy is the combination of metal coordination complexes and peptide chains. The use of metallopeptides in oxidation reactions is discussed.
Collapse
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- Girona E-17071
- Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- Girona E-17071
- Spain
| |
Collapse
|
40
|
Yi JC, Liu C, Dai LX, You SL. Synthesis of C3-Methyl-Substituted Pyrroloindolines and Furoindolines via Cascade Dearomatization of Indole Derivatives with Methyl Iodide. Chem Asian J 2017; 12:2975-2979. [DOI: 10.1002/asia.201701151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Ji-Cheng Yi
- School of Physical Science and Technology; ShanghaiTech University; 100 Haike Road Shanghai 201210 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Chuan Liu
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Li-Xin Dai
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Shu-Li You
- School of Physical Science and Technology; ShanghaiTech University; 100 Haike Road Shanghai 201210 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
41
|
Abstract
The application of small molecules as catalysts for the diversification of natural product scaffolds is reviewed. Specifically, principles that relate to the selectivity challenges intrinsic to complex molecular scaffolds are summarized. The synthesis of analogues of natural products by this approach is then described as a quintessential "late-stage functionalization" exercise wherein natural products serve as the lead scaffolds. Given the historical application of enzymatic catalysts to the site-selective alteration of complex molecules, the focus of this Review is on the recent studies of nonenzymatic catalysts. Reactions involving hydroxyl group derivatization with a variety of electrophilic reagents are discussed. C-H bond functionalizations that lead to oxidations, aminations, and halogenations are also presented. Several examples of site-selective olefin functionalizations and C-C bond formations are also included. Numerous classes of natural products have been subjected to these studies of site-selective alteration including polyketides, glycopeptides, terpenoids, macrolides, alkaloids, carbohydrates, and others. What emerges is a platform for chemical remodeling of naturally occurring scaffolds that targets virtually all known chemical functionalities and microenvironments. However, challenges for the design of very broad classes of catalysts, with even broader selectivity demands (e.g., stereoselectivity, functional group selectivity, and site-selectivity) persist. Yet, a significant spectrum of powerful, catalytic alterations of complex natural products now exists such that expansion of scope seems inevitable. Several instances of biological activity assays of remodeled natural product derivatives are also presented. These reports may foreshadow further interdisciplinary impacts for catalytic remodeling of natural products, including contributions to SAR development, mode of action studies, and eventually medicinal chemistry.
Collapse
Affiliation(s)
- Christopher R. Shugrue
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
42
|
|
43
|
Schendera E, Lerch S, von Drathen T, Unkel LN, Brasholz M. Phosphoric Acid Catalyzed 1,2-Rearrangements of 3-Hydroxyindolenines to Indoxyls and 2-Oxindoles: Reagent-Controlled Regioselectivity Enabled by Dual Activation. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eva Schendera
- University of Hamburg; Department of Chemistry; Institute of Organic Chemistry; Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Stephanie Lerch
- University of Hamburg; Department of Chemistry; Institute of Organic Chemistry; Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Thorsten von Drathen
- University of Hamburg; Department of Chemistry; Institute of Organic Chemistry; Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Lisa-Natascha Unkel
- University of Hamburg; Department of Chemistry; Institute of Organic Chemistry; Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Malte Brasholz
- University of Hamburg; Department of Chemistry; Institute of Organic Chemistry; Martin-Luther-King-Platz 6 20146 Hamburg Germany
| |
Collapse
|
44
|
Liu C, Yi JC, Dai LX, You SL. Copper(I)-Catalyzed Cascade Dearomatization of Tryptophols with 3-Indolylphenyliodonium Salts. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuan Liu
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Ji-Cheng Yi
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Li-Xin Dai
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
45
|
Acid-mediated aryl migration reaction of C-3 aryl substituted pyrrolidinoindolines. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Akagawa K, Iwasaki Y, Kudo K. Library Screening in Aqueous Media To Develop a Highly Active Peptide Catalyst for Enantioselective Michael Addition of a Malonate. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kengo Akagawa
- Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba, Meguro-ku 153-8505 Tokyo Japan
| | - Yumika Iwasaki
- Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba, Meguro-ku 153-8505 Tokyo Japan
| | - Kazuaki Kudo
- Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba, Meguro-ku 153-8505 Tokyo Japan
| |
Collapse
|
47
|
Liu C, Yi JC, Liang XW, Xu RQ, Dai LX, You SL. Copper(I)-Catalyzed Asymmetric Dearomatization of Indole Acetamides with 3-Indolylphenyliodonium Salts. Chemistry 2016; 22:10813-6. [DOI: 10.1002/chem.201602229] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Chuan Liu
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Ji-Cheng Yi
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Xiao-Wei Liang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Ren-Qi Xu
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Li-Xin Dai
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering; Tianjin 300072 P. R. China
| |
Collapse
|
48
|
Affiliation(s)
- Liang Hong
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Wangsheng Sun
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 China
| | - Dongxu Yang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 China
| | - Guofeng Li
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 China
| | - Rui Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
49
|
Zhang X, Pu M. Density functional theory study of the mechanism of a dipeptide-catalyzed intermolecular aldol reaction—the effects of steric repulsion interactions on stereoselectivity. RSC Adv 2016. [DOI: 10.1039/c5ra26808g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mechanism of a dipeptide-catalyzed intermolecular aldol reaction was investigated using different calculated methods of DFT that few researches were concerned with and the detailed variations in the entire path were studied.
Collapse
Affiliation(s)
- Xiaofei Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
50
|
Sun Y, Meng Z, Chen P, Zhang D, Baunach M, Hertweck C, Li A. A concise total synthesis of sespenine, a structurally unusual indole terpenoid from Streptomyces. Org Chem Front 2016. [DOI: 10.1039/c5qo00416k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A ten-step (the longest linear sequence) total synthesis of sespenine was accomplished.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Zhanchao Meng
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Pengxi Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Deliang Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Martin Baunach
- Leibniz Institute for Natural Product Research and Infection Biology
- HKI
- Jena
- Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology
- HKI
- Jena
- Germany
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|