1
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Sarkar B, Hajra A. Hydro-phosphorothiolation of Styrene and Cyclopropane with S-Hydrogen Phosphorothioates under Ambient Conditions. Org Lett 2024; 26:5141-5145. [PMID: 38848455 DOI: 10.1021/acs.orglett.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A metal-free hexafluoroisopropanol-mediated hydro-phosphorothiolation of styrenes and donor-acceptor cyclopropanes with S-hydrogen phosphorothioates in a Markovnikov fashion has been developed under ambient reaction conditions to afford a library of S-alkyl phosphorothioates. Notably, this strategy provides a simple and efficient way to produce biologically significant kitazin and iprobenfos derivatives. Mechanistic studies disclose that the reaction proceeds through a carbocation intermediate.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
3
|
Urvashi, Mishra S, Patil NT. Gold-catalyzed alkenylation and arylation of phosphorothioates. Chem Sci 2023; 14:13134-13139. [PMID: 38023501 PMCID: PMC10664589 DOI: 10.1039/d3sc04888h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Reported herein is the ligand-enabled gold-catalyzed alkenylation and arylation of phosphorothioates using alkenyl and aryl iodides. Mechanistic studies revealed a crucial role of the in situ generated Ag-sulfur complex, which undergoes a facile transmetalation with the Au(iii) intermediate, thereby leading to the successful realization of the present reaction. Moreover, for the first time, the alkenylation of phosphoroselenoates under gold redox catalysis has been presented.
Collapse
Affiliation(s)
- Urvashi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal - 462 066 India
| | - Sampoorna Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal - 462 066 India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal - 462 066 India
| |
Collapse
|
4
|
Manna MS, Yoo SY, Sharique M, Choi H, Pudasaini B, Baik MH, Tambar UK. Copper-Catalyzed Regiodivergent Internal Allylic Alkylations. Angew Chem Int Ed Engl 2023; 62:e202304848. [PMID: 37327025 PMCID: PMC10528884 DOI: 10.1002/anie.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
We report a copper-catalyzed, regioselective, and stereospecific alkylation of unbiased internal allylic carbonates with functionalized alkyl and aryl Grignard reagents. The reactions exhibit high stereospecificity and regioselectivity for either SN 2 or SN 2' products under two sets of copper-catalyzed conditions, which enables the preparation of a broad range of products with E-alkene selectivity. Density functional theory calculations reveal the origins of the regioselectivity based on the different behaviors of homo- and heterocuprates.
Collapse
Affiliation(s)
- Madhu Sudan Manna
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mohammed Sharique
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Hyoju Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
5
|
Wang J, Han F, Hao S, Tang YJ, Xiong C, Xiong L, Li X, Lu J, Zhou Q. Metal-Free Regioselective Hydrophosphorodithioation of Spirovinylcyclopropyl Oxindoles: Rapid Access to Allyl Dialkylphosphorodithioates. J Org Chem 2022; 87:12844-12853. [PMID: 36166737 DOI: 10.1021/acs.joc.2c01435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorodithioates are important substructures due to their great use in bioactive compounds and functional materials. A metal-free 1,5-addition of spirovinylcyclopropyl oxindoles have been developed by choosing P4S10 and alcohol as nucleophiles through the regioselective ring-opening of spirovinylcyclopropyl oxindoles. This method provides access to allylic organothiophosphates with high efficiency, wide functional group tolerance, good chemo- and regioselectivity, and E-selectivity. 1,3-Addition products were also prepared in high yield. Furthermore, the resulting organothiophosphates could be readily transformed into other allylic derivatives.
Collapse
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Fang Han
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Siyuan Hao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yu-Jiang Tang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lin Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xiancheng Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jinrong Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
6
|
Zhang P, Li W, Zhu X, Li Y, Zhao X, Shi S, Zhu F, Lin J, Gao X. Photoredox and Copper‐Catalyzed Sulfonylphosphorothiolation of Alkenes toward β‐Sulfonyl Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Ying Li
- Xinxiang Medical University CHINA
| | | | | | | | | | - Xia Gao
- Xinxiang Medical University CHINA
| |
Collapse
|
7
|
Zhang B, Fu Z, Yang H, Liu D, Sun Y, Xu Y, Yu F, Yan S. Transition‐Metal‐Free C(
sp
2
)−H Phosphorothiolation/Cyclization of
o
‐Hydroxyarylenaminones: Access to
S
‐3‐Chromon Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Zhonghui Fu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Haoqi Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Donghan Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yulin Sun
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yu Xu
- School of nursing Xi'An Innovation College of Yan'An University Xi'An 710100 People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Sheng‐Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Du S, Yang T, Jin F, Zhou J, Cao B, Mao ZJ, Song XR, Xiao Q. Direct and Efficient Synthesis of Tetrasubstituted Allenyl organothiophosphates from Propargylic Alcohols under Catalyst- and Additive-Free Conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo00455k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An environment-friendly approach that affords tetrasubstituted allenyl organothiophosphates containing highly congested carbon centers from easily prepared propargylic alcohols and phosphorothioic acids [(RO)2P(O)SH] with water as the only by-product is developed....
Collapse
|
9
|
Guo Y, Luo Y, Mu S, Xu J, Song Q. Photoinduced Decarboxylative Phosphorothiolation of N-Hydroxyphthalimide Esters. Org Lett 2021; 23:6729-6734. [PMID: 34410131 DOI: 10.1021/acs.orglett.1c02300] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A visible-light-induced protocol for the synthesis of phosphorothioates is developed by employing the Ir-catalyzed decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. This novel synthesis method utilizes carboxylic acids as raw material, which is stable, cheap, and commercially available. Scope studies show that this reaction has good compatibility of functional groups. Notably, both the synthesis of steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
10
|
Du Z, Qi Q, Gao W, Ma L, Liu Z, Wang R, Chen J. Electrochemical Heteroatom-Heteroatom Bond Construction. CHEM REC 2021; 22:e202100178. [PMID: 34463430 DOI: 10.1002/tcr.202100178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/30/2023]
Abstract
Heteroatom-heteroatom linkage, with S-S bond as a presentative motif, served a crucial role in biochemicals, pharmaceuticals, pesticides, and material sciences. Thus, preparation of the privileged scaffold has always been attracting tremendous attention from the synthetic community. However, classic protocols suffered from several drawbacks, such as toxic and unstable agents, poor functional group tolerance, multiple steps, and explosive oxidizing regents as well as the transitional metal catalysts. Electrochemical organic synthesis exhibited a promising alternative to the traditional chemical reaction due to the sustainable electricity can be employed as the traceless redox agents. Hence, toxic and explosive oxidants and/or transitional metals could be discarded under mild reaction with high efficiency. In this context, a series of electrochemical approaches for the construction of heteroatom-heteroatom bond were reviewed. Notably, most of the cases illustrated the dehydrogenative feature with the clean energy molecules hydrogen as the sole by-product.
Collapse
Affiliation(s)
- Zhiying Du
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qiqi Qi
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Archives of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Zhenxian Liu
- Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|
11
|
Zhang P, Yu G, Li W, Shu Z, Wang L, Li Z, Gao X. Copper-Catalyzed Multicomponent Trifluoromethylphosphorothiolation of Alkenes: Access to CF 3-Containing Alkyl Phosphorothioates. Org Lett 2021; 23:5848-5852. [PMID: 34250811 DOI: 10.1021/acs.orglett.1c01985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented copper-catalyzed multicomponent radical-based reaction involving alkenes, P(O)H compounds, sulfur powder, and Togni reagent II at room temperature has been developed. A variety of highly functionalized CF3-containing S-alkyl phosphorothioates can be directly prepared from a wide range of activated and unactivated alkenes. Moreover, this protocol highlights its potential in the late-stage functionalization of complex molecules and opens up a new avenue for the construction of C(sp3)-S-P bonds.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Guo Yu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhigang Shu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoting Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
12
|
Moghaddam FM, Daneshfar M, Azaryan R. A green and efficient route for P − S − C bond construction using copper ferrite nanoparticles as catalyst: a TD-DFT study. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1833331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Maryam Daneshfar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Reza Azaryan
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
13
|
Zheng Z, Shi S, Ma Q, Yang Y, Liu Y, Tang G, Zhao Y. Synthesis of δ-phosphorothiolated alcohols by photoredox/copper catalyzed remote C(sp 3)–H phosphorothiolation of N-alkoxypyridinium salts. Org Chem Front 2021. [DOI: 10.1039/d1qo01178b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Incorporation of the (RO)2P(O)S group through unreactive C(sp3)–H phosphorothiolation remains a challenging area of research.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Shanshan Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Qianru Ma
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufei Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Liu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
14
|
Liu C, Wang L, Zhang X. Advances in the Synthesis of Phosphorothioate and Phosphinothioate. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Kaboudin B, Noori F, Dehghani L, Alavi S, Kazemi F. Two Routes for the Synthesis of Phosphorothioates via P‐S Coupling Reaction of Dialkyl Phosphites with Thiols or a Mixture of Alkyl Halides and Thiourea in the Presence of CaO. ChemistrySelect 2020. [DOI: 10.1002/slct.202002384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Babak Kaboudin
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| | - Fariba Noori
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| | - Leila Dehghani
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| | - Sajedeh Alavi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| | - Foad Kazemi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| |
Collapse
|
16
|
Chen H, Ye Y, Tong W, Fang J, Gong H. Formation of allylated quaternary carbon centers via C-O/C-O bond fragmentation of oxalates and allyl carbonates. Chem Commun (Camb) 2020; 56:454-457. [PMID: 31825428 DOI: 10.1039/c9cc07072a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disclosed herein emphasizes Fe-promoted cross-electrophile allylation of tertiary alkyl oxalates with allyl carbonates that generates all C(sp3)-quaternary centers. The reaction involves fragmentation of tertiary alkyl oxalate C-O bonds to give tertiary alkyl radical intermediates, addition of the radicals to less hindered alkene terminals, and subsequent cleavage of the allyl C-O bonds. Allylation with 2-aryl substituted allyl carbonates was mediated by Zn/MgCl2, and Fe is used to promote the radical addition efficiency. By introduction of activated alkenes, a three-component radical cascade reaction took place.
Collapse
Affiliation(s)
- Haifeng Chen
- School of Materials Science and Engineering, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | | | | | | | | |
Collapse
|
17
|
Li CY, Liu YC, Li YX, Reddy DM, Lee CF. Electrochemical Dehydrogenative Phosphorylation of Thiols. Org Lett 2019; 21:7833-7836. [DOI: 10.1021/acs.orglett.9b02825] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chung-Yen Li
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| | - You-Chen Liu
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| | - Yi-Xuan Li
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| | | | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
- Research Center for Sustainable Energy and Nanotechnology (RCSEN), National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402 Taiwan, R.O.C
| |
Collapse
|
18
|
Shi S, Chen J, Zhuo S, Wu Z, Fang M, Tang G, Zhao Y. Iodide‐Catalyzed Phosphorothiolation of Heteroarenes Using P(O)H Compounds and Elemental Sulfur. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shanshan Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Jun Chen
- School of Pharmaceutical Sciences and Fujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Shaohua Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Zi'ang Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Meijuan Fang
- School of Pharmaceutical Sciences and Fujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| |
Collapse
|
19
|
Guo W, Tao K, Tan W, Zhao M, Zheng L, Fan X. Recent advances in photocatalytic C–S/P–S bond formation via the generation of sulfur centered radicals and functionalization. Org Chem Front 2019. [DOI: 10.1039/c8qo01353e] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review, we have focused on the recent advances in photocatalytic C–S/P–S bond formation via the generation of thioyl/sulfonyl radicals and further functionalization.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Wen Tan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Mingming Zhao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xiaolin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| |
Collapse
|
20
|
Payet A, Blondeau B, Behr JB, Vasse JL. Synthesis of 1,3-disubstituted cyclohexenes from dienylethers via sequential hydrozirconation/deoxygenative cyclisation. Org Biomol Chem 2019; 17:798-802. [DOI: 10.1039/c8ob02925c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of 1,3-disubstituted cyclohexenes from 3-methoxyhexa-1,5-dienes involving a sequential hydrozirconation/TMSOTf-mediated activation is described.
Collapse
Affiliation(s)
- Amandine Payet
- Institut de Chimie Moléculaire de Reims
- CNRS (UMR 7312) and Université de Reims Champagne Ardenne
- 51687 Reims Cedex 2
- France
| | - Benjamin Blondeau
- Institut de Chimie Moléculaire de Reims
- CNRS (UMR 7312) and Université de Reims Champagne Ardenne
- 51687 Reims Cedex 2
- France
| | - Jean-Bernard Behr
- Institut de Chimie Moléculaire de Reims
- CNRS (UMR 7312) and Université de Reims Champagne Ardenne
- 51687 Reims Cedex 2
- France
| | - Jean-Luc Vasse
- Institut de Chimie Moléculaire de Reims
- CNRS (UMR 7312) and Université de Reims Champagne Ardenne
- 51687 Reims Cedex 2
- France
| |
Collapse
|
21
|
Lu G, Chen J, Huangfu X, Li X, Fang M, Tang G, Zhao Y. Visible-light-mediated direct synthesis of phosphorotrithioates as potent anti-inflammatory agents from white phosphorus. Org Chem Front 2019. [DOI: 10.1039/c8qo01087k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reaction of P4 with arylthiols in the presence of Na2–eosin Y under visible light gave phosphorotrithioites. Subsequent oxidation of phosphorotrithioites produced phosphorotrithioates. The phosphorotrithioate 3f presents good inflammation reducing characteristics.
Collapse
Affiliation(s)
- Guozhang Lu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- and the Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
- Xiamen
| | - Jun Chen
- School of Pharmaceutical Sciences and the Key Laboratory of Innovative Drug Target Research
- Xiamen University
- Xiamen
- China
| | - Xinlei Huangfu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- and the Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
- Xiamen
| | - Xueyan Li
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- and the Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
- Xiamen
| | - Meijuan Fang
- School of Pharmaceutical Sciences and the Key Laboratory of Innovative Drug Target Research
- Xiamen University
- Xiamen
- China
| | - Guo Tang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- and the Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
- Xiamen
| | - Yufen Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- and the Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
- Xiamen
| |
Collapse
|
22
|
Jones DJ, O'Leary EM, O'Sullivan TP. Synthesis and application of phosphonothioates, phosphonodithioates, phosphorothioates, phosphinothioates and related compounds. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Zhu D, Lv L, Li CC, Ung S, Gao J, Li CJ. Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018; 57:16520-16524. [DOI: 10.1002/anie.201809112] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/17/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Dianhu Zhu
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chen-Chen Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Sosthene Ung
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Jian Gao
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| |
Collapse
|
24
|
Zhu D, Lv L, Li CC, Ung S, Gao J, Li CJ. Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dianhu Zhu
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chen-Chen Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Sosthene Ung
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Jian Gao
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| |
Collapse
|
25
|
An extension of nickel-catalyzed reductive coupling between tertiary alkyl halides with allylic carbonates. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Kovács S, Bayarmagnai B, Aillerie A, Gooßen LJ. Practical Reagents and Methods for Nucleophilic and Electrophilic Phosphorothiolations. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701549] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Szabolcs Kovács
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Germany
| | - Bilguun Bayarmagnai
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Germany
| | - Alexandre Aillerie
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
27
|
Wang D, Zhao J, Xu W, Shao C, Shi Z, Li L, Zhang X. Metal- and base-free reductive coupling reaction of P(O)-H with aryl/alkyl sulfonyl chlorides: a novel protocol for the construction of P-S-C bonds. Org Biomol Chem 2018; 15:545-549. [PMID: 27934999 DOI: 10.1039/c6ob02364a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Novel and efficient synthesis of S-aryl/alkyl phosphinothioates from P(O)-H and aryl/alkyl sulfonyl chlorides under metal- and base-free conditions is described. This reaction provides an alternative strategy for the construction of P-S-C bonds in moderate to excellent yields. Moreover, this method can be readily applied to gram-scale preparation.
Collapse
Affiliation(s)
- Dungai Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai-Quan Road, Shanghai 201418, China.
| | - Jinlong Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai-Quan Road, Shanghai 201418, China.
| | - Weigang Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai-Quan Road, Shanghai 201418, China.
| | - Changwei Shao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai-Quan Road, Shanghai 201418, China.
| | - Zheng Shi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai-Quan Road, Shanghai 201418, China.
| | - Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai-Quan Road, Shanghai 201418, China.
| | - Xinghua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai-Quan Road, Shanghai 201418, China.
| |
Collapse
|
28
|
Zhang H, Zhan Z, Lin Y, Shi Y, Li G, Wang Q, Deng Y, Hai L, Wu Y. Visible light photoredox catalyzed thiophosphate synthesis using methylene blue as a promoter. Org Chem Front 2018. [DOI: 10.1039/c7qo01082f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel efficient method for the synthesis of thiophosphate derivatives catalyzed by methylene blue with blue light irradiation under an air atmosphere is described.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Zhen Zhan
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yan Lin
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yuesen Shi
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Guobo Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yong Deng
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Li Hai
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
29
|
Chen H, Jia X, Yu Y, Qian Q, Gong H. Nickel-Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic Carbonates. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haifeng Chen
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| | - Xiao Jia
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| | - Yingying Yu
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| | - Qun Qian
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| |
Collapse
|
30
|
Chen H, Jia X, Yu Y, Qian Q, Gong H. Nickel-Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic Carbonates. Angew Chem Int Ed Engl 2017; 56:13103-13106. [DOI: 10.1002/anie.201705521] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Haifeng Chen
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| | - Xiao Jia
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| | - Yingying Yu
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| | - Qun Qian
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 China
| |
Collapse
|
31
|
Bayeh L, Le PQ, Tambar UK. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block. Nature 2017; 547:196-200. [PMID: 28636605 PMCID: PMC6020688 DOI: 10.1038/nature22805] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/25/2017] [Indexed: 11/08/2022]
Abstract
The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.
Collapse
Affiliation(s)
- Liela Bayeh
- Department of Biochemistry, The University of Texas Southwestern
Medical Center, 5323 Harry, Hines Boulevard, Dallas, Texas 75390-9038, United
States
| | - Phong Q. Le
- Department of Biochemistry, The University of Texas Southwestern
Medical Center, 5323 Harry, Hines Boulevard, Dallas, Texas 75390-9038, United
States
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern
Medical Center, 5323 Harry, Hines Boulevard, Dallas, Texas 75390-9038, United
States
| |
Collapse
|
32
|
Zhang X, Shi Z, Shao C, Zhao J, Wang D, Zhang G, Li L. Three-Component Coupling Reaction in Water: A One-Pot Protocol for the Construction of P-S-C(sp3
) and P-Se-C(sp3
) Bonds. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinghua Zhang
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Hai-Quan Road 201418 Shanghai China
| | - Zheng Shi
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Hai-Quan Road 201418 Shanghai China
| | - Changwei Shao
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Hai-Quan Road 201418 Shanghai China
| | - Jinlong Zhao
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Hai-Quan Road 201418 Shanghai China
| | - Dungai Wang
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Hai-Quan Road 201418 Shanghai China
| | - Gaoqi Zhang
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Hai-Quan Road 201418 Shanghai China
| | - Liang Li
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Hai-Quan Road 201418 Shanghai China
| |
Collapse
|
33
|
Lai YL, Huang JM. Palladium-Catalyzed Electrochemical Allylic Alkylation between Alkyl and Allylic Halides in Aqueous Solution. Org Lett 2017; 19:2022-2025. [DOI: 10.1021/acs.orglett.7b00473] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yin-Long Lai
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
34
|
Wen C, Chen Q, Huang Y, Wang X, Yan X, Zeng J, Huo Y, Zhang K. K2CO3-promoted aerobic oxidative cross-coupling of trialkyl phosphites with thiophenols. RSC Adv 2017. [DOI: 10.1039/c7ra09057a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphorylation of thiols has been achieved via K2CO3-promoted aerobic oxidative cross-coupling of trialkyl phosphites with thiophenols.
Collapse
Affiliation(s)
- Chunxiao Wen
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Qian Chen
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
| | - Yulin Huang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Xiaofeng Wang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Xinxing Yan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Jiekun Zeng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Kun Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| |
Collapse
|
35
|
Wang L, Yang S, Chen L, Yuan S, Chen Q, He MY, Zhang ZH. Magnetically recyclable Cu-BTC@Fe3O4 composite-catalyzed C(aryl)–S–P bond formation using aniline, P(O)H compounds and sulfur powder. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00467b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A magnetically recyclable Cu-BTC@Fe3O4-catalyzed synthesis of S-aryl phosphorothioates using aniline as the aryl source and sulfur powder as the sulfur source has been developed.
Collapse
Affiliation(s)
- Liang Wang
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Sen Yang
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Le Chen
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Sheng Yuan
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Qun Chen
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Ming-Yang He
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Zhi-Hui Zhang
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou
- P. R. China
| |
Collapse
|
36
|
Cai Y, Benischke AD, Knochel P, Gosmini C. Cobalt-Catalyzed Reductive Cross-Coupling Between Styryl and Benzyl Halides. Chemistry 2016; 23:250-253. [PMID: 27762460 DOI: 10.1002/chem.201603832] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/14/2022]
Abstract
A simple and efficient protocol for the direct reductive cross-coupling between alkenyl and benzyl halides using a Co/Mn system has been developed. This reaction proceeds smoothly in the presence of [CoBr2 (PPh3 )2 ] as the catalyst, with NaI as an additive in acetonitrile with a broad scope of functionalized alkenyl and benzyl halides. Different functional groups are tolerated on both coupling partners, thus, significantly extending the general scope of transition-metal-catalyzed benzylation of alkenyl halides. Moderate to excellent yields were also obtained. From a mechanistic point of view, a radical chain mechanism was proposed. This reaction is stereospecific and some studies suggest the retention of the double-bond configuration.
Collapse
Affiliation(s)
- Yingxiao Cai
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128, Palaiseau, France
| | - Andreas D Benischke
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Corinne Gosmini
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128, Palaiseau, France
| |
Collapse
|
37
|
Yang B, Wang ZX. Nickel-Catalyzed Cross-Coupling of Allyl Alcohols with Aryl- or Alkenylzinc Reagents. J Org Chem 2016; 82:4542-4549. [DOI: 10.1021/acs.joc.6b02564] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bo Yang
- CAS
Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS
Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
38
|
Xia M, Cheng J. Catalyst- and oxidant-free coupling of disulfides with H-phosphine oxide: construction of P–S bond leading to thiophosphinates. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Zhang L, Zhang P, Li X, Xu J, Tang G, Zhao Y. Synthesis of S-Aryl Phosphorothioates by Copper-Catalyzed Phosphorothiolation of Diaryliodonium and Arenediazonium Salts. J Org Chem 2016; 81:5588-94. [DOI: 10.1021/acs.joc.6b00925] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Liangliang Zhang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Pengbo Zhang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Xueqin Li
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Jian Xu
- Institute
of Next Generation Matter Transformation, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Guo Tang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Yufen Zhao
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| |
Collapse
|
40
|
Zhu Y, Chen T, Li S, Shimada S, Han LB. Efficient Pd-Catalyzed Dehydrogenative Coupling of P(O)H with RSH: A Precise Construction of P(O)–S Bonds. J Am Chem Soc 2016; 138:5825-8. [DOI: 10.1021/jacs.6b03112] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yueyue Zhu
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tieqiao Chen
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shan Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shigeru Shimada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
41
|
|
42
|
Xu J, Zhang L, Li X, Gao Y, Tang G, Zhao Y. Phosphorothiolation of Aryl Boronic Acids Using P(O)H Compounds and Elemental Sulfur. Org Lett 2016; 18:1266-9. [DOI: 10.1021/acs.orglett.6b00118] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Xu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangliang Zhang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Xueqin Li
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuzhen Gao
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Bi X, Li J, Meng F, Wang H, Xiao J. DCDMH-promoted synthesis of thiophosphates by coupling of H-phosphonates with thiols. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Kim J, Park S, Park J, Cho SH. Synthesis of Branched Alkylboronates by Copper-Catalyzed Allylic Substitution Reactions of Allylic Chlorides with 1,1-Diborylalkanes. Angew Chem Int Ed Engl 2015; 55:1498-501. [DOI: 10.1002/anie.201509840] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Junghoon Kim
- Department of Chemistry and Division of Advanced Nuclear Engineering; Pohang University of Science and Technology (POSTECH); Pohang 790-784 Republic of Korea
| | - Sangwoo Park
- Department of Chemistry and Division of Advanced Nuclear Engineering; Pohang University of Science and Technology (POSTECH); Pohang 790-784 Republic of Korea
| | - Jinyoung Park
- Department of Chemistry and Division of Advanced Nuclear Engineering; Pohang University of Science and Technology (POSTECH); Pohang 790-784 Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry and Division of Advanced Nuclear Engineering; Pohang University of Science and Technology (POSTECH); Pohang 790-784 Republic of Korea
| |
Collapse
|
45
|
Kim J, Park S, Park J, Cho SH. Synthesis of Branched Alkylboronates by Copper-Catalyzed Allylic Substitution Reactions of Allylic Chlorides with 1,1-Diborylalkanes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Junghoon Kim
- Department of Chemistry and Division of Advanced Nuclear Engineering; Pohang University of Science and Technology (POSTECH); Pohang 790-784 Republic of Korea
| | - Sangwoo Park
- Department of Chemistry and Division of Advanced Nuclear Engineering; Pohang University of Science and Technology (POSTECH); Pohang 790-784 Republic of Korea
| | - Jinyoung Park
- Department of Chemistry and Division of Advanced Nuclear Engineering; Pohang University of Science and Technology (POSTECH); Pohang 790-784 Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry and Division of Advanced Nuclear Engineering; Pohang University of Science and Technology (POSTECH); Pohang 790-784 Republic of Korea
| |
Collapse
|
46
|
Kotek V, Polák P, Tobrman T. Efficient and simple preparation of functionalized 1,1-dibromoenol phosphates. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1613-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Cherney AH, Kadunce NT, Reisman SE. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C-C Bonds. Chem Rev 2015; 115:9587-652. [PMID: 26268813 PMCID: PMC4566132 DOI: 10.1021/acs.chemrev.5b00162] [Citation(s) in RCA: 629] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alan H Cherney
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Nathaniel T Kadunce
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
48
|
Xu L, Liu Z, Dong W, Song J, Miao M, Xu J, Ren H. Copper-free arylation of 3,3-disubstituted allylic halides with triazene-softened aryl Grignard reagents. Org Biomol Chem 2015; 13:6333-7. [PMID: 25968814 DOI: 10.1039/c5ob00594a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-free allylic arylation reaction between 3,3-disubstituted allylic halides and triazene-softened aryl Grignard reagents has been developed. This protocol presents a direct and efficient way to construct both α- or γ-isomers with high regioselectivity under environmentally benign conditions. Various functional groups can be tolerated in the reaction and the products are of high value for multiple synthetic applications. The α- and γ-isomers can be converted to the corresponding 3H-indole and indole derivatives in multigram scale respectively.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Pizzolato SF, Giannerini M, Bos PH, Fañanás-Mastral M, Feringa BL. Catalyst-controlled reverse selectivity in C–C bond formation: NHC-Cu-catalyzed α-selective allylic alkylation with organolithium reagents. Chem Commun (Camb) 2015; 51:8142-5. [DOI: 10.1039/c5cc01521a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and highly α-selective copper-catalyzed allylic alkylation of allylic halides with organolithium reagents is presented.
Collapse
Affiliation(s)
- Stefano F. Pizzolato
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Massimo Giannerini
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Pieter H. Bos
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | | | - Ben L. Feringa
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| |
Collapse
|
50
|
Li-Yuan Bao R, Zhao R, Shi L. Progress and developments in the turbo Grignard reagent i-PrMgCl·LiCl: a ten-year journey. Chem Commun (Camb) 2015; 51:6884-900. [DOI: 10.1039/c4cc10194d] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and kinetic perspectives of i-PrMgCl·LiCl help to rationalize the trends of its unique reactivity and selectivity.
Collapse
Affiliation(s)
- Robert Li-Yuan Bao
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Rong Zhao
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Lei Shi
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| |
Collapse
|