1
|
Prudinnik DS, Kussanova A, Vorobjev IA, Tikhonov A, Ataullakhanov FI, Barteneva NS. Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Aging Dis 2025:AD.2024.0526. [PMID: 39012672 DOI: 10.14336/ad.2024.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is interrelated with changes in red blood cell parameters and functionality. In this article, we focus on red blood cells (RBCs) and provide a review of the known changes associated with the characterization of RBC deformability in aging and related pathologies. The biophysical parameters complement the commonly used biochemical parameters and may contribute to a better understanding of the aging process. The power of the deformability measurement approach is well established in clinical settings. Measuring RBCs' deformability has the advantage of relative simplicity, and it reflects the complex effects developing in erythrocytes during aging. However, aging and related pathological conditions also promote heterogeneity of RBC features and have a certain impact on the variance in erythrocyte cell properties. The possible applications of deformability as an early biophysical biomarker of pathological states are discussed, and modulating PIEZO1 as a therapeutic target is suggested. The changes in RBCs' shape can serve as a proxy for deformability evaluation, leveraging single-cell analysis with imaging flow cytometry and artificial intelligence algorithms. The characterization of biophysical parameters of RBCs is in progress in humans and will provide a better understanding of the complex dynamics of aging.
Collapse
Affiliation(s)
- Dmitry S Prudinnik
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aigul Kussanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Alexander Tikhonov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Fazly I Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
3
|
Sanislav O, Tetaj R, Metali, Ratcliffe J, Phillips W, Klein AR, Sethi A, Zhou J, Mezzenga R, Saxer SS, Charnley M, Annesley SJ, Reynolds NP. Cell invasive amyloid assemblies from SARS-CoV-2 peptides can form multiple polymorphs with varying neurotoxicity. NANOSCALE 2024; 16:19814-19827. [PMID: 39363846 DOI: 10.1039/d4nr03030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The neurological symptoms of COVID-19, often referred to as neuro-COVID include neurological pain, memory loss, cognitive and sensory disruption. These neurological symptoms can persist for months and are known as Post-Acute Sequalae of COVID-19 (PASC). The molecular origins of neuro-COVID, and how it contributes to PASC are unknown, however a growing body of research highlights that the self-assembly of protein fragments from SARS-CoV-2 into amyloid nanofibrils may play a causative role. Previously, we identified two fragments from the SARS-CoV-2 proteins, Open Reading Frame (ORF) 6 and ORF10, that self-assemble into neurotoxic amyloid assemblies. Here we further our understanding of the self-assembly mechanisms and nano-architectures formed by these fragments and their biological responses. By solubilising the peptides in a fluorinated solvent, we eliminate insoluble aggregates in the starting materials (seeds) that change the polymorphic landscape of the assemblies. The resultant assemblies are dominated by structures with higher free energies (e.g. ribbons and amorphous aggregates) that are less toxic to cultured neurons but do affect their mitochondrial respiration. We also show the first direct evidence of cellular uptake of viral amyloids. This work highlights the importance of understanding the polymorphic behaviour of amyloids and the correlation to neurotoxicity, particularly in the context of neuro-COVID and PASC.
Collapse
Affiliation(s)
- Oana Sanislav
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rina Tetaj
- Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, 4132, Switzerland
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Metali
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Julian Ratcliffe
- Bio Imaging Platform, La Trobe University, Melbourne, Victoria 3086, Australia
| | - William Phillips
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Annaleise R Klein
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ashish Sethi
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, 4132, Switzerland
| | - Mirren Charnley
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nicholas P Reynolds
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
4
|
Münch NS, Das S, Seeger S. Unveiling the effect of CaCl 2 on amyloid β aggregation via supercritical angle Raman and fluorescence spectroscopy and microscopy. Phys Chem Chem Phys 2024; 26:26266-26276. [PMID: 39371012 PMCID: PMC11456997 DOI: 10.1039/d4cp00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Amyloid β aggregation is an important factor in Alzheimer's disease. Since calcium homeostasis plays an important role in amyloid β aggregation, it is crucial to study the interaction between calcium ions and amyloid β directly at the surface of the lipid membrane. With supercritical angle techniques, the signal of interest at the surface is easily separated from the bulk solution, making them a powerful tool for aggregation study. In this work, the influence of calcium ions on amyloid β aggregation over different aggregation time periods is investigated with supercritical angle Raman and fluorescence spectroscopy and microscopy. Note that calcium ions have a larger influence on amyloid β1-42 than on the 40 amino acid variant. We found that a small layer of calcium ions significantly protects the lipid membrane against the protein insertion process.
Collapse
Affiliation(s)
- Nathalia Simea Münch
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Subir Das
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Stefan Seeger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
5
|
Dewison KM, Rowlinson B, Machin JM, Crossley JA, Thacker D, Wilkinson M, Ulamec SM, Khan GN, Ranson NA, van Oosten-Hawle P, Brockwell DJ, Radford SE. Residues 2 to 7 of α-synuclein regulate amyloid formation via lipid-dependent and lipid-independent pathways. Proc Natl Acad Sci U S A 2024; 121:e2315006121. [PMID: 39133842 PMCID: PMC11348338 DOI: 10.1073/pnas.2315006121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/09/2024] [Indexed: 08/29/2024] Open
Abstract
Amyloid formation by α-synuclein (αSyn) occurs in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. Deciphering the residues that regulate αSyn amyloid fibril formation will not only provide mechanistic insight but may also reveal targets to prevent and treat disease. Previous investigations have identified several regions of αSyn to be important in the regulation of amyloid formation, including the non-amyloid-β component (NAC), P1 region (residues 36 to 42), and residues in the C-terminal domain. Recent studies have also indicated the importance of the N-terminal region of αSyn for both its physiological and pathological roles. Here, the role of residues 2 to 7 in the N-terminal region of αSyn is investigated in terms of their ability to regulate amyloid fibril formation in vitro and in vivo. Deletion of these residues (αSynΔN7) slows the rate of fibril formation in vitro and reduces the capacity of the protein to be recruited by wild-type (αSynWT) fibril seeds, despite cryo-EM showing a fibril structure consistent with those of full-length αSyn. Strikingly, fibril formation of αSynΔN7 is not induced by liposomes, despite the protein binding to liposomes with similar affinity to αSynWT. A Caenorhabditis elegans model also showed that αSynΔN7::YFP forms few puncta and lacks motility and lifespan defects typified by expression of αSynWT::YFP. Together, the results demonstrate the involvement of residues 2 to 7 of αSyn in amyloid formation, revealing a target for the design of amyloid inhibitors that may leave the functional role of the protein in membrane binding unperturbed.
Collapse
Affiliation(s)
- Katherine M. Dewison
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Benjamin Rowlinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Jonathan M. Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Joel A. Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sabine M. Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - G. Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | | | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
6
|
Yang Y, Shi M, Liu X, Zhu Q, Xu Z, Liu G, Feng T, Stewart T, Zhang J. Calcium influx: An essential process by which α-Synuclein regulates morphology of erythrocytes. J Adv Res 2024; 62:187-198. [PMID: 37714326 PMCID: PMC11331169 DOI: 10.1016/j.jare.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
INTRODUCTION Morphological abnormalities of erythrocytes/red blood cells (RBCs), e.g., increased acanthocytes, in Parkinson's disease (PD) have been reported previously, although the underlying mechanisms remain to be characterized. In this study, the potential roles of α-synuclein (α-syn), a protein critically involved in PD and highly abundant in RBCs, were studied in PD patients as well as in a PD mouse model. METHODS Transgenic [PAC-Tg (SNCAA53T), A53T] mice overexpressing A53T mutant α-syn and SNCA knockout mice were employed to characterize the effect of α-syn on RBC morphology. In addition to A53T and SNCA knockout mice, the morphology of RBCs of PD patients was also examined using scanning electron microscopy. The potential roles of α-syn were further investigated in cultured RBCs and mice. RESULTS Morphological abnormalities of RBCs and increased accumulation of aggregated α-syn on the RBC membrane were observed in PD patients. A similar phenomenon was also observed in A53T mice. Furthermore, while mice lacking α-syn expression showed a lower proportion of acanthocytes, treating RBCs derived from SNCA knockout mice with aggregated α-syn resulted in a higher percentage of acanthocytes. In a follow-up proteomic investigation, several major classes of proteins were identified as α-syn-associated proteins on the RBC membrane, seven of which were calcium-binding proteins. Applying aggregated α-syn to the RBC membrane directly induced extracellular calcium influx along with morphological changes; both observations were adequately reversed by blocking calcium influx. CONCLUSIONS This study demonstrated that α-syn plays a critical role in PD-associated morphological abnormalities of RBCs, at least partially via a process mediated by extracellular calcium influx.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Min Shi
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Xiaodan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Qiaoyun Zhu
- Central Laboratory, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Zhi Xu
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Genliang Liu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Tessandra Stewart
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA.
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; National Human Brain Bank for Health and Disease, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
7
|
Kon T, Lee S, Martinez-Valbuena I, Yoshida K, Tanikawa S, Lang AE, Kovacs GG. Molecular Behavior of α-Synuclein Is Associated with Membrane Transport, Lipid Metabolism, and Ubiquitin-Proteasome Pathways in Lewy Body Disease. Int J Mol Sci 2024; 25:2676. [PMID: 38473923 DOI: 10.3390/ijms25052676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Lewy body diseases (LBDs) feature α-synuclein (α-syn)-containing Lewy bodies, with misfolded α-syn potentially propagating as seeds. Using a seeding amplification assay, we previously reported distinct α-syn seeding in LBD cases based on the area under seeding curves. This study revealed that LBD cases showing different α-syn seeding kinetics have distinct proteomics profiles, emphasizing disruptions in mitochondria and lipid metabolism in high-seeder cases. Though the mechanisms underlying LBD development are intricate, the factors influencing α-syn seeding activity remain elusive. To address this and complement our previous findings, we conducted targeted transcriptome analyses in the substantia nigra using the nanoString nCounter assay together with histopathological evaluations in high (n = 4) and low (n = 3) nigral α-syn seeders. Neuropathological findings (particularly the substantia nigra) were consistent between these groups and were characterized by neocortical LBD associated with Alzheimer's disease neuropathologic change. Among the 1811 genes assessed, we identified the top 20 upregulated and downregulated genes and pathways in α-syn high seeders compared with low seeders. Notably, alterations were observed in genes and pathways related to transmembrane transporters, lipid metabolism, and the ubiquitin-proteasome system in the high α-syn seeders. In conclusion, our findings suggest that the molecular behavior of α-syn is the driving force in the neurodegenerative process affecting the substantia nigra through these identified pathways. These insights highlight their potential as therapeutic targets for attenuating LBD progression.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Neurology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki 036-8562, Japan
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Satoshi Tanikawa
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Edmond J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
- Edmond J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
- Krembil Brain Institute, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| |
Collapse
|
8
|
Bigi A, Cascella R, Cecchi C. α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Neural Regen Res 2023; 18:2332-2342. [PMID: 37282450 PMCID: PMC10360081 DOI: 10.4103/1673-5374.371345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The misfolding and aggregation of α-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In such conditions, a range of different misfolded aggregates, including oligomers, protofibrils, and fibrils, are present both in neurons and glial cells. Growing experimental evidence supports the proposition that soluble oligomeric assemblies, formed during the early phases of the aggregation process, are the major culprits of neuronal toxicity; at the same time, fibrillar conformers appear to be the most efficient at propagating among interconnected neurons, thus contributing to the spreading of α-synuclein pathology. Moreover, α-synuclein fibrils have been recently reported to release soluble and highly toxic oligomeric species, responsible for an immediate dysfunction in the recipient neurons. In this review, we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused by α-synuclein oligomers and fibrils, both contributing to neurodegeneration in synucleinopathies.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Ramirez J, Pancoe SX, Rhoades E, Petersson EJ. The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules 2023; 13:1476. [PMID: 37892158 PMCID: PMC10604467 DOI: 10.3390/biom13101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The small neuronal protein α-synuclein (αS) is found in pre-synaptic terminals and plays a role in vesicle recycling and neurotransmission. Fibrillar aggregates of αS are the hallmark of Parkinson's disease and related neurodegenerative disorders. In both health and disease, interactions with lipids influence αS's structure and function, prompting much study of the effects of lipids on αS aggregation. A comprehensive collection (126 examples) of aggregation rate data for various αS/lipid combinations was presented, including combinations of lipid variations and mutations or post-translational modifications of αS. These data were interpreted in terms of lipid structure to identify general trends. These tabulated data serve as a resource for the community to help in the interpretation of aggregation experiments with lipids and to be potentially used as inputs for computational models of lipid effects on aggregation.
Collapse
Affiliation(s)
- Jennifer Ramirez
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA;
| | - Samantha X. Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Singh BP, Morris RJ, Kunath T, MacPhee CE, Horrocks MH. Lipid-induced polymorphic amyloid fibril formation by α-synuclein. Protein Sci 2023; 32:e4736. [PMID: 37515406 PMCID: PMC10521247 DOI: 10.1002/pro.4736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between β-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.
Collapse
Affiliation(s)
- Bhanu P. Singh
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
| | - Ryan J. Morris
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Tilo Kunath
- Centre for Regenerative Medicine, School of Biological Sciences, The University of EdinburghEdinburghUK
| | - Cait E. MacPhee
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of EdinburghEdinburghUK
| |
Collapse
|
11
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202215785. [PMID: 38515735 PMCID: PMC10952214 DOI: 10.1002/ange.202215785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/08/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
12
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
13
|
Stephens AD, Villegas AF, Chung CW, Vanderpoorten O, Pinotsi D, Mela I, Ward E, McCoy TM, Cubitt R, Routh AF, Kaminski CF, Kaminski Schierle GS. α-Synuclein fibril and synaptic vesicle interactions lead to vesicle destruction and increased lipid-associated fibril uptake into iPSC-derived neurons. Commun Biol 2023; 6:526. [PMID: 37188797 PMCID: PMC10185682 DOI: 10.1038/s42003-023-04884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Monomeric alpha-synuclein (aSyn) is a well characterised protein that importantly binds to lipids. aSyn monomers assemble into amyloid fibrils which are localised to lipids and organelles in insoluble structures found in Parkinson's disease patient's brains. Previous work to address pathological aSyn-lipid interactions has focused on using synthetic lipid membranes, which lack the complexity of physiological lipid membranes. Here, we use physiological membranes in the form of synaptic vesicles (SV) isolated from rodent brain to demonstrate that lipid-associated aSyn fibrils are more easily taken up into iPSC-derived cortical i3Neurons. Lipid-associated aSyn fibril characterisation reveals that SV lipids are an integrated part of the fibrils and while their fibril morphology differs from aSyn fibrils alone, the core fibril structure remains the same, suggesting the lipids lead to the increase in fibril uptake. Furthermore, SV enhance the aggregation rate of aSyn, yet increasing the SV:aSyn ratio causes a reduction in aggregation propensity. We finally show that aSyn fibrils disintegrate SV, whereas aSyn monomers cause clustering of SV using small angle neutron scattering and high-resolution imaging. Disease burden on neurons may be impacted by an increased uptake of lipid-associated aSyn which could enhance stress and pathology, which in turn may have fatal consequences for neurons.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | - Ana Fernandez Villegas
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Chyi Wei Chung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Physics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Oliver Vanderpoorten
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dorothea Pinotsi
- Scientific Center for Optical and Electron Microscopy, ETH Zürich, Zürich, Switzerland
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Edward Ward
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Thomas M McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Alexander F Routh
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Robinson J, Sarangi NK, Keyes TE. Role of phosphatidylserine in amyloid-beta oligomerization at asymmetric phospholipid bilayers. Phys Chem Chem Phys 2023; 25:7648-7661. [PMID: 36317678 DOI: 10.1039/d2cp03344e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amyloid-beta (Aβ1-42) aggregation triggers neurotoxicity and is linked to Alzheimer's disease. Aβ1-42 oligomers, rather than extended fibrils, adhere to the cell membrane, causing cell death. Phosphatidylserine (PS), an anionic phospholipid, is prevalent in neuronal membranes (< 20 molar percentage) and, while isolated to the cytoplasmic leaflet of the membrane in healthy cells, its exposure in apoptotic cells and migration to exoplasmic leaflet is triggered by oxidative damage to the membrane. It is widely believed that PS plays a crucial role in the Aβ peptide interaction in the membranes of neuronal cells. However, due to the complexity of the cell membrane, it can be challenging to address molecular level understanding of the PS-Aβ binding and oligomerization processes. Herein, we use microcavity supported lipid bilayers (MSLBs) to analyse PS and Aβ1-42 binding, oligomer formation, and membrane damage. MSLBs are a useful model to evaluate protein-membrane interactions because of their cell-like dual aspect fluidity, their addressability and compositional versatility. We used electrochemical impedance spectroscopy (EIS) and confocal fluorescence microscopy to compare the impact of Aβ1-42 on simple zwitterioinic membrane, dioleoylphosphatidylcholine (DOPC), with MSLBs comprised of transversally asymmetric binary DOPC and dioleoylphosphatidylserine (DOPS). Monomeric Aβ1-42 adsorbs weakly to the pristine zwitterionic DOPC membrane without aggregation. Using a membrane integrity test, with pyranine trapped within the cavities beneath the membrane, Aβ1-42 exposure did not result in pyranine leakage, indicating that DOPC membranes were intact. When 10 mol% DOPS was doped asymmetrically into the membrane's outer leaflet, oligomerization of Aβ1-42 monomer was evident in EIS and atomic force microscopy (AFM), and confocal imaging revealed that membrane damage, resulted in extensive pyranine leakage from the pores. The effects were time, and DOPS and Aβ1-42 concentration-dependent. Membrane pore formation was visible within 30 minutes, and oligomerization, membrane-oligomer multilayer, and Aβ1-42 fibril formation evident over 3 to 18 hours. In asymmetric membranes with DOPS localized to the lower leaflet, optothermally (laser induced) damage increased local DOPS concentrations at the distal leaflet, promoting Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Jack Robinson
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.,National Center for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | - Tia E Keyes
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.,National Center for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
15
|
Yoo G, An HJ, Yeou S, Lee NK. α-Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms. Mol Cells 2022; 45:806-819. [PMID: 36380732 PMCID: PMC9676983 DOI: 10.14348/molcells.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Synaptic accumulation of α-synuclein (α-Syn) oligomers and their interactions with VAMP2 have been reported to be the basis of synaptic dysfunction in Parkinson's disease (PD). α-Syn mutants associated with familial PD have also been known to be capable of interacting with VAMP2, but the exact mechanisms resulting from those interactions to eventual synaptic dysfunction are still unclear. Here, we investigate the effect of α-Syn mutant oligomers comprising A30P, E46K, and A53T on VAMP2-embedded vesicles. Specifically, A30P and A53T oligomers cluster vesicles in the presence of VAMP2, which is a shared mechanism with wild type α-Syn oligomers induced by dopamine. On the other hand, E46K oligomers reduce the membrane mobility of the planar bilayers, as revealed by single-particle tracking, and permeabilize the membranes in the presence of VAMP2. In the absence of VAMP2 interactions, E46K oligomers enlarge vesicles by fusing with one another. Our results clearly demonstrate that α-Syn mutant oligomers have aberrant effects on VAMP2-embedded vesicles and the disruption types are distinct depending on the mutant types. This work may provide one of the possible clues to explain the α-Syn mutant-type dependent pathological heterogeneity of familial PD.
Collapse
Affiliation(s)
- Gyeongji Yoo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyeong Jeon An
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sanghun Yeou
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Abstract
α-synuclein misfolding and aggregation into fibrils is a common feature of α-synucleinopathies, such as Parkinson's disease, in which α-synuclein fibrils are a characteristic hallmark of neuronal inclusions called Lewy bodies. Studies on the composition of Lewy bodies extracted postmortem from brain tissue of Parkinson's patients revealed that lipids and membranous organelles are also a significant component. Interactions between α-synuclein and lipids have been previously identified as relevant for Parkinson's disease pathology, however molecular insights into their interactions have remained elusive. Here we present cryo-electron microscopy structures of six α-synuclein fibrils in complex with lipids, revealing specific lipid-fibril interactions. We observe that phospholipids promote an alternative protofilament fold, mediate an unusual arrangement of protofilaments, and fill the central cavities of the fibrils. Together with our previous studies, these structures also indicate a mechanism for fibril-induced lipid extraction, which is likely to be involved in the development of α-synucleinopathies. Specifically, one potential mechanism for the cellular toxicity is the disruption of intracellular vesicles mediated by fibrils and oligomers, and therefore the modulation of these interactions may provide a promising strategy for future therapeutic interventions.
Collapse
|
17
|
Yang Y, Distaffen H, Jalali S, Nieuwkoop AJ, Nilsson BL, Dias CL. Atomic Insights into Amyloid-Induced Membrane Damage. ACS Chem Neurosci 2022; 13:2766-2777. [PMID: 36095304 DOI: 10.1021/acschemneuro.2c00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amphipathic peptides can cause biological membranes to leak either by dissolving their lipid content via a detergent-like mechanism or by forming pores on the membrane surface. These modes of membrane damage have been related to the toxicity of amyloid peptides and to the activity of antimicrobial peptides. Here, we perform the first all-atom simulations in which membrane-bound amphipathic peptides self-assemble into β-sheets that subsequently either form stable pores inside the bilayer or drag lipids out of the membrane surface. An analysis of these simulations shows that the acyl tail of lipids interact strongly with non-polar side chains of peptides deposited on the membrane. These strong interactions enable lipids to be dragged out of the bilayer by oligomeric structures accounting for detergent-like damage. They also disturb the orientation of lipid tails in the vicinity of peptides. These distortions are minimized around pore structures. We also show that membrane-bound β-sheets become twisted with one of their extremities partially penetrating the lipid bilayer. This allows peptides on opposite leaflets to interact and form a long transmembrane β-sheet, which initiates poration. In simulations, where peptides are deposited on a single leaflet, the twist in β-sheets allows them to penetrate the membrane and form pores. In addition, our simulations show that fibril-like structures produce little damage to lipid membranes, as non-polar side chains in these structures are unavailable to interact with the acyl tail of lipids.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Hannah Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
18
|
Vicic N, Guo X, Chan D, Flanagan JG, Sigal IA, Sivak JM. Evidence of an Annexin A4 mediated plasma membrane repair response to biomechanical strain associated with glaucoma pathogenesis. J Cell Physiol 2022; 237:3687-3702. [PMID: 35862065 PMCID: PMC9891715 DOI: 10.1002/jcp.30834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/03/2023]
Abstract
Glaucoma is a common neurodegenerative blinding disease that is closely associated with chronic biomechanical strain at the optic nerve head (ONH). Yet, the cellular injury and mechanosensing mechanisms underlying the resulting damage have remained critically unclear. We previously identified Annexin A4 (ANXA4) from a proteomic analyses of human ONH astrocytes undergoing pathological biomechanical strain that mimics glaucomatous conditions. Annexins are a family of calcium-dependent phospholipid binding proteins with key functions in plasma membrane repair (PMR); an active mechanism to limit and mend cellular injury that involves membrane and cytoskeletal reorganizations. However, a role for direct membrane damage and PMR has not been well studied in the context of biomechanical strain, such as that associated with glaucoma. Here we report that this moderate strain surprisingly damages cell membranes to increase permeability in a calcium-dependent manner, and induces rapid aggregation of ANXA4 at injury sites. ANXA4 loss-of-function increases permeability, while exogenous ANXA4 reduces it. Furthermore, ANXA4 aggregation is associated with F-actin dynamics in vitro, and remarkably this interaction and aggregation signature is also observed in the glaucomatous ONH in patient samples. Together these studies link moderate biomechanical strain with direct membrane damage and actin dynamics, and identify an active PMR role for ANXA4 in new model of cell injury associated with glaucoma pathogenesis.
Collapse
Affiliation(s)
- Nevena Vicic
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Darren Chan
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - John G Flanagan
- The Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy M. Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
20
|
α-Synuclein molecular behavior and nigral proteomic profiling distinguish subtypes of Lewy body disorders. Acta Neuropathol 2022; 144:167-185. [PMID: 35748929 DOI: 10.1007/s00401-022-02453-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/01/2022]
Abstract
Lewy body disorders (LBD), characterized by the deposition of misfolded α-synuclein (α-Syn), are clinically heterogeneous. Although the distribution of α-Syn correlates with the predominant clinical features, the burden of pathology does not fully explain the observed variability in clinical presentation and rate of disease progression. We hypothesized that this heterogeneity might reflect α-Syn molecular diversity, between both patients and different brain regions. Using an ultra-sensitive assay, we evaluated α-Syn seeding in 8 brain regions from 30 LBD patients with different clinical phenotypes and disease durations. Comparing seeding across the clinical phenotypes revealed that hippocampal α-Syn from patients with a cognitive-predominant phenotype had significantly higher seeding capacity than that derived from patients with a motor-predominant phenotype, whose nigral-derived α-Syn in turn had higher seeding capacity than that from cognitive-predominant patients. Interestingly, α-Syn from patients with rapid disease progression (< 3 years to development of advanced disease) had the highest nigral seeding capacity of all the patients included. To validate these findings and explore factors underlying seeding heterogeneity, we performed in vitro toxicity assays, and detailed neuropathological and biochemical examinations. Furthermore, and for the first time, we performed a proteomic-wide profiling of the substantia nigra from 5 high seeder and 5 low seeder patients. The proteomic data suggests a significant disruption in mitochondrial function and lipid metabolism in high seeder cases compared to the low seeders. These observations suggest that distinct molecular populations of α-Syn may contribute to heterogeneity in phenotypes and progression rates in LBD and imply that effective therapeutic strategies might need to be directed at an ensemble of differently misfolded α-Syn species, with the relative contribution of their differing impacts accounting for heterogeneity in the neurodegenerative process.
Collapse
|
21
|
Zhang DY, Wang J, Fleeman RM, Kuhn MK, Swulius MT, Proctor EA, Dokholyan NV. Monosialotetrahexosylganglioside Promotes Early Aβ42 Oligomer Formation and Maintenance. ACS Chem Neurosci 2022; 13:1979-1991. [PMID: 35713284 PMCID: PMC10137048 DOI: 10.1021/acschemneuro.2c00221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The aggregation of the amyloid beta (Aβ) peptide is associated with Alzheimer's disease (AD) pathogenesis. Cell membrane composition, especially monosialotetrahexosylganglioside (GM1), is known to promote the formation of Aβ fibrils, yet little is known about the roles of GM1 in the early steps of Aβ oligomer formation. Here, by using GM1-contained liposomes as a mimic of the neuronal cell membrane, we demonstrate that GM1 is a critical trigger of Aβ oligomerization and aggregation. We find that GM1 not only promotes the formation of Aβ fibrils but also facilitates the maintenance of Aβ42 oligomers on liposome membranes. We structurally characterize the Aβ42 oligomers formed on the membrane and find that GM1 captures Aβ by binding to its arginine-5 residue. To interrogate the mechanism of Aβ42 oligomer toxicity, we design a new liposome-based Ca2+-encapsulation assay and provide new evidence for the Aβ42 ion channel hypothesis. Finally, we determine the toxicity of Aβ42 oligomers formed on membranes. Overall, by uncovering the roles of GM1 in mediating early Aβ oligomer formation and maintenance, our work provides a novel direction for pharmaceutical research for AD.
Collapse
Affiliation(s)
- Dong Yan Zhang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Rebecca M Fleeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.,Center for Neural Engineering, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States
| | - Madison K Kuhn
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.,Center for Neural Engineering, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States.,Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States
| | - Matthew T Swulius
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Elizabeth A Proctor
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.,Center for Neural Engineering, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States.,Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States.,Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.,Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States.,Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.,Department of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States
| |
Collapse
|
22
|
Lin Y, Ito D, Yoo JM, Lim MH, Yu W, Kawata Y, Lee YH. Dual Effects of Presynaptic Membrane Mimetics on α-Synuclein Amyloid Aggregation. Front Cell Dev Biol 2022; 10:707417. [PMID: 35747692 PMCID: PMC9209734 DOI: 10.3389/fcell.2022.707417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Aggregation of intrinsically disordered α-synuclein (αSN) under various conditions is closely related to synucleinopathies. Although various biological membranes have shown to alter the structure and aggregation propensity of αSN, a thorough understanding of the molecular and mechanical mechanism of amyloidogenesis in membranes remains unanswered. Herein, we examined the structural changes, binding properties, and amyloidogenicity of three variations of αSN mutants under two types of liposomes, 1,2-Dioleoyl-sn-glycero-3-Phosphocholine (DOPC) and presynaptic vesicle mimetic (Mimic) membranes. While neutrally charged DOPC membranes elicited marginal changes in the structure and amyloid fibrillation of αSNs, negatively charged Mimic membranes induced dramatic helical folding and biphasic amyloid generation. At low concentration of Mimic membranes, the amyloid fibrillation of αSNs was promoted in a dose-dependent manner. However, further increases in the concentration constrained the fibrillation process. These results suggest the dual effect of Mimic membranes on regulating the amyloidogenesis of αSN, which is rationalized by the amyloidogenic structure of αSN and condensation-dilution of local αSN concentration. Finally, we propose physicochemical properties of αSN and membrane surfaces, and their propensity to drive electrostatic interactions as decisive factors of amyloidogenesis.
Collapse
Affiliation(s)
- Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
- Institute for Protein Research, Osaka University, Suita, Japan
- *Correspondence: Yuxi Lin, ; Young-Ho Lee,
| | - Dai Ito
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Je Min Yoo
- Biographene, Los Angeles, CA, United States
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
- Institute for Protein Research, Osaka University, Suita, Japan
- Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Research Headquarters, Korea Brain Research Institute, Daegu, South Korea
- *Correspondence: Yuxi Lin, ; Young-Ho Lee,
| |
Collapse
|
23
|
The Association of Lipids with Amyloid Fibrils. J Biol Chem 2022; 298:102108. [PMID: 35688209 PMCID: PMC9293637 DOI: 10.1016/j.jbc.2022.102108] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid formation continues to be a widely studied area because of its association with numerous diseases, such as Alzheimer’s and Parkinson’s diseases. Despite a large body of work on protein aggregation and fibril formation, there are still significant gaps in our understanding of the factors that differentiate toxic amyloid formation in vivo from alternative misfolding pathways. In addition to proteins, amyloid fibrils are often associated in their cellular context with several types of molecule, including carbohydrates, polyanions, and lipids. This review focuses in particular on evidence for the presence of lipids in amyloid fibrils and the routes by which those lipids may become incorporated. Chemical analyses of fibril composition, combined with studies to probe the lipid distribution around fibrils, provide evidence that in some cases, lipids have a strong association with fibrils. In addition, amyloid fibrils formed in the presence of lipids have distinct morphologies and material properties. It is argued that lipids are an integral part of many amyloid deposits in vivo, where their presence has the potential to influence the nucleation, morphology, and mechanical properties of fibrils. The role of lipids in these structures is therefore worthy of further study.
Collapse
|
24
|
Sanders HM, Kostelic MM, Zak CK, Marty MT. Lipids and EGCG Affect α-Synuclein Association and Disruption of Nanodiscs. Biochemistry 2022; 61:1014-1021. [PMID: 35616927 DOI: 10.1021/acs.biochem.2c00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid membranes have recently been implicated in protein misfolding and disease etiology, including for α-synuclein and Parkinson's disease. However, studying the intersection of protein complex formation, membrane interactions, and bilayer disruption simultaneously is challenging. In particular, the efficacies of small molecule inhibitors for toxic protein aggregation are not well understood. Here, we used native mass spectrometry in combination with lipid nanodiscs to study α-synuclein-membrane interactions. α-Synuclein did not interact with zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipids but interacted strongly with anionic 1,2-dimyristoyl-sn-glycero-3-phospho(1'-rac-glycerol) lipids, eventually leading to membrane disruption. Unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (POPG) lipid nanodiscs were also prone to bilayer disruption, releasing α-synuclein:POPG complexes. Interestingly, the fibril inhibitor, (-)-epigallocatechin gallate (EGCG), prevented membrane disruption but did not prevent the incorporation of α-synuclein into nanodisc complexes. Thus, although EGCG inhibits fibrillization, it does not inhibit α-synuclein from associating with the membrane.
Collapse
Affiliation(s)
- Henry M Sanders
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Marius M Kostelic
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Ciara K Zak
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
25
|
Lipid membrane-mediated assembly of the functional amyloid-forming peptide Somatostatin-14. Biophys Chem 2022; 287:106830. [DOI: 10.1016/j.bpc.2022.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
|
26
|
Tempra C, Scollo F, Pannuzzo M, Lolicato F, La Rosa C. A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140767. [PMID: 35144022 DOI: 10.1016/j.bbapap.2022.140767] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aβ peptide, which is known to form senile plaques in Alzheimer's disease; ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aβ, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.
Collapse
Affiliation(s)
- Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
27
|
Initiation and progression of α-synuclein pathology in Parkinson’s disease. Cell Mol Life Sci 2022; 79:210. [PMID: 35347432 PMCID: PMC8960654 DOI: 10.1007/s00018-022-04240-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
Abstract
α-Synuclein aggregation is a critical molecular process that underpins the pathogenesis of Parkinson’s disease. Aggregates may originate at synaptic terminals as a consequence of aberrant interactions between α-synuclein and lipids or evasion of proteostatic defences. The nature of these interactions is likely to influence the emergence of conformers or strains that in turn could explain the clinical heterogeneity of Parkinson’s disease and related α-synucleinopathies. For neurodegeneration to occur, α-synuclein assemblies need to exhibit seeding competency, i.e. ability to template further aggregation, and toxicity which is at least partly mediated by interference with synaptic vesicle or organelle homeostasis. Given the dynamic and reversible conformational plasticity of α-synuclein, it is possible that seeding competency and cellular toxicity are mediated by assemblies of different structure or size along this continuum. It is currently unknown which α-synuclein assemblies are the most relevant to the human condition but recent advances in the cryo-electron microscopic characterisation of brain-derived fibrils and their assessment in stem cell derived and animal models are likely to facilitate the development of precision therapies or biomarkers. This review summarises the main principles of α-synuclein aggregate initiation and propagation in model systems, and their relevance to clinical translation.
Collapse
|
28
|
Farzadfard A, Pedersen JN, Meisl G, Somavarapu AK, Alam P, Goksøyr L, Nielsen MA, Sander AF, Knowles TPJ, Pedersen JS, Otzen DE. The C-terminal tail of α-synuclein protects against aggregate replication but is critical for oligomerization. Commun Biol 2022; 5:123. [PMID: 35145226 PMCID: PMC8831632 DOI: 10.1038/s42003-022-03059-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Aggregation of the 140-residue protein α-synuclein (αSN) is a key factor in the etiology of Parkinson’s disease. Although the intensely anionic C-terminal domain (CTD) of αSN does not form part of the amyloid core region or affect membrane binding ability, truncation or reduction of charges in the CTD promotes fibrillation through as yet unknown mechanisms. Here, we study stepwise truncated CTDs and identify a threshold region around residue 121; constructs shorter than this dramatically increase their fibrillation tendency. Remarkably, these effects persist even when as little as 10% of the truncated variant is mixed with the full-length protein. Increased fibrillation can be explained by a substantial increase in self-replication, most likely via fragmentation. Paradoxically, truncation also suppresses toxic oligomer formation, and oligomers that can be formed by chemical modification show reduced membrane affinity and cytotoxicity. These remarkable changes correlate to the loss of negative electrostatic potential in the CTD and highlight a double-edged electrostatic safety guard. Farzadfard et al. present a comprehensive analysis of a range of C-terminal truncations of aSN, linking the importance of high C-terminus charge for decreased fibrillation rates. The ability to formation oligomers, to disrupt synthetic vesicles and cell toxicity was reduced with truncated aSN, aiding in understanding of the intramolecular interactions of aSN which promote/inhibit aggregation.
Collapse
Affiliation(s)
- Azad Farzadfard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Arun Kumar Somavarapu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Parvez Alam
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Louise Goksøyr
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Morten Agertoug Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Adam Frederik Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark. .,Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark.
| |
Collapse
|
29
|
Alam MM, Yang D, Li XQ, Liu J, Back TC, Trivett A, Karim B, Barbut D, Zasloff M, Oppenheim JJ. Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function. Cell Rep 2022; 38:110090. [PMID: 35021075 PMCID: PMC10258816 DOI: 10.1016/j.celrep.2021.110090] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Alpha-synuclein (αS) is causally involved in the development of Parkinson disease (PD); however, its role in normal vertebrate physiology has remained unknown. Recent studies demonstrate that αS is induced by noroviral infection in the enteric nervous system of children and protects mice against lethal neurotropic viral infection. Additionally, αS is a potent chemotactic activator of phagocytes. In this report, using both wild-type and αS knockout mice, we show that αS is a critical mediator of inflammatory and immune responses. αS is required for the development of a normal inflammatory response to bacterial peptidoglycan introduced into the peritoneal cavity as well as antigen-specific and T cell responses following intraperitoneal immunization. Furthermore, we show that neural cells are the sources of αS required for immune competence. Our report supports the hypothesis that αS accumulates within the nervous system of PD individuals because of an inflammatory/immune response.
Collapse
Affiliation(s)
- Md Masud Alam
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - De Yang
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Xiao-Qing Li
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Jia Liu
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Timothy Carrel Back
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Anna Trivett
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Denise Barbut
- Enterin Research Institute, Philadelphia, PA 19103, USA
| | - Michael Zasloff
- Enterin Research Institute, Philadelphia, PA 19103, USA; MedStar Georgetown Transplant Institute, Georgetown University Hospital, Washington, DC 20007, USA
| | - Joost J Oppenheim
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
30
|
Interaction of membrane vesicles with the Pseudomonas functional amyloid protein FapC facilitates amyloid formation. BBA ADVANCES 2022; 2:100055. [PMID: 37082589 PMCID: PMC10074931 DOI: 10.1016/j.bbadva.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Functional amyloids (FA) are proteins which are evolutionarily optimized to form highly stable fibrillar structures that strengthen the bacterial biofilm matrix. FA such as CsgA (E. coli) and FapC (Pseudomonas) are secreted to the bacterial surface where they integrate into growing fibril structures projecting from the outer membrane. FA are exposed to membrane surfaces in this process, but it remains unclear how membranes can interact with FA and potentially affect the self-assembly. Here we report the effect of different vesicles (DOPG, DMPG, DOPS, DOPC and DMPC) on the kinetics and structural endpoints of FapC fibrillation using various biophysical techniques. Particularly anionic lipids such as DMPG trigger FapC fibrillation, and the protein's second repeat sequence (R2) appears to be important for this interaction. Vesicles formed from phospholipids extracted from three different Pseudomonas strains (Δfap, ΔFapC and pfap) induce FapC fibrillation by accelerating nucleation. The general aggregation inhibitor epigallocatechin gallate (EGCG) inhibits FapC fibrillation by blocking interactions between FapC and vesicles and redirecting FapC monomers to oligomer structures. Our work indicates that biological membranes can contribute significantly to the fibrillation of functional amyloid.
Collapse
|
31
|
Erimban S, Daschakraborty S. How does excess phenylalanine affect the packing density and fluidity of a lipid membrane? Phys Chem Chem Phys 2021; 23:27294-27303. [PMID: 34850794 DOI: 10.1039/d1cp05004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenylketonuria (PKU) is an autosomal recessive error of phenylalanine (Phe) metabolism, where untreated Phe becomes cytotoxic. Previous experiments found that excess Phe decreases the packing density and increases the fluidity and permeability of a lipid membrane. It was proposed that Phe forms cytotoxic nanoscopic amyloid-like fibrils. In another study, the Phe fibrils were not visible near the lipid membrane. So, what leads to the deleterious effect of Phe on the lipid membrane? We put forward a molecular mechanism for the observed effect of excess Phe on the lipid membrane using all-atom molecular dynamics simulation. This study suggests that Phe monomers spontaneously intercalate into the membrane and form small hydrogen-bonded clusters, some of which locally perturb the membrane. These local effects result in an overall reduction in the membrane packing density, enhancement of membrane fluidity, and an increase of water permeability, observed in experiments. The present study does not observe any effect of the nanoscopic fibrillar structure of Phe on the membrane. This study, therefore, provides alternative insights into the excess Phe cytotoxicity in PKU disease.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
32
|
Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int J Mol Sci 2021; 22:ijms221910698. [PMID: 34639037 PMCID: PMC8508955 DOI: 10.3390/ijms221910698] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence programmability of amyloid fibrils have made them attractive candidates for functional materials with applications in environmental sciences, material engineering, and translational medicines. This review focuses on recent advances in fabricating various types of macroscopic functional amyloid materials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength materials, composite materials, responsive materials, extracellular matrix mimics, conductive materials, and catalytic materials.
Collapse
|
33
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
34
|
Signorelli P, Conte C, Albi E. The Multiple Roles of Sphingomyelin in Parkinson's Disease. Biomolecules 2021; 11:biom11091311. [PMID: 34572524 PMCID: PMC8469734 DOI: 10.3390/biom11091311] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023] Open
Abstract
Advances over the past decade have improved our understanding of the role of sphingolipid in the onset and progression of Parkinson's disease. Much attention has been paid to ceramide derived molecules, especially glucocerebroside, and little on sphingomyelin, a critical molecule for brain physiopathology. Sphingomyelin has been proposed to be involved in PD due to its presence in the myelin sheath and for its role in nerve impulse transmission, in presynaptic plasticity, and in neurotransmitter receptor localization. The analysis of sphingomyelin-metabolizing enzymes, the development of specific inhibitors, and advanced mass spectrometry have all provided insight into the signaling mechanisms of sphingomyelin and its implications in Parkinson's disease. This review describes in vitro and in vivo studies with often conflicting results. We focus on the synthesis and degradation enzymes of sphingomyelin, highlighting the genetic risks and the molecular alterations associated with Parkinson's disease.
Collapse
Affiliation(s)
- Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, 20142 Milan, Italy;
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
- Correspondence:
| |
Collapse
|
35
|
Ishimoto T, Yamakado H. Membranes and Organelle in Lewy Bodies: The Mastermind or the Bystander? Mov Disord 2021; 36:2026. [PMID: 34402543 DOI: 10.1002/mds.28747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
36
|
Natural Alkaloid Compounds as Inhibitors for Alpha-Synuclein Seeded Fibril Formation and Toxicity. Molecules 2021; 26:molecules26123736. [PMID: 34205249 PMCID: PMC8234408 DOI: 10.3390/molecules26123736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023] Open
Abstract
The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.
Collapse
|
37
|
Antonschmidt L, Dervişoğlu R, Sant V, Tekwani Movellan K, Mey I, Riedel D, Steinem C, Becker S, Andreas LB, Griesinger C. Insights into the molecular mechanism of amyloid filament formation: Segmental folding of α-synuclein on lipid membranes. SCIENCE ADVANCES 2021; 7:7/20/eabg2174. [PMID: 33990334 PMCID: PMC8121418 DOI: 10.1126/sciadv.abg2174] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 05/15/2023]
Abstract
Recent advances in the structural biology of disease-relevant α-synuclein fibrils have revealed a variety of structures, yet little is known about the process of fibril aggregate formation. Characterization of intermediate species that form during aggregation is crucial; however, this has proven very challenging because of their transient nature, heterogeneity, and low population. Here, we investigate the aggregation of α-synuclein bound to negatively charged phospholipid small unilamellar vesicles. Through a combination of kinetic and structural studies, we identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early fibrillar intermediates. By using solid-state nuclear magnetic resonance, we show the gradual buildup of structural features in an α-synuclein fibril filament, revealing a segmental folding process. We identify distinct membrane-binding domains in α-synuclein aggregates, and the combined data are used to present a comprehensive mechanism of the folding of α-synuclein on lipid membranes.
Collapse
Affiliation(s)
- Leif Antonschmidt
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rıza Dervişoğlu
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - Kumar Tekwani Movellan
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
- Biomolecular Chemistry Group, Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
38
|
Tian Y, Liang R, Kumar A, Szwedziak P, Viles JH. 3D-visualization of amyloid-β oligomer interactions with lipid membranes by cryo-electron tomography. Chem Sci 2021; 12:6896-6907. [PMID: 34123318 PMCID: PMC8153238 DOI: 10.1039/d0sc06426b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyloid-β (Aβ) assemblies have been shown to bind to lipid bilayers. This can disrupt membrane integrity and cause a loss of cellular homeostasis, that triggers a cascade of events leading to Alzheimer's disease. However, molecular mechanisms of Aβ cytotoxicity and how the different assembly forms interact with the membrane remain enigmatic. Here we use cryo-electron tomography (cryoET) to obtain three-dimensional nano-scale images of various Aβ assembly types and their interaction with liposomes. Aβ oligomers and curvilinear protofibrils bind extensively to the lipid vesicles, inserting and carpeting the upper-leaflet of the bilayer. Aβ oligomers concentrate at the interface of vesicles and form a network of Aβ-linked liposomes, while crucially, monomeric and fibrillar Aβ have relatively little impact on the membrane. Changes to lipid membrane composition highlight a significant role for GM1-ganglioside in promoting Aβ-membrane interactions. The different effects of Aβ assembly forms observed align with the highlighted cytotoxicity reported for Aβ oligomers. The wide-scale incorporation of Aβ oligomers and curvilinear protofibrils into the lipid bilayer suggests a mechanism by which membrane integrity is lost. Cryo-electron tomography 3D imaging of amyloid-β oligomers carpeting the surface of lipid bilayers in near native conditions.![]()
Collapse
Affiliation(s)
- Yao Tian
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Ruina Liang
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Amit Kumar
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Piotr Szwedziak
- Laboratory of Structural Cell Biology, Centre of New Technologies, University of Warsaw 02-097 Warsaw Poland .,ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw 02-097 Warsaw Poland
| | - John H Viles
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
39
|
Gaspar R, Idini I, Carlström G, Linse S, Sparr E. Transient Lipid-Protein Structures and Selective Ganglioside Uptake During α-Synuclein-Lipid Co-aggregation. Front Cell Dev Biol 2021; 9:622764. [PMID: 33681202 PMCID: PMC7930334 DOI: 10.3389/fcell.2021.622764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
α-Synuclein is a membrane-interacting protein involved in Parkinson's disease. Here we have investigated the co-association of α-synuclein and lipids from ganglioside-containing model membranes. Our study relies on the reported importance of ganglioside lipids, which are found in high amounts in neurons and exosomes, on cell-to-cell prion-like transmission of misfolded α-synuclein. Samples taken along various stages of the aggregation process were imaged using cryogenic transmission electron microscopy, and the composition of samples corresponding to the final state analyzed using NMR spectroscopy. The combined data shows that α-synuclein co-assembles with lipids from the ganglioside (GM1)-containing model membranes. The lipid-protein samples observed during the aggregation process contain non-vesicular objects not present at the final stage, thus capturing the co-existence of species under non-equilibrium conditions. A range of different lipid-protein co-assemblies are observed during the time course of the reaction and some of these appear to be transient assemblies that evolve into other co-aggregates over time. At the end of the aggregation reaction, the samples become more homogeneous, showing thin fibrillar structures heavily decorated with small vesicles. From the NMR analysis, we conclude that the ratio of GM1 to phosphatidyl choline (PC) in the supernatant of the co-aggregated samples is significantly reduced compared to the GM1/PC ratio of the lipid dispersion from which these samples were derived. Taken together, this indicates a selective uptake of GM1 into the fibrillar aggregates and removal of GM1-rich objects from the solution.
Collapse
Affiliation(s)
- Ricardo Gaspar
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden.,Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Ilaria Idini
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Göran Carlström
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Manna M, Murarka RK. Polyunsaturated Fatty Acid Modulates Membrane-Bound Monomeric α-Synuclein by Modulating Membrane Microenvironment through Preferential Interactions. ACS Chem Neurosci 2021; 12:675-688. [PMID: 33538574 DOI: 10.1021/acschemneuro.0c00694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is ample evidence that both native functions and pathogenic aggregation of α-synuclein are intimately dependent on lipid interactions and fatty acid type; the regulatory mechanism however remains unclear. In the present work, using extensive atomistic molecular dynamics simulations and enhanced-sampling, we have focused on exploring the mechanism of fatty acid dependent regulation of monomeric α-Syn100 in a native synaptic vesicle-like membrane. Our results show that α-Syn100 spontaneously binds to the membrane through its N-terminal region (residues 1-34), where the depth of membrane insertion, the structure, and orientation of the membrane-bound α-Syn100 and its impact on membrane structure are modulated by docosahexaenoic acid (DHA). DHA is a polyunsaturated fatty acid abundantly found in the brain and known to promote the oligomerization of α-synuclein. We found that DHA exhibits marked propensity to interact with monomeric α-Syn100 and modulates the microenvironment of the protein by preferentially sorting DHA-containing phospholipids, depleting other phospholipids and cholesterol as well as increasing the proportion of anionic to neutral lipids in the immediate vicinity of the protein. Owing to the unique conformational flexibility, DHA chains form more lipid-packing defects in the membrane and efficiently coat the membrane-embedded surface of the protein, compared to the saturated and monounsaturated fatty acids. DHA thus makes the bilayer more amiable to protein adsorption and less prone to α-synuclein-induced perturbation associated with cytotoxicity. Indeed, in the absence of DHA, we observed significant thinning of the local bilayer membrane induced by α-Syn100. Though α-Syn100 is predominantly α-helical in membranes studied here, in the presence of DHA we observe formation of β-sheet/β-strands in the C-terminal region (residues 35-100) of α-Syn100, which is extended out from the membrane surface. Notably, DHA induces β structure in the NAC domain of α-Syn100 and promotes extended conformations as well as large solvent exposure of this hydrophobic domain, properties that are known to facilitate self-assembly of α-synuclein. To the best of our knowledge, this study for the first time provides the atomistic insights into DHA-induced regulatory mechanism of monomeric α-synuclein, having implications in protein structure and its physiological/pathological functions.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
- Applied Phycology and Biotechnology Division, CSIR−Central Salt & Marine Chemicals Research Institute (CSIR−CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rajesh K. Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
41
|
Jacob RS, Eichmann C, Dema A, Mercadante D, Selenko P. α-Synuclein plasma membrane localization correlates with cellular phosphatidylinositol polyphosphate levels. eLife 2021; 10:61951. [PMID: 33587036 PMCID: PMC7929559 DOI: 10.7554/elife.61951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The Parkinson's disease protein α-synuclein (αSyn) promotes membrane fusion and fission by interacting with various negatively charged phospholipids. Despite postulated roles in endocytosis and exocytosis, plasma membrane (PM) interactions of αSyn are poorly understood. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3), two highly acidic components of inner PM leaflets, mediate PM localization of endogenous pools of αSyn in A2780, HeLa, SK-MEL-2, and differentiated and undifferentiated neuronal SH-SY5Y cells. We demonstrate that αSyn binds to reconstituted PIP2 membranes in a helical conformation in vitro and that PIP2 synthesizing kinases and hydrolyzing phosphatases reversibly redistribute αSyn in cells. We further delineate that αSyn-PM targeting follows phosphoinositide-3 kinase (PI3K)-dependent changes of cellular PIP2 and PIP3 levels, which collectively suggests that phosphatidylinositol polyphosphates contribute to αSyn's function(s) at the plasma membrane.
Collapse
Affiliation(s)
- Reeba Susan Jacob
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Cédric Eichmann
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alessandro Dema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Davide Mercadante
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Philipp Selenko
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov 2021; 7:4. [PMID: 33462191 PMCID: PMC7813858 DOI: 10.1038/s41421-020-00233-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.
Collapse
|
43
|
Reverse engineering Lewy bodies: how far have we come and how far can we go? Nat Rev Neurosci 2021; 22:111-131. [PMID: 33432241 DOI: 10.1038/s41583-020-00416-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/19/2022]
Abstract
Lewy bodies (LBs) are α-synuclein (α-syn)-rich intracellular inclusions that are an important pathological hallmark of Parkinson disease and several other neurodegenerative diseases. Increasing evidence suggests that the aggregation of α-syn has a central role in LB formation and is one of the key processes that drive neurodegeneration and pathology progression in Parkinson disease. However, little is known about the mechanisms underlying the formation of LBs, their biochemical composition and ultrastructural properties, how they evolve and spread with disease progression, and their role in neurodegeneration. In this Review, we discuss current knowledge of α-syn pathology, including the biochemical, structural and morphological features of LBs observed in different brain regions. We also review the most used cellular and animal models of α-syn aggregation and pathology spreading in relation to the extent to which they reproduce key features of authentic LBs. Finally, we provide important insights into molecular and cellular determinants of LB formation and spreading, and highlight the critical need for more detailed and systematic characterization of α-syn pathology, at both the biochemical and structural levels. This would advance our understanding of Parkinson disease and other neurodegenerative diseases and allow the development of more-reliable disease models and novel effective therapeutic strategies.
Collapse
|
44
|
Bozelli JC, Kamski-Hennekam E, Melacini G, Epand RM. α-Synuclein and neuronal membranes: Conformational flexibilities in health and disease. Chem Phys Lipids 2021; 235:105034. [PMID: 33434528 DOI: 10.1016/j.chemphyslip.2020.105034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Currently, PD has no treatment. The neuronal protein α-synuclein (αS) plays an important role in PD. However, the molecular mechanisms governing its physiological and pathological roles are not fully understood. It is becoming widely acknowledged that the biological roles of αS involve interactions with biological membranes. In these biological processes there is a fine-tuned interplay between lipids affecting the properties of αS and αS affecting lipid metabolism, αS binding to membranes, and membrane damage. In this review, the intricate interactions between αS and membranes will be reviewed and a discussion of the relationship between αS and neuronal membrane structural plasticity in health and disease will be made. It is proposed that in healthy neurons the conformational flexibilities of αS and the neuronal membranes are coupled to assist the physiological roles of αS. However, in circumstances where their conformational flexibilities are decreased or uncoupled, there is a shift toward cell toxicity. Strategies to modulate toxic αS-membrane interactions are potential approaches for the development of new therapies for PD. Future work using specific αS molecular species as well as membranes with specific physicochemical properties should widen our understanding of the intricate biological roles of αS which, in turn, would propel the development of new strategies for the treatment of PD.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Evelyn Kamski-Hennekam
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada.
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
45
|
Musteikytė G, Jayaram AK, Xu CK, Vendruscolo M, Krainer G, Knowles TPJ. Interactions of α-synuclein oligomers with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183536. [PMID: 33373595 DOI: 10.1016/j.bbamem.2020.183536] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease is an increasingly prevalent and currently incurable neurodegenerative disorder. At the molecular level, this disease is characterized by the formation of aberrant intracellular protein deposits known as Lewy bodies. Oligomeric forms of the protein α-synuclein (αS), which are believed to be both intermediates and by-products of Lewy body formation, are considered to be the main pathogenic species. Interactions of such oligomers with lipid membranes are increasingly emerging as a major molecular pathway underpinning their toxicity. Here we review recent progress in our understanding of the interactions of αS oligomers with lipid membranes. We highlight key structural and biophysical features of αS oligomers, the effects of these features on αS oligomer membrane binding properties, and resultant implications for understanding the etiology of Parkinson's disease. We discuss mechanistic modes of αS oligomer-lipid membrane interactions and the effects of environmental factors to such modes. Finally, we provide an overview of the current understanding of the main molecular determinants of αS oligomer toxicity in vivo.
Collapse
Affiliation(s)
- Greta Musteikytė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Akhila K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
| |
Collapse
|
46
|
Kang C, Sun R. Molecular Dynamics Study of the Interaction between the N-terminal of α-Synuclein and a Lipid Bilayer Mimicking Synaptic Vesicles. J Phys Chem B 2020; 125:1036-1048. [DOI: 10.1021/acs.jpcb.0c08620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Christopher Kang
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy
Mall, Honolulu 96822-2275, Hawaii, United States
| | - Rui Sun
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy
Mall, Honolulu 96822-2275, Hawaii, United States
| |
Collapse
|
47
|
Hendus-Altenburger R, Vogensen J, Pedersen ES, Luchini A, Araya-Secchi R, Bendsoe AH, Prasad NS, Prestel A, Cardenas M, Pedraz-Cuesta E, Arleth L, Pedersen SF, Kragelund BB. The intracellular lipid-binding domain of human Na +/H + exchanger 1 forms a lipid-protein co-structure essential for activity. Commun Biol 2020; 3:731. [PMID: 33273619 PMCID: PMC7713384 DOI: 10.1038/s42003-020-01455-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/03/2020] [Indexed: 12/03/2022] Open
Abstract
Dynamic interactions of proteins with lipid membranes are essential regulatory events in biology, but remain rudimentarily understood and particularly overlooked in membrane proteins. The ubiquitously expressed membrane protein Na+/H+-exchanger 1 (NHE1) regulates intracellular pH (pHi) with dysregulation linked to e.g. cancer and cardiovascular diseases. NHE1 has a long, regulatory cytosolic domain carrying a membrane-proximal region described as a lipid-interacting domain (LID), yet, the LID structure and underlying molecular mechanisms are unknown. Here we decompose these, combining structural and biophysical methods, molecular dynamics simulations, cellular biotinylation- and immunofluorescence analysis and exchanger activity assays. We find that the NHE1-LID is intrinsically disordered and, in presence of membrane mimetics, forms a helical αα-hairpin co-structure with the membrane, anchoring the regulatory domain vis-a-vis the transport domain. This co-structure is fundamental for NHE1 activity, as its disintegration reduced steady-state pHi and the rate of pHi recovery after acid loading. We propose that regulatory lipid-protein co-structures may play equally important roles in other membrane proteins.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jens Vogensen
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Emilie Skotte Pedersen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Raul Araya-Secchi
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Anne H Bendsoe
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Nanditha Shyam Prasad
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Marité Cardenas
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden
| | - Elena Pedraz-Cuesta
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark.
| | - Stine F Pedersen
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
48
|
Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020; 53:e12. [PMID: 33148356 DOI: 10.1017/s0033583520000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.
Collapse
|
49
|
Landeck N, Strathearn KE, Ysselstein D, Buck K, Dutta S, Banerjee S, Lv Z, Hulleman JD, Hindupur J, Lin LK, Padalkar S, Stanciu LA, Lyubchenko YL, Kirik D, Rochet JC. Two C-terminal sequence variations determine differential neurotoxicity between human and mouse α-synuclein. Mol Neurodegener 2020; 15:49. [PMID: 32900375 PMCID: PMC7487555 DOI: 10.1186/s13024-020-00380-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology. METHODS Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey's multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn's multiple comparisons test or a two-tailed Mann-Whitney test. RESULTS Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology. CONCLUSIONS Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders.
Collapse
Affiliation(s)
- Natalie Landeck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Katherine E. Strathearn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Fujifilm Irvine Scientific, Santa Ana, CA USA
| | - Daniel Ysselstein
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kerstin Buck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Present address: AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Sayan Dutta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Siddhartha Banerjee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
| | - Zhengjian Lv
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
- Present address: Bruker Nanosurfaces Division, Goleta, Santa Barbara, CA USA
| | - John D. Hulleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Departments of Ophthalmology and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jagadish Hindupur
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Liveon Biolabs Pvt. Ltd., Tumakuru, Karnataka India
| | - Li-Kai Lin
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
| | - Sonal Padalkar
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
- Present address: Department of Mechanical Engineering, Iowa State University, Ames, IA USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| |
Collapse
|
50
|
Parres-Gold J, Chieng A, Su SW, Wang Y. Real-Time Characterization of Cell Membrane Disruption by α-Synuclein Oligomers in Live SH-SY5Y Neuroblastoma Cells. ACS Chem Neurosci 2020; 11:2528-2534. [PMID: 32786327 PMCID: PMC7484231 DOI: 10.1021/acschemneuro.0c00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aggregation of the natively unfolded protein α-synuclein (α-Syn) has been widely correlated to the neuronal death associated with Parkinson's disease. Mutations and protein overaccumulation can promote the aggregation of α-Syn into oligomers and fibrils. Recent work has suggested that α-Syn oligomers can permeabilize the neuronal membrane, promoting calcium influx and cell death. However, the mechanism of this permeabilization is still uncertain and has yet to be characterized in live cells. This work uses scanning ion conductance microscopy (SICM) to image, in real time and without using chemical probes, the topographies of live SH-SY5Y neuroblastoma cells after exposure to α-Syn oligomers. Substantial morphological changes were observed, with micrometer-scale hills and troughs observed at lower α-Syn concentrations (1.00 μM) and large, transient pores observed at higher α-Syn concentrations (6.0 μM). These findings suggest that α-Syn oligomers may permeabilize the neuronal membrane by destabilizing the lipid bilayer and opening transient pores.
Collapse
Affiliation(s)
- Jacob Parres-Gold
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Andy Chieng
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Stephanie Wong Su
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Yixian Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| |
Collapse
|