1
|
Rowland S, Aghakhani A, Whalley RD, Ferreira AM, Kotov N, Gentile P. Layer-by-Layer Nanoparticle Assembly for Biomedicine: Mechanisms, Technologies, and Advancement via Acoustofluidics. ACS APPLIED NANO MATERIALS 2024; 7:15874-15902. [PMID: 39086513 PMCID: PMC11287493 DOI: 10.1021/acsanm.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The deposition of thin films plays a crucial role in surface engineering, tailoring structural modifications, and functionalization across diverse applications. Layer-by-layer self-assembly, a prominent thin-film deposition method, has witnessed substantial growth since its mid-20th-century inception, driven by the discovery of eligible materials and innovative assembly technologies. Of these materials, micro- and nanoscopic substrates have received far less interest than their macroscopic counterparts; however, this is changing. The catalogue of eligible materials, including nanoparticles, quantum dots, polymers, proteins, cells and liposomes, along with some well-established layer-by-layer technologies, have combined to unlock impactful applications in biomedicine, as well as other areas like food fortification, and water remediation. To access these fields, several well-established technologies have been used, including tangential flow filtration, fluidized bed, atomization, electrophoretic assembly, and dielectrophoresis. Despite the invention of these technologies, the field of particle layer-by-layer still requires further technological development to achieve a high-yield, automatable, and industrially ready process, a requirement for the diverse, reactionary field of biomedicine and high-throughput pharmaceutical industry. This review provides a background on layer-by-layer, focusing on how its constituent building blocks and bonding mechanisms enable unmatched versatility. The discussion then extends to established and recent technologies employed for coating micro- and nanoscopic matter, evaluating their drawbacks and advantages, and highlighting promising areas in microfluidic approaches, where one distinctly auspicious technology emerges, acoustofluidics. The review also explores the potential and demonstrated application of acoustofluidics in layer-by-layer technology, as well as analyzing existing acoustofluidic technologies beyond LbL coating in areas such as cell trapping, cell sorting, and multidimensional particle manipulation. Finally, the review concludes with future perspectives on layer-by-layer nanoparticle coating and the potential impact of integrating acoustofluidic methods.
Collapse
Affiliation(s)
- Seth Rowland
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Amirreza Aghakhani
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
- Institute
for Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Richard D. Whalley
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Ana Marina Ferreira
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Nicholas Kotov
- Department
of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Piergiorgio Gentile
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| |
Collapse
|
2
|
Brito J, Shah PP, Aliakseyeu A, Sukhishvili SA. Effect of polyacid architecture and polycation molecular weight on lateral diffusion within multilayer films. J Chem Phys 2024; 160:121101. [PMID: 38530006 DOI: 10.1063/5.0190377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Despite the potential use of polyelectrolyte multilayers for biomedical, separation, and energy applications, their dynamic properties are not sufficiently understood. In this work, center-of-mass diffusion of a weak polyacid-poly(methacrylic acid) (PMAA) of linear and 8-arm architecture (L-PMAA and 8-PMAA, respectively) and matched molecular weight-was studied in layer-by-layer (LbL) assemblies with poly(diallyldimethylammonium) chloride (PDADMAC) of varied molecular weight. The film deposition at low-salt, acidic conditions when PMAA was only partially ionized yielded thicker, more diffused layers with shorter PDADMAC chains, and bilayer thickness decreased for multilayers constructed with longer PDADMAC. The molecular architecture of PMAA had a weak effect on film growth, with bilayer thickness being ∼20% larger for L-PMAA for the films constructed with the shortest PDADMAC (35 kDa) and identical film growth for L-PMAA and 8-PMAA with the longest PDADMAC (300 kDa). The exposure of the multilayer films to 0.2M NaCl triggered a reduction in PMAA ionization and significant lateral diffusivity of fluorescently labeled PMAA molecules (PMAA*), with diffusion coefficients D ranging from 10-13 to 10-12 cm2/s, as determined by the fluorescence recovery after photobleaching technique. For all the films, polymer mobility was higher for star polyacids as compared to their linear counterparts, and the dependence of PMAA diffusion coefficient D on PDADMAC molecular weight (D ∼ M-n) was relatively weak (n < 0.6). However, 8-PMAA demonstrated an approximately doubled power exponent compared to the L-PMAA chains, suggesting a stronger effect of the molecular connectivity of the partner polycation molecules on the diffusion of star polyelectrolytes.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Parin Purvin Shah
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Aliaksei Aliakseyeu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
3
|
Aliakseyeu A, Shah PP, Ankner JF, Sukhishvili SA. Salt-Induced Diffusion of Star and Linear Polyelectrolytes within Multilayer Films. Macromolecules 2023; 56:5434-5445. [PMID: 38357536 PMCID: PMC10863069 DOI: 10.1021/acs.macromol.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Indexed: 02/16/2024]
Abstract
This study explores the effect of salt on the diffusivity of polyelectrolytes of varied molecular architecture in layer-by-layer (LbL) films in directions parallel and perpendicular to the substrate using fluorescence recovery after photobleaching (FRAP) and neutron reflectivity (NR) techniques, respectively. A family of linear, 4-arm, 6-arm, and 8-arm poly(methacrylic acids) (LPMAA, 4PMAA, 6PMAA, and 8PMAA, respectively) of matched molecular weights were synthesized using atom transfer radical polymerization and assembled with a linear polycation, poly[2-(trimethylammonium)ethyl methacrylate chloride] (QPC). NR studies involving deuterated QPC revealed ∼10-fold higher polycation mobility for the 8PMAA/QPC system compared to all-linear LbL films upon exposure to 0.25 M NaCl solutions at pH 6. FRAP experiments showed, however, that lateral diffusion of star PMAAs was lower than LPMAA at NaCl concentrations below ∼0.22 M NaCl, with a crossover to higher mobility of star polymers in more concentrated salt solutions. The stronger response of diffusion of star PMAA to salt is discussed in the context of several theories previously suggested for diffusivity of polyelectrolyte chains in multilayer films and coacervates.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Parin Purvin Shah
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - John F. Ankner
- Spallation
Neutron Source Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Svetlana A. Sukhishvili
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Ahmad M, Ahmed M. Characterization and applications of ion-exchange membranes and selective ion transport through them: a review. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
5
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Aliakseyeu A, Ankner JF, Sukhishvili SA. Impact of Star Polyacid Branching on Polymer Diffusion within Multilayer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - John F. Ankner
- Spallation Neutron Source Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Xu Z, Ma Y, Dai H, Tan S, Han B. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers (Basel) 2022; 14:polym14153110. [PMID: 35956625 PMCID: PMC9370577 DOI: 10.3390/polym14153110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin and three kinds of graphene-based materials (graphene, graphene oxide, and reduced graphene oxide) have been widely investigated in biomedical fields. Recently, the hybrid composites of silk fibroin and graphene-based materials have attracted much attention owing to their combined advantages, i.e., presenting outstanding biocompatibility, mechanical properties, and excellent electrical conductivity. However, maintaining bio-toxicity and biodegradability at a proper level remains a challenge for other applications. This report describes the first attempt to summarize the hybrid composites’ preparation methods, properties, and applications to the best of our knowledge. We strongly believe that this review will open new doors for coming researchers.
Collapse
|
8
|
Mayilswamy N, Boney N, Kandasubramanian B. Fabrication and molecular dynamics studies of layer-by-layer polyelectrolytic films. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Lu R, Zhang X, Cheng X, Zan X, Geng W. Secondary Structure-Dominated Layer-by-Layer Growth Mode of Protein Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13000-13011. [PMID: 34723563 DOI: 10.1021/acs.langmuir.1c02062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the luxury functions of proteins, protein coatings have been extended to various applications, including tissue engineering scaffolds, drug delivery, antimicrobials, sensing and diagnostic equipment, food packaging, etc. Fast construction of protein coatings is always interesting to materials science and significant to industrialization. Here, we report a layer-by-layer (LbL) multilayer-constructed coating of tannic acid (TA) and lysozyme (Lyz), in which the secondary conformations of Lyz dominate the growth rate of the TA/Lyz coating. As well characterized by various techniques (quartz crystal microbalance with dissipation (QCM-D), circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), contact angle, etc.), TA-induced conformational transition of Lyz to α-helices occurs at pH 8 from other secondary structures (β-sheets, β-turns, and random coils), which leads to the very fast growth of TA/Lyz with a number of deposited bilayers, with thicknesses of more than 90 nm for six bilayers. In contrast to the leading conformation of α-helices at pH 8, Lyz displayed multiple conformations (α-helices, β-sheets, β-turns, and random coils) at pH 6, which resulted in coating thicknesses of less than 30 nm for six bilayers. By the addition of NaCl, Tween 20, and urea, we further confirmed that the secondary conformations of Lyz relied greatly on the interactions between TA and Lyz and dominated the growth rate of the multilayers. We believe that these findings will help to understand the transformation of secondary conformations by TA or other polyphenols and inspire a new route to quickly build protein coatings.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wujun Geng
- Wenzhou Key Laboratory of Perioperative Medicine, Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
10
|
Shevchenko VV, Gumenna M, Lee H, Klimenko N, Stryutsky O, Trachevsky V, Korolovych V, Tsukruk VV. Reactive Amphiphilic Aprotic Ionic Liquids Based on Functionalized Oligomeric Silsesquioxanes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Valery V. Shevchenko
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48 Kharkivske Shose, Kyiv 02160, Ukraine
| | - Mariana Gumenna
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48 Kharkivske Shose, Kyiv 02160, Ukraine
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Nina Klimenko
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48 Kharkivske Shose, Kyiv 02160, Ukraine
| | - Oleksandr Stryutsky
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48 Kharkivske Shose, Kyiv 02160, Ukraine
| | - Vladimir Trachevsky
- Technical Center of the National Academy of Sciences of Ukraine, 13 Pokrovska Str., Kyiv 04070, Ukraine
| | - Volodymyr Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
11
|
Wang X, Wang R, Wu F, Yue H, Cui Z, Zhou X, Lu Y. Mussel-inspired layer-by-layer assembled polymeric films with fast growing and NIR light triggered healing capabilities. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Abuid NJ, Urdaneta ME, Gattas-Asfura KM, Zientek C, Silgo CI, Torres JA, Otto KJ, Stabler CL. Engineering the Multi-Enzymatic Activity of Cerium Oxide Nanoparticle Coatings for the Antioxidant Protection of Implants. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100016. [PMID: 34485991 PMCID: PMC8412420 DOI: 10.1002/anbr.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Imbalance of oxidants is a universal contributor to the failure of implanted devices and tissues. A sustained oxidative environment leads to cytotoxicity, prolonged inflammation, and ultimately host rejection of implanted devices/grafts. The incorporation of antioxidant materials can inhibit this redox/inflammatory cycle and enhance implant efficacy. Cerium oxide nanoparticles (CONP) is a highly promising agent that exhibits potent, ubiquitous, and self-renewable antioxidant properties. Integrating CONP as surface coatings provides ease in translating antioxidant properties to various implants/grafts. Herein, we describe the formation of CONP coatings, generated via the sequential deposition of CONP and alginate, and the impact of coating properties, pH, and polymer molecular weight, on their resulting redox profile. Investigation of CONP deposition, layer formation, and coating uniformity/thickness on their resulting oxidant scavenging activity identified key parameters for customizing global antioxidant properties. Results found lower molecular weight alginates and physiological pH shift CONP activity to a higher H2O2 to O2 --scavenging capability. The antioxidant properties measured for these various coatings translated to distinct antioxidant protection to the underlying encapsulated cells. Information gained from this work can be leveraged to tailor coatings towards specific oxidant-scavenging applications and prolong the function of medical devices and cellular implants.
Collapse
Affiliation(s)
- Nicholas J Abuid
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Morgan E Urdaneta
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kerim M Gattas-Asfura
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Caterina Zientek
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cristina Isusi Silgo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Jose A Torres
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| |
Collapse
|
13
|
Lee H, Stryutsky A, Mahmood AU, Singh A, Shevchenko VV, Yingling YG, Tsukruk VV. Weakly Ionically Bound Thermosensitive Hyperbranched Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2913-2927. [PMID: 33621461 DOI: 10.1021/acs.langmuir.0c03487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We synthesized novel amphiphilic hyperbranched polymers (HBPs) with variable contents of weakly ionically tethered thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) macrocations in contrast to traditional covalent linking. Their assembling behavior was studied below and above the lower critical solution temperature (LCST). The HBPs underwent a morphological transition under changing temperature and ionic strength due to the LCST transition of PNIPAM and the reduction in the ionization degree of terminal ionic groups, respectively. We suggest that, in contrast to traditional branched polymers, ionically linked PNIPAM macrocations can reversibly disassociate from the sulfonate groups and form mobile coronas, endowing the dynamic micellar morphologies. In addition, assembly at the air-water interface confined PNIPAM macrocations and resulted in the formation of heterogeneous Langmuir-Blodgett (LB) monolayers with diverse surface morphologies for different peripheral compositions with circular domains formed in the condensed state. The HBPs with 25% PNIPAM showed larger and more stable circular domains that were partially preserved at high compression than those of HBPs with 50% PNIPAM. Moreover, the LB monolayers showed variable surface mechanical and surface charge distribution, which can be attributed to net dipole redistribution caused by the behavior of mobile PNIPAM macrocations and core sulfonate groups.
Collapse
Affiliation(s)
- Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandr Stryutsky
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Akhlak-Ul Mahmood
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Valery V Shevchenko
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Jiang T, Moghaddam SZ, Thormann E. A pH-responsive polyelectrolyte multilayer film with tunable interfacial properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Yuan W, Weng GM, Lipton J, Li CM, Van Tassel PR, Taylor AD. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv Colloid Interface Sci 2020; 282:102200. [PMID: 32585489 DOI: 10.1016/j.cis.2020.102200] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Layer-by-layer (LbL) assembly is a nanoscale technique with great versatility, simplicity and molecular-level processing of various nanoscopic materials. Weak polyelectrolytes have been used as major building blocks for LbL assembly providing a fundamental and versatile tool to study the underlying mechanisms and practical applications of LbL assembly due to its pH-responsive charge density and molecular conformation. Because of high-density uncompensated charges and high-chain mobility, weak polyelectrolyte exponential multilayer growth is considered one of the fastest developing areas for organized molecular films. In this article, we systematically review the current status and developments of weak polyelectrolyte-based multilayers including all-weak-polyelectrolyte multilayers, weak polyelectrolytes/other components (e.g. strong polyelectrolytes, neutral polymers, and nanoparticles) multilayers, and exponentially grown weak polyelectrolyte multilayers. Several key aspects of weak polyelectrolytes are highlighted including the pH-controllable properties, the responsiveness to environmental pH, and synergetic functions obtained from weak polyelectrolyte/other component multilayers. Throughout this review, useful applications of weak polyelectrolyte-based multilayers in drug delivery, tunable biointerfaces, nanoreactors for synthesis of nanostructures, solid state electrolytes, membrane separation, and sensors are highlighted, and promising future directions in the area of weak polyelectrolyte-based multilayer assembly such as fabrication of multi-responsive materials, adoption of unique building blocks, investigation of internal molecular-level structure and mechanism of exponentially grown multilayers, and exploration of novel biomedical and energy applications are proposed.
Collapse
|
16
|
Feeney MJ, Thomas SW. Combining Top-Down and Bottom-Up with Photodegradable Layer-by-Layer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13791-13804. [PMID: 31487186 DOI: 10.1021/acs.langmuir.9b02005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Layer-by-layer (LbL) self-assembly of polymer coatings is a bottom-up fabrication technique with broad applicability across a wide range of materials and applications that require control over interfacial properties. While most LbL coatings are chemically uniform in directions both tangent and perpendicular to their substrate, control over the properties of surface coatings as a function of space can enhance their function. To contribute to this rapidly advancing field, our group has focused on the top-down spatiotemporal control possible with photochemically reactive LbL coatings, harnessed through charge-shifting polyelectrolytes enabled by photocleavable ester pendants. The photolysis of the photocleavable esters degrades LbL films containing these polyelectrolytes. The chemical structures of the photocleavable groups dictate the wavelengths responsible for disrupting these coatings, ranging from ultraviolet to near-infrared in our work. In addition, spatially segregating reactive groups into "compartments" within LbL films has enabled us to fabricate reactive free-standing polymer films and multiheight photopatterned coatings. Overall, by combining bottom-up and top-down approaches, photoreactive LbL films enable precise control over the interfacial properties of polymer and composite coatings.
Collapse
Affiliation(s)
- Matthew J Feeney
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Samuel W Thomas
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
17
|
Lee H, Stryutsky AV, Korolovych VF, Mikan E, Shevchenko VV, Tsukruk VV. Transformations of Thermosensitive Hyperbranched Poly(ionic liquid)s Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11809-11820. [PMID: 31418576 DOI: 10.1021/acs.langmuir.9b01905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We synthesized amphiphilic hyperbranched poly(ionic liquid)s (HBPILs) with asymmetrical peripheral composition consisting of hydrophobic n-octadecylurethane arms and hydrophilic, ionically linked poly(N-isopropylacrylamide) (PNIPAM) macrocations and studied low critical solution temperature (LCST)-induced reorganizations at the air-water interface. We observed that the morphology of HBPIL Langmuir monolayers is controlled by the surface pressure with uniform well-defined disk-like domains formed in a liquid phase. These domains are merged and transformed to uniform monolayers with elevated ridge-like network structures representing coalesced interdomain boundaries in a solid phase because the branched architecture and asymmetrical chemical composition stabilize the disk-like morphology under high compression. Above LCST, elevated individual islands are formed because of the aggregation of the collapsed hydrophobized PNIPAM terminal macrocations in a solid phase. The presence of thermoresponsive PNIPAM macrocations initiates monolayer reorganization at LCST with transformation of surface mechanical contrast distribution. The heterogeneity of elastic response and adhesion distributions for HBPIL monolayers in the wet state changed from highly contrasted two-phase distribution below LCST to near-uniform mechanical response above LCST because of the hydrophilic to hydrophobic transformation of the PNIPAM phase.
Collapse
Affiliation(s)
- Hansol Lee
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Alexandr V Stryutsky
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine , Kyiv 02160 , Ukraine
| | - Volodymyr F Korolovych
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Emily Mikan
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Valery V Shevchenko
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine , Kyiv 02160 , Ukraine
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
18
|
Li S, Liu R, Bekana D, Lai Y, Liu J. Self-assembly of supramolecular nanotubes/microtubes from 3,5-dimethyl-4-iodopyrazole for plasmonic nanoparticle organization. NANOSCALE 2018; 10:20804-20812. [PMID: 30402648 DOI: 10.1039/c8nr07372d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hierarchical super-architectures from small molecule self-assembly have interesting properties and play an indispensable role in many fields. In most cases, a self-assembly process refers to multiple intermolecular interactions among intricately designed building blocks. Here, a supramolecular assembly with a tubular morphology with dimensions ranging from nanometers to micrometers was prepared through self-assembly of 3,5-dimethyl-4-iodopyrazole (DMIP), a molecule with an unprecedented simple structure. As predicted by density functional theory (DFT) calculations, the hydrogen bond and halogen bond interaction energy between DMIP molecules can be up to 32.81 kJ mol-1, which effectively drives DMIP molecules to assemble into fibrils, sheets, and finally, tubular architectures. Intriguingly, the formed tubular structure can be easily removed by heating at 100 °C, enabling the material to function as a disposable template to guide linear organization of nanostructures. As a proof of concept, ordered Au or Ag nanochains with diameters ranging from 18 to 120 nm were facilely prepared in high yield.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Zhang T, Yu Q, Wang J, Wu T. Design and Fabrication of a Renewable and Highly Transparent Multilayer Coating on Poly(lactic acid) Film Capable of UV-Shielding and Antifogging. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Zhang XJ, Wang XW, Da XD, Shi Y, Liu C, Sun F, Yang S, Zhang WB. A Versatile and Robust Approach to Stimuli-Responsive Protein Multilayers with Biologically Enabled Unique Functions. Biomacromolecules 2018; 19:1065-1073. [DOI: 10.1021/acs.biomac.8b00190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xue-Jian Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Xiao-Di Da
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yanlin Shi
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry & Radiation Chemistry, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Chunli Liu
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry & Radiation Chemistry, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
22
|
Liu W, Wijeratne S, Yang L, Bruening M. Porous star-star polyelectrolyte multilayers for protein binding. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bouazizi N, Vieillard J, Thebault P, Desriac F, Clamens T, Bargougui R, Couvrat N, Thoumire O, Brun N, Ladam G, Morin S, Mofaddel N, Lesouhaitier O, Azzouz A, Le Derf F. Silver nanoparticle embedded copper oxide as an efficient core–shell for the catalytic reduction of 4-nitrophenol and antibacterial activity improvement. Dalton Trans 2018; 47:9143-9155. [DOI: 10.1039/c8dt02154f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A facile and eco-friendly method was developed to prepare a microporous CuO@Ag0 core–shell with high catalytic and antibacterial activities.
Collapse
|
24
|
Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Erwin AJ, Xu W, He H, Matyjaszewski K, Tsukruk VV. Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3187-3199. [PMID: 28277672 DOI: 10.1021/acs.langmuir.6b04622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The surface morphology and organization of poly(ionic liquid)s (PILs), poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] are explored in conjunction with their molecular architecture, adsorption conditions, and postassembly treatments. The formation of stable PIL Langmuir and Langmuir-Blodgett (LB) monolayers at the air-water and air-solid interfaces is demonstrated. The hydrophobic bis(trifluoromethylsulfonyl)imide (Tf2N-) is shown to be a critical agent governing the assembly morphology, as observed in the reversible condensation of LB monolayers into dense nanodroplets. The PIL is then incorporated as an unconventional polyelectrolyte component in the layer-by-layer (LbL) films of hydrophobic character. We demonstrate that the interplay of capillary forces, macromolecular mobility, and structural relaxation of the polymer chains influence the dewetting mechanisms in the PIL multilayers, thereby enabling access to a diverse set of highly textured, porous, and interconnected network morphologies for PIL LbL films that would otherwise be absent in conventional LbL films. Their compartmentalized internal structure is relevant to molecular separation membranes, ultrathin hydrophobic coatings, targeted cargo delivery, and highly conductive films.
Collapse
Affiliation(s)
- Andrew J Erwin
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Weinan Xu
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Hongkun He
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
26
|
Liang S, Zhou N, Yu S, Polotakos N, Deng J, Moya SE, Gao C. Buildup of hyperbranched polymer/alginate multilayers and their influence on protein adsorption and platelet adhesion. J Appl Polym Sci 2017. [DOI: 10.1002/app.44769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Su Liang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Ning Zhou
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shan Yu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - N. Polotakos
- Centre for Cooperative Research in Biomaterials; San Sebastian 20009 Gipuzkoa Spain
| | - Jun Deng
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Sergio Enrique Moya
- Centre for Cooperative Research in Biomaterials; San Sebastian 20009 Gipuzkoa Spain
| | - Changyou Gao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
27
|
Guo S, Zhu X, Li M, Shi L, Ong JLT, Jańczewski D, Neoh KG. Parallel Control over Surface Charge and Wettability Using Polyelectrolyte Architecture: Effect on Protein Adsorption and Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30552-30563. [PMID: 27762557 DOI: 10.1021/acsami.6b09481] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Surface charge and wettability, the two prominent physical factors governing protein adsorption and cell adhesion, have been extensively investigated in the literature. However, a comparison between these driving forces in terms of their independent and cooperative effects in affecting adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol that features two-dimensional control over both surface charge and wettability with limited cross-parameter influence. This strategy is implemented by controlling both the polyion charge density in the layer-by-layer (LbL) assembly process and the polyion side-chain chemical structures. The 2D property matrix spans surface isoelectric points ranging from 5 to 9 and water contact angles from 35 to 70°, with other interferential factors (e.g., roughness) eliminated. The interplay between these two surface variables influences protein (bovine serum albumin, lysozyme) adsorption and 3T3 fibroblast cell adhesion. For proteins, we observe the presence of thresholds for surface wettability and electrostatic driving forces necessary to affect adhesion. Beyond these thresholds, the individual effects of electrostatic forces and wettability are observed. For fibroblast, both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity lead to the highest cell adhesion, whereas negative charge and hydrophobicity lead to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serve as a reference in future studies assessing protein adsorption and cell adhesion to surfaces with known charge and wettability within the property range studied here.
Collapse
Affiliation(s)
- Shanshan Guo
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore , Kent Ridge, Singapore 117576
| | - Xiaoying Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research , 2 Fusionopolis Way, Singapore 138634
- Department of Environmental Science, Zhejiang University , Hangzhou, China 310058
| | - Min Li
- Department of Chemical & Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 119260
| | - Liya Shi
- Department of Chemical & Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 119260
| | - June Lay Ting Ong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research , 2 Fusionopolis Way, Singapore 138634
| | - Dominik Jańczewski
- Laboratory of Technological Processes, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Koon Gee Neoh
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore , Kent Ridge, Singapore 117576
- Department of Chemical & Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 119260
| |
Collapse
|
28
|
Qi X, Yang L, Zhu J, Hou Y, Yang M. Stiffer but More Healable Exponential Layered Assemblies with Boron Nitride Nanoplatelets. ACS NANO 2016; 10:9434-9445. [PMID: 27648668 DOI: 10.1021/acsnano.6b04482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Self-healing ability and the elastic modulus of polymeric materials may seem conflicting because of their opposite dependence on chain mobility. Here, we show that boron nitride (BN) nanoplatelets can simultaneously enhance these seemingly contradictory properties in exponentially layer-by-layer-assembled nanocomposites as both surface coatings and free-standing films. On one hand, embedding hard BN nanoplatelets into a soft hydrogen bonding network can enhance the elastic modulus and ultimate strength through effective load transfer strengthened by the incorporation of interfacial covalent bonding; on the other hand, during a water-enabled self-healing process, these two-dimensional flakes induce an anisotropic diffusion, maintain the overall diffusion ability of polymers at low loadings, and can be "sealing" agents to retard the out-of-plane diffusion, thereby hampering polymer release into the solution. A detailed mechanism study supported by a theoretical model reveals the critical parameters for achieving a complete self-healing process. The insights gained from this work may be used for the design of high-performance smart materials based on other two-dimensional fillers.
Collapse
Affiliation(s)
- Xiaodong Qi
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| | - Lei Yang
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| | - Jiaqi Zhu
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| | - Ying Hou
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| | - Ming Yang
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| |
Collapse
|
29
|
Preparation of complementary glycosylated hyperbranched polymer/poly(ethylene glycol) brushes and their selective interactions with hepatocytes. Colloids Surf B Biointerfaces 2016; 145:309-318. [DOI: 10.1016/j.colsurfb.2016.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/13/2016] [Accepted: 05/04/2016] [Indexed: 01/05/2023]
|
30
|
grosse Austing J, Nunes Kirchner C, Komsiyska L, Wittstock G. Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chem Rev 2016; 116:6743-836. [PMID: 27299693 DOI: 10.1021/acs.chemrev.6b00008] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.
Collapse
Affiliation(s)
- Jing M Ren
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 2000444, People's Republic of China
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
32
|
Wang X, Jin C, Han Q, Jiang Y, Zeng F, Ma Z, Wang B. Synthesis, Self-Assembly, and Host-Guest Response of Naphthalic Anhydride-Ended Hyperbranched Polyesters. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoxia Wang
- Jiangsu Key Laboratory of Biofunctional Materials; Key Laboratory of Applied Photochemisty; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210097 China
| | - Can Jin
- Jiangsu Provincial Key Laboratory of Biomass Energy and Materials; National Engineering Laboratory for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products; CAF; Nanjing 210042 China
| | - Qiaorong Han
- Jiangsu Key Laboratory of Biofunctional Materials; Key Laboratory of Applied Photochemisty; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210097 China
| | - Yuliang Jiang
- Jiangsu Key Laboratory of Biofunctional Materials; Key Laboratory of Applied Photochemisty; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210097 China
| | - Fanyang Zeng
- Jiangsu Key Laboratory of Biofunctional Materials; Key Laboratory of Applied Photochemisty; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210097 China
| | - Zhenye Ma
- Jiangsu Key Laboratory of Biofunctional Materials; Key Laboratory of Applied Photochemisty; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210097 China
| | - Bingxiang Wang
- Jiangsu Key Laboratory of Biofunctional Materials; Key Laboratory of Applied Photochemisty; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210097 China
| |
Collapse
|
33
|
Xu W, Ledin PA, Iatridi Z, Tsitsilianis C, Tsukruk VV. Multicompartmental Microcapsules with Orthogonal Programmable Two‐Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angew Chem Int Ed Engl 2016; 55:4908-13. [DOI: 10.1002/anie.201600383] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/08/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Weinan Xu
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| | - Petr A. Ledin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| | | | | | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
34
|
Xu W, Ledin PA, Iatridi Z, Tsitsilianis C, Tsukruk VV. Multicompartmental Microcapsules with Orthogonal Programmable Two‐Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Weinan Xu
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| | - Petr A. Ledin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| | | | | | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
35
|
Chen XC, Ren KF, Chen JY, Wang J, Zhang H, Ji J. Self-wrinkling polyelectrolyte multilayers: construction, smoothing and the underlying mechanism. Phys Chem Chem Phys 2016; 18:31168-31174. [DOI: 10.1039/c6cp05419f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous formation of these surface features can be attributed to swelling-induced film deformation during the assembling process.
Collapse
Affiliation(s)
- Xia-chao Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Ke-feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jia-yan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - He Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
36
|
|
37
|
Xu W, Ledin PA, Shevchenko VV, Tsukruk VV. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12570-12596. [PMID: 26010902 DOI: 10.1021/acsami.5b01833] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.
Collapse
Affiliation(s)
- Weinan Xu
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petr A Ledin
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Valery V Shevchenko
- ‡Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkovskoe shosse 48, Kiev 02160, Ukraine
| | - Vladimir V Tsukruk
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
38
|
Shumyantseva VV, Sigolaeva LV, Agafonova LE, Bulko TV, Pergushov DV, Schacher FH, Archakov AI. Facilitated biosensing via direct electron transfer of myoglobin integrated into diblock copolymer/multi-walled carbon nanotube nanocomposites. J Mater Chem B 2015; 3:5467-5477. [DOI: 10.1039/c5tb00442j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential drop-casting of a MWCNTs suspension and a amphiphilic copolymer micellar solution onto an electrode results in a favorable nanocomposite for integration of myoglobin, showing facilitated direct electron transfer.
Collapse
Affiliation(s)
| | | | | | | | | | - Felix H. Schacher
- Institute of Organic and Macromolecular Chemistry
- Friedrich-Schiller-University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | | |
Collapse
|
39
|
Zakaria MB, Malgras V, Takei T, Li C, Yamauchi Y. Layer-by-layer motif hybridization: nanoporous nickel oxide flakes wrapped into graphene oxide sheets toward enhanced oxygen reduction reaction. Chem Commun (Camb) 2015; 51:16409-12. [DOI: 10.1039/c5cc06558e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a novel strategy involving the hybridization of nanoporous NiO flakes with graphene oxide (GO) sheets.
Collapse
Affiliation(s)
- Mohamed B. Zakaria
- Faculty of Science and Engineering
- Waseda University
- Tokyo
- Japan
- World Premier International (WPI) Research Center for Materials Nanoarchitechtonics (MANA)
| | - Victor Malgras
- World Premier International (WPI) Research Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Toshiaki Takei
- World Premier International (WPI) Research Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Cuiling Li
- World Premier International (WPI) Research Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yusuke Yamauchi
- Faculty of Science and Engineering
- Waseda University
- Tokyo
- Japan
- World Premier International (WPI) Research Center for Materials Nanoarchitechtonics (MANA)
| |
Collapse
|
40
|
Puniredd SR, Jańczewski D, Go DP, Zhu X, Guo S, Ming Teo SL, Chen Lee SS, Vancso GJ. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling. Chem Sci 2015; 6:372-383. [PMID: 28966763 PMCID: PMC5586206 DOI: 10.1039/c4sc02367f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023] Open
Abstract
Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross-linking were used in the fabrication process. Two methods of LbL film formation have been investigated using alternate polyelectrolyte deposition namely non-imprinted LbLA, and imprinted LbLB. Both LbL films were cross linked at mild temperature to yield covalent bridging of the layers for improved stability in a sea water environment. A comparative study of the non-imprinted LbLA films and imprinted LbLB films for Cu2+ ion binding capacity, leaching rate and stability of the films was performed. The results reveal that the imprinted films possess enhanced affinity to retain metal ions due to the preorganization of imidazole bearing histidine receptors. As a result the binding capacity of the films for Cu2+ could be improved by seven fold. Antifouling properties of the resulting materials in a marine environment have been demonstrated against the settlement of barnacle larvae, indicating that controlled release of Cu ions was achieved.
Collapse
Affiliation(s)
- Sreenivasa Reddy Puniredd
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Dominik Jańczewski
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Dewi Pitrasari Go
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Xiaoying Zhu
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Shifeng Guo
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Serena Lay Ming Teo
- Tropical Marine Science Institute , National University of Singapore , 18 Kent Ridge Road , 119227 , Singapore
| | - Serina Siew Chen Lee
- Tropical Marine Science Institute , National University of Singapore , 18 Kent Ridge Road , 119227 , Singapore
| | - G Julius Vancso
- Institute of Chemical and Engineering Sciences , ASTAR , 1, Pesek Road , Jurong Island , 627833 , Singapore . ; ; Tel: +31 53 489 2974
- MESA+ Institute for Nanotechnology , Materials Science and Technology of Polymers , University of Twente , P.O. Box 217 , 7500 AE Enschede , The Netherlands
| |
Collapse
|
41
|
Ye C, Combs ZA, Calabrese R, Dai H, Kaplan DL, Tsukruk VV. Robust microcapsules with controlled permeability from silk fibroin reinforced with graphene oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:5087-5097. [PMID: 25104349 DOI: 10.1002/smll.201401119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Robust and stable microcapsules are assembled from poly-amino acid-modified silk fibroin reinforced with graphene oxide flakes using layer-by-layer (LbL) assembly, based on biocompatible natural protein and carbon nanosheets. The composite microcapsules are extremely stable in acidic (pH 2.0) and basic (pH 11.5) conditions, accompanied with pH-triggered permeability, which facilitates the controllable encapsulation and release of macromolecules. Furthermore, the graphene oxide incorporated into ultrathin LbL shells induces greatly reinforced mechanical properties, with an elastic modulus which is two orders of magnitude higher than the typical values of original silk LbL shells and shows a significant, three-fold reduction in pore size. Such strong nanocomposite microcapsules can provide solid protection of encapsulated cargo under harsh conditions, indicating a promising candidate with controllable loading/unloading for drug delivery, reinforcement, and bioengineering applications.
Collapse
Affiliation(s)
- Chunhong Ye
- School of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | | | | | | | | | | |
Collapse
|
42
|
Effect of arm number of poly(acrylic acid) on cloud point temperature of poly(2-ethyl-2-oxazoline). JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0608-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Xu W, Ledin PA, Plamper FA, Synatschke CV, Müller AHE, Tsukruk VV. Multiresponsive Microcapsules Based on Multilayer Assembly of Star Polyelectrolytes. Macromolecules 2014. [DOI: 10.1021/ma501853c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Weinan Xu
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petr A. Ledin
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Felix A. Plamper
- Makromolekulare
Chemie II and Bayreuther Zentrum fur Kolloide und Grenzflächen, Universitat Bayreuth, D-95440 Bayreuth, Germany
| | - Christopher V. Synatschke
- Makromolekulare
Chemie II and Bayreuther Zentrum fur Kolloide und Grenzflächen, Universitat Bayreuth, D-95440 Bayreuth, Germany
| | - Axel H. E. Müller
- Makromolekulare
Chemie II and Bayreuther Zentrum fur Kolloide und Grenzflächen, Universitat Bayreuth, D-95440 Bayreuth, Germany
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
44
|
Borges J, Mano JF. Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chem Rev 2014; 114:8883-942. [DOI: 10.1021/cr400531v] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- João Borges
- 3B’s
Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra,
S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s
Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra,
S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
45
|
Liang G, Ni H, Bao S, Zhu F, Gao H, Wu Q. Synthesis and Characterization of Nanowire Coils of Organometallic Coordination Polymers for Controlled Cargo Release. J Phys Chem B 2014; 118:6339-45. [DOI: 10.1021/jp503533h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guodong Liang
- DSAP lab, PCFM lab, School of Chemistry
and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huan Ni
- DSAP lab, PCFM lab, School of Chemistry
and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Suping Bao
- DSAP lab, PCFM lab, School of Chemistry
and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fangming Zhu
- DSAP lab, PCFM lab, School of Chemistry
and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haiyang Gao
- DSAP lab, PCFM lab, School of Chemistry
and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Wu
- DSAP lab, PCFM lab, School of Chemistry
and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
46
|
Sigolaeva LV, Günther U, Pergushov DV, Gladyr SY, Kurochkin IN, Schacher FH. Sequential pH-Dependent Adsorption of Ionic Amphiphilic Diblock Copolymer Micelles and Choline Oxidase Onto Conductive Substrates: Toward the Design of Biosensors. Macromol Biosci 2014; 14:1039-51. [DOI: 10.1002/mabi.201300580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/24/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Larisa V. Sigolaeva
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Ulrike Günther
- Institute of Organic and Macromolecular Chemistry; Friedrich-Schiller-University Jena; D-07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; D-07743 Jena Germany
| | - Dmitry V. Pergushov
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Snezhana Yu. Gladyr
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Ilya N. Kurochkin
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Felix H. Schacher
- Institute of Organic and Macromolecular Chemistry; Friedrich-Schiller-University Jena; D-07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; D-07743 Jena Germany
| |
Collapse
|
47
|
Xu X, Li Y, Li H, Liu R, Sheng M, He B, Gu Z. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1133-1140. [PMID: 24155260 DOI: 10.1002/smll.201301885] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/02/2013] [Indexed: 06/02/2023]
Abstract
A novel type of nanovehicle (NV) based on stimuli-responsive supramolecular peptide-amphiphiles (SPAs, dendritic poly (L-lysine) non-covalently linked poly (L-leucine)) is developed for intracellular drug delivery. To determine the pH-dependent mechanism, the supramolecular peptide-amphiphile system (SPAS) is investigated at different pH conditions using a variety of physical and chemical approaches. The pH-triggered disassembly of SPAS can be attributed to the disappearance of non-covalent interactions within SPAs around the isoelectric point of poly (L-leucine). SPAS is found to encapsulate guest molecules at pH 7.4 but release them at pH 6.2. In this way, SPAS is able to act as a smart NV to deliver its target to tumor cells using intracellular pH as a trigger. The DOX-loaded NVs are approximately 150 nm in size. In vitro release profiles and confocal laser scanning microscopy (CLSM) images of HepG2 cells confirm that lower pH conditions can trigger the disassembly of NVs and so achieve pH-dependent intracellular DOX delivery. In vitro cytotoxicity of the DOX-loaded NVs to HepG2 cells demonstrate that the smart NVs enhance the efficacy of hydrophobic DOX. Fluorescence-activated cell sorting (FACS) and CLSM results show that the NVs can enhance the endocytosis of DOX into HepG2 cells considerably and deliver DOX to the nuclei.
Collapse
Affiliation(s)
- Xianghui Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Suntivich R, Drachuk I, Calabrese R, Kaplan DL, Tsukruk VV. Inkjet Printing of Silk Nest Arrays for Cell Hosting. Biomacromolecules 2014; 15:1428-35. [DOI: 10.1021/bm500027c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rattanon Suntivich
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Irina Drachuk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Rossella Calabrese
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | |
Collapse
|
49
|
Xu W, Choi I, Plamper FA, Synatschke CV, Müller AHE, Melnichenko YB, Tsukruk VV. Thermo-Induced Limited Aggregation of Responsive Star Polyelectrolytes. Macromolecules 2014. [DOI: 10.1021/ma500153w] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Weinan Xu
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ikjun Choi
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Christopher V. Synatschke
- Makromolekulare
Chemie II and Bayreuther Zentrum für Kolloide und Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Axel H. E. Müller
- Makromolekulare
Chemie II and Bayreuther Zentrum für Kolloide und Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Yuri B. Melnichenko
- Biology
and Soft Matter Science Division, Neutron Scattering Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
50
|
Sung C, Hearn K, Reid DK, Vidyasagar A, Lutkenhaus JL. A comparison of thermal transitions in dip- and spray-assisted layer-by-layer assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8907-8913. [PMID: 23789626 DOI: 10.1021/la4016965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Spray-assisted layer-by-layer (LbL) assembly is far more rapid than conventional dip-assisted assembly methods and has gained widespread interest recently. Even so, it has remained unclear as to how the structure and properties of the resulting LbL film vary with processing method. Here, we compared the thermal properties of poly(ethylene oxide) (PEO)/poly(acrylic acid) (PAA) and PEO/poly(methacrylic acid) (PMAA) hydrogen-bonded LbL assemblies prepared using both dip-assisted and spray-assisted deposition methods. While the surface morphologies of PEO/PAA LbL assemblies were similar, those of PEO/PMAA LbL assemblies were greatly influenced by deposition method. In both PEO/PAA and PEO/PMAA LbL assemblies, glass transition temperatures were not influenced by deposition method, but the transition's breadth was consistently larger for the spray-assisted LbL films. These results indicate that the internal structure of spray-assisted LbL films is slightly more heterogeneous, possibly arising from the shorter time scale of deposition.
Collapse
Affiliation(s)
- Choonghyun Sung
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | | | | | | | | |
Collapse
|