1
|
Contaldo U, Padrosa DR, Jamet H, Albrecht M, Paradisi F, Le Goff A. Optimising Electrical Interfacing between the Trimeric Copper Nitrite Reductase and Carbon Nanotubes. Chemistry 2023; 29:e202301351. [PMID: 37310888 DOI: 10.1002/chem.202301351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
The immobilization of copper-containing nitrite reductase (NiR) from Alcaligenes faecalis on functionalised multi-walled carbon nanotube (MWCNT) electrodes is reported. It is demonstrated that this immobilization is mainly driven by hydrophobic interactions, promoted by the modification of MWCNTs with adamantyl groups. Direct electrochemistry shows high bioelectrochemical reduction of nitrite at the redox potential of NiR with high current density of 1.41 mA cm-2 . Furthermore, the desymmetrization of the trimer upon immobilization induces an independent electrocatalytic behavior for each of the three enzyme subunits, corroborated by an electron-tunneling distance dependence.
Collapse
Affiliation(s)
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Hélène Jamet
- Univ. Grenoble Alpes, CNRS DCM, 38000, Grenoble, France
| | - Martin Albrecht
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS DCM, 38000, Grenoble, France
| |
Collapse
|
2
|
Cao L, Hunt CJ, Lin S, Meyer AS, Li Q, Lametsch R. Elucidation of the Molecular Mechanism of Bovine Milk γ-Glutamyltransferase Catalyzed Formation of γ-Glutamyl-Valyl-Glycine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2455-2463. [PMID: 36706241 DOI: 10.1021/acs.jafc.2c08386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
γ-Glu-Val-Gly (γ-EVG) is a potent kokumi peptide that can be synthesized through the transpeptidase reaction catalyzed by γ-glutamyl transferase from bovine milk (BoGGT). To explore the molecular mechanism between BoGGT and l-glutamine, γ-glutamyl peptides were generated through the transpeptidase reaction catalyzed by BoGGT at various reaction conditions. Quantitation of γ-glutamyl peptides, structure prediction of BoGGT, molecular docking, and molecular dynamic simulations were performed. Membrane-free BoGGT had a higher transpeptidase activity with Val-Gly as an acceptor than membrane BoGGT. The suitable conditions for γ-EVG production using BoGGT were 100 mM Val-Gly, 20 mM Gln, 1.2 U/mL BoGGT, pH 8.5, and 37 °C, and 13.1 mM γ-EVG was produced. The hydrogen bonds are mainly formed between residues from the light subunit of BoGGT (Thr380, Thr398, Ser450, Ser451, Met452, and Gly473) and the l-glutamine donor. NaCl might inhibit the transpeptidase activity by destroying the hydrogen bonds between BoGGT and l-glutamine, thereby increasing the distance between the hydroxyl oxygen atom on Thr380 of BoGGT and the amide carbon atom on l-glutamine.
Collapse
Affiliation(s)
- Lichuang Cao
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Cameron J Hunt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shang Lin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Qian Li
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Eady RR, Samar Hasnain S. New horizons in structure-function studies of copper nitrite reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
5
|
Qin X, Chen X. Remote Water-Mediated Proton Transfer Triggers Inter-Cu Electron Transfer: Nitrite Reduction Activation in Copper-Containing Nitrite Reductase. Chembiochem 2021; 22:1405-1414. [PMID: 33295048 DOI: 10.1002/cbic.202000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Indexed: 11/05/2022]
Abstract
The copper-containing nitrite reductase (CuNiR) catalyzes the biological conversion of nitrite to nitric oxide; key long-range electron/proton transfers are involved in the catalysis. However, the details of the electron-/proton-transfer mechanism are still unknown. In particular, the driving force of the electron transfer from the type-1 copper (T1Cu) site to the type-2 copper (T2Cu) site is ambiguous. Here, we explored the two possible proton-transfer channels, the high-pH proton channel and the primary proton channel, by using two-layered ONIOM calculations. Our calculation results reveal that the driving force for electron transfer from T1Cu to T2Cu comes from a remote water-mediated triple-proton-coupled electron-transfer mechanism. In the high-pH proton channel, the water-mediated triple-proton transfer occurs from Glu113 to an intermediate water molecule, whereas in the primary channel, the transfer is from Lys128 to His260. Subsequently, the two channels employ another two or three distinct proton-transfer steps to deliver the proton to the nitrite substrate at the T2Cu site. These findings explain the detailed proton-/electron-transfer mechanisms of copper-containing nitrite reductase and could extend our understanding of the diverse proton-coupled electron-transfer mechanisms in complicated proteins.
Collapse
Affiliation(s)
- Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, 55 University City South Road, Shapingba District, Chongqing, 401331, P. R. China.,National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 401331, P. R. China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, 55 University City South Road, Shapingba District, Chongqing, 401331, P. R. China.,National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
6
|
Souza JCP, Macedo LJA, Hassan A, Sedenho GC, Modenez IA, Crespilho FN. In Situ
and
Operando
Techniques for Investigating Electron Transfer in Biological Systems. ChemElectroChem 2020. [DOI: 10.1002/celc.202001327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- João C. P. Souza
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
- Campus Rio Verde Goiano Federal Institute of Education, Science and Technology 75901-970 Rio Verde Goiás Brazil
| | - Lucyano J. A. Macedo
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| | - Graziela C. Sedenho
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| | - Iago A. Modenez
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| | - Frank N. Crespilho
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| |
Collapse
|
7
|
Hedison TM, Shanmugam M, Heyes DJ, Edge R, Scrutton NS. Active Intermediates in Copper Nitrite Reductase Reactions Probed by a Cryotrapping-Electron Paramagnetic Resonance Approach. Angew Chem Int Ed Engl 2020; 59:13936-13940. [PMID: 32352195 PMCID: PMC7497095 DOI: 10.1002/anie.202005052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 11/25/2022]
Abstract
Redox active metalloenzymes catalyse a range of biochemical processes essential for life. However, due to their complex reaction mechanisms, and often, their poor optical signals, detailed mechanistic understandings of them are limited. Here, we develop a cryoreduction approach coupled to electron paramagnetic resonance measurements to study electron transfer between the copper centers in the copper nitrite reductase (CuNiR) family of enzymes. Unlike alternative methods used to study electron transfer reactions, the cryoreduction approach presented here allows observation of the redox state of both metal centers, a direct read-out of electron transfer, determines the presence of the substrate/product in the active site and shows the importance of protein motion in inter-copper electron transfer catalyzed by CuNiRs. Cryoreduction-EPR is broadly applicable for the study of electron transfer in other redox enzymes and paves the way to explore transient states in multiple redox-center containing proteins (homo and hetero metal ions).
Collapse
Affiliation(s)
- Tobias M. Hedison
- Manchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
- BBSRC and EPSRC funded Future Biomanfacturing Research HubManchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Derren J. Heyes
- Manchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Ruth Edge
- Dalton Cumbrian FacilityThe University of ManchesterCumbriaUK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
- BBSRC and EPSRC funded Future Biomanfacturing Research HubManchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| |
Collapse
|
8
|
Hedison TM, Shanmugam M, Heyes DJ, Edge R, Scrutton NS. Active Intermediates in Copper Nitrite Reductase Reactions Probed by a Cryotrapping‐Electron Paramagnetic Resonance Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tobias M. Hedison
- Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
- BBSRC and EPSRC funded Future Biomanfacturing Research Hub Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
| | - Derren J. Heyes
- Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
| | - Ruth Edge
- Dalton Cumbrian Facility The University of Manchester Cumbria UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
- BBSRC and EPSRC funded Future Biomanfacturing Research Hub Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
| |
Collapse
|
9
|
Hedison T, Shenoy RT, Iorgu AI, Heyes DJ, Fisher K, Wright GSA, Hay S, Eady RR, Antonyuk SV, Hasnain SS, Scrutton NS. Unexpected Roles of a Tether Harboring a Tyrosine Gatekeeper Residue in Modular Nitrite Reductase Catalysis. ACS Catal 2019; 9:6087-6099. [PMID: 32051772 PMCID: PMC7007197 DOI: 10.1021/acscatal.9b01266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/19/2019] [Indexed: 01/26/2023]
Abstract
It is generally assumed that tethering enhances rates of electron harvesting and delivery to active sites in multidomain enzymes by proximity and sampling mechanisms. Here, we explore this idea in a tethered 3-domain, trimeric copper-containing nitrite reductase. By reverse engineering, we find that tethering does not enhance the rate of electron delivery from its pendant cytochrome c to the catalytic copper-containing core. Using a linker that harbors a gatekeeper tyrosine in a nitrite access channel, the tethered haem domain enables catalysis by other mechanisms. Tethering communicates the redox state of the haem to the distant T2Cu center that helps initiate substrate binding for catalysis. It also tunes copper reduction potentials, suppresses reductive enzyme inactivation, enhances enzyme affinity for substrate, and promotes intercopper electron transfer. Tethering has multiple unanticipated beneficial roles, the combination of which fine-tunes function beyond simplistic mechanisms expected from proximity and restrictive sampling models.
Collapse
Affiliation(s)
- Tobias
M. Hedison
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rajesh T. Shenoy
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Andreea I. Iorgu
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Karl Fisher
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Gareth S. A. Wright
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Robert R. Eady
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Svetlana V. Antonyuk
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - S. Samar Hasnain
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
10
|
Garoz‐Ruiz J, Perales‐Rondon JV, Heras A, Colina A. Spectroelectrochemical Sensing: Current Trends and Challenges. ELECTROANAL 2019. [DOI: 10.1002/elan.201900075] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jesus Garoz‐Ruiz
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | | | - Aranzazu Heras
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Alvaro Colina
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| |
Collapse
|
11
|
Ma Q, Zhang H, Chen J, Dong S, Fang Y. Reversible regulation of CdTe quantum dots fluorescence intensity based on Prussian blue with high anti-fatigue performance. Chem Commun (Camb) 2019; 55:644-647. [PMID: 30560263 DOI: 10.1039/c8cc07693f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescence switching device with excellent anti-fatigue performance based on the electrochromic material Prussian blue and fluorophore CdTe quantum dots was realized. The fluorescence switching device ultimately demonstrated a high fluorescence contrast, short response time and superior anti-fatigue property. Notably, the fluorescence contrast remains unchanged after 133 cycles.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | | | | | | | | |
Collapse
|
12
|
Horrell S, Kekilli D, Sen K, Owen RL, Dworkowski FSN, Antonyuk SV, Keal TW, Yong CW, Eady RR, Hasnain SS, Strange RW, Hough MA. Enzyme catalysis captured using multiple structures from one crystal at varying temperatures. IUCRJ 2018; 5:283-292. [PMID: 29755744 PMCID: PMC5929374 DOI: 10.1107/s205225251800386x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/05/2018] [Indexed: 05/24/2023]
Abstract
High-resolution crystal structures of enzymes in relevant redox states have transformed our understanding of enzyme catalysis. Recent developments have demonstrated that X-rays can be used, via the generation of solvated electrons, to drive reactions in crystals at cryogenic temperatures (100 K) to generate 'structural movies' of enzyme reactions. However, a serious limitation at these temperatures is that protein conformational motion can be significantly supressed. Here, the recently developed MSOX (multiple serial structures from one crystal) approach has been applied to nitrite-bound copper nitrite reductase at room temperature and at 190 K, close to the glass transition. During both series of multiple structures, nitrite was initially observed in a 'top-hat' geometry, which was rapidly transformed to a 'side-on' configuration before conversion to side-on NO, followed by dissociation of NO and substitution by water to reform the resting state. Density functional theory calculations indicate that the top-hat orientation corresponds to the oxidized type 2 copper site, while the side-on orientation is consistent with the reduced state. It is demonstrated that substrate-to-product conversion within the crystal occurs at a lower radiation dose at 190 K, allowing more of the enzyme catalytic cycle to be captured at high resolution than in the previous 100 K experiment. At room temperature the reaction was very rapid, but it remained possible to generate and characterize several structural states. These experiments open up the possibility of obtaining MSOX structural movies at multiple temperatures (MSOX-VT), providing an unparallelled level of structural information during catalysis for redox enzymes.
Collapse
Affiliation(s)
- Sam Horrell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Demet Kekilli
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Kakali Sen
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | | | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - Thomas W. Keal
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, England
| | - Chin W. Yong
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, England
| | - Robert R. Eady
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Michael A. Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| |
Collapse
|
13
|
Zhai Y, Zhu Z, Zhou S, Zhu C, Dong S. Recent advances in spectroelectrochemistry. NANOSCALE 2018; 10:3089-3111. [PMID: 29379916 DOI: 10.1039/c7nr07803j] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The integration of two quite different techniques, conventional electrochemistry and spectroscopy, into spectroelectrochemistry (SEC) provides a complete description of chemically driven electron transfer processes and redox events for different kinds of molecules and nanoparticles. SEC possesses interdisciplinary advantages and can further expand the scopes in the fields of analysis and other applications, emphasizing the hot issues of analytical chemistry, materials science, biophysics, chemical biology, and so on. Considering the past and future development of SEC, a review on the recent progress of SEC is presented and selected examples involving surface-enhanced Raman scattering (SERS), ultraviolet-visible (UV-Vis), near-infrared (NIR), Fourier transform infrared (FTIR), fluorescence, as well as other SEC are summarized to fully demonstrate these techniques. In addition, the optically transparent electrodes and SEC cell design, and the typical applications of SEC in mechanism study, electrochromic device fabrication, sensing and protein study are fully introduced. Finally, the key issues, future perspectives and trends in the development of SEC are also discussed.
Collapse
Affiliation(s)
- Yanling Zhai
- Department of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | | | | | | | | |
Collapse
|
14
|
Lintuluoto M, Lintuluoto JM. Intra-electron transfer induced by protonation in copper-containing nitrite reductase. Metallomics 2018. [DOI: 10.1039/c7mt00323d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electron transfer between two Cu sites in the enzyme induced by protonation of remote catalytic residues.
Collapse
Affiliation(s)
- Masami Lintuluoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
- Kyoto 606-8522
- Japan
| | | |
Collapse
|
15
|
PEREIRA ANDRESSAR, SEDENHO GRAZIELAC, SOUZA JOÃOCPDE, CRESPILHO FRANKN. Advances in enzyme bioelectrochemistry. ACTA ACUST UNITED AC 2018; 90:825-857. [DOI: 10.1590/0001-3765201820170514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022]
|
16
|
Ash PA, Hidalgo R, Vincent KA. Protein Film Infrared Electrochemistry Demonstrated for Study of H2 Oxidation by a [NiFe] Hydrogenase. J Vis Exp 2017:55858. [PMID: 29286464 PMCID: PMC5755520 DOI: 10.3791/55858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Understanding the chemistry of redox proteins demands methods that provide precise control over redox centers within the protein. The technique of protein film electrochemistry, in which a protein is immobilized on an electrode surface such that the electrode replaces physiological electron donors or acceptors, has provided functional insight into the redox reactions of a range of different proteins. Full chemical understanding requires electrochemical control to be combined with other techniques that can add additional structural and mechanistic insight. Here we demonstrate a technique, protein film infrared electrochemistry, which combines protein film electrochemistry with infrared spectroscopic sampling of redox proteins. The technique uses a multiple-reflection attenuated total reflectance geometry to probe a redox protein immobilized on a high surface area carbon black electrode. Incorporation of this electrode into a flow cell allows solution pH or solute concentrations to be changed during measurements. This is particularly powerful in addressing redox enzymes, where rapid catalytic turnover can be sustained and controlled at the electrode allowing spectroscopic observation of long-lived intermediate species in the catalytic mechanism. We demonstrate the technique with experiments on E. coli hydrogenase 1 under turnover (H2 oxidation) and non-turnover conditions.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory
| | - Ricardo Hidalgo
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory;
| |
Collapse
|
17
|
Qin X, Deng L, Hu C, Li L, Chen X. Copper-Containing Nitrite Reductase Employing Proton-Coupled Spin-Exchanged Electron-Transfer and Multiproton Synchronized Transfer to Reduce Nitrite. Chemistry 2017; 23:14900-14910. [DOI: 10.1002/chem.201703221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Qin
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Li Deng
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Caihong Hu
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Li Li
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Xiaohua Chen
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| |
Collapse
|
18
|
Electrocatalytic nitrate reduction on well-defined surfaces of tin-modified platinum, palladium and platinum-palladium single crystalline electrodes in acidic and neutral media. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
de Souza JCP, Silva WO, Lima FHB, Crespilho FN. Enzyme activity evaluation by differential electrochemical mass spectrometry. Chem Commun (Camb) 2017; 53:8400-8402. [DOI: 10.1039/c7cc03963h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A broad mass spectrometry technique with bioelectrochemical control provides new insight into the enzyme kinetics and mechanisms.
Collapse
Affiliation(s)
- João C. P. de Souza
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
- Goiano Federal Institute
| | - Wanderson O. Silva
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Fabio H. B. Lima
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Frank N. Crespilho
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| |
Collapse
|
20
|
Horrell S, Kekilli D, Strange RW, Hough MA. Recent structural insights into the function of copper nitrite reductases. Metallomics 2017; 9:1470-1482. [DOI: 10.1039/c7mt00146k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper nitrite reductases (CuNiRs) catalyse the reduction of nitrite to nitric oxide as part of the denitrification pathway. In this review, we describe insights into CuNiR function from structural studies.
Collapse
Affiliation(s)
- Sam Horrell
- School of Biological Sciences
- University of Essex
- Colchester
- UK
| | - Demet Kekilli
- School of Biological Sciences
- University of Essex
- Colchester
- UK
| | | | | |
Collapse
|
21
|
Lintuluoto M, Lintuluoto JM. DFT Study on Enzyme Turnover Including Proton and Electron Transfers of Copper-Containing Nitrite Reductase. Biochemistry 2016; 55:4697-707. [DOI: 10.1021/acs.biochem.6b00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Masami Lintuluoto
- Graduate
School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamohanki-cho,
Sakyo, Kyoto 606-8522, Japan
| | - Juha M. Lintuluoto
- Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
22
|
Ash P, Reeve HA, Quinson J, Hidalgo R, Zhu T, McPherson IJ, Chung MW, Healy AJ, Nayak S, Lonsdale TH, Wehbe K, Kelley CS, Frogley MD, Cinque G, Vincent KA. Synchrotron-Based Infrared Microanalysis of Biological Redox Processes under Electrochemical Control. Anal Chem 2016; 88:6666-71. [PMID: 27269716 PMCID: PMC4935962 DOI: 10.1021/acs.analchem.6b00898] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
We describe a method for addressing redox enzymes adsorbed on a carbon electrode using synchrotron infrared microspectroscopy combined with protein film electrochemistry. Redox enzymes have high turnover frequencies, typically 10-1000 s(-1), and therefore, fast experimental triggers are needed in order to study subturnover kinetics and identify the involvement of transient species important to their catalytic mechanism. In an electrochemical experiment, this equates to the use of microelectrodes to lower the electrochemical cell constant and enable changes in potential to be applied very rapidly. We use a biological cofactor, flavin mononucleotide, to demonstrate the power of synchrotron infrared microspectroscopy relative to conventional infrared methods and show that vibrational spectra with good signal-to-noise ratios can be collected for adsorbed species with low surface coverages on microelectrodes with a geometric area of 25 × 25 μm(2). We then demonstrate the applicability of synchrotron infrared microspectroscopy to adsorbed proteins by reporting potential-induced changes in the flavin mononucleotide active site of a flavoenzyme. The method we describe will allow time-resolved spectroscopic studies of chemical and structural changes at redox sites within a variety of proteins under precise electrochemical control.
Collapse
Affiliation(s)
- Philip
A. Ash
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Holly A. Reeve
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Jonathan Quinson
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Ricardo Hidalgo
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Tianze Zhu
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Ian J. McPherson
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Min-Wen Chung
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Adam J. Healy
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Simantini Nayak
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Thomas H. Lonsdale
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Katia Wehbe
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Chris S. Kelley
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Mark D. Frogley
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Gianfelice Cinque
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Kylie A. Vincent
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| |
Collapse
|
23
|
Horrell S, Antonyuk SV, Eady RR, Hasnain SS, Hough MA, Strange RW. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal. IUCRJ 2016; 3:271-81. [PMID: 27437114 PMCID: PMC4937782 DOI: 10.1107/s205225251600823x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 05/24/2023]
Abstract
Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.
Collapse
Affiliation(s)
- Sam Horrell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Life Sciences Building, Liverpool L69 7ZB, England
| | - Robert R. Eady
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Life Sciences Building, Liverpool L69 7ZB, England
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Life Sciences Building, Liverpool L69 7ZB, England
| | - Michael A. Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| |
Collapse
|
24
|
Eady RR, Antonyuk SV, Hasnain SS. Fresh insight to functioning of selected enzymes of the nitrogen cycle. Curr Opin Chem Biol 2016; 31:103-12. [DOI: 10.1016/j.cbpa.2016.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 11/26/2022]
|
25
|
Akkilic N, Kamran M, Stan R, Sanghamitra NJM. Voltage-controlled fluorescence switching of a single redox protein. Biosens Bioelectron 2014; 67:747-51. [PMID: 25103339 DOI: 10.1016/j.bios.2014.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023]
Abstract
Heterogeneous electron transfer (ET) of the redox protein, wild-type azurin (wt-Az) from Pseudomonas aeruginosa, was monitored at the single-molecule (SM) level by fluorescence resonance energy transfer (FRET), one electron at a time. Azurin molecules were labeled with an organic fluorophore (Cy5), and the FRET-coupling between Cy5 and the redox center (copper) was used to study ET to a semi-transparent, 10nm thin gold electrode in an optical configuration. By using a confocal microscope and a bipotentiostat for control of the electrode potential, the oxidation and reduction processes of individual Az-Cy5 molecules were monitored. In the oxidized state of the redox center of the azurin molecule, the fluorescence emission of the covalently attached Cy5 was largely quenched by FRET ('off'-state), whereas the emission was recovered upon reduction ('on'-state). The work presented here, shows directly controlled single redox switching events of an individual redox protein and its thermodynamic dispersion. We show that the distribution of midpoint potentials (E0) of individual azurin molecules peaks at 45.7±0.5 mV with a full width at half maximum of 15 mV vs saturated calomel electrode (SCE).
Collapse
Affiliation(s)
- Namik Akkilic
- Leiden Institute of Physics, Huygens Laboratory, Leiden University, Leiden, The Netherlands.
| | - Muhammad Kamran
- Leiden Institute of Physics, Huygens Laboratory, Leiden University, Leiden, The Netherlands
| | - Razvan Stan
- Leiden Institute of Physics, Huygens Laboratory, Leiden University, Leiden, The Netherlands
| | - Nusrat J M Sanghamitra
- Leiden Institute of Physics, Huygens Laboratory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
26
|
Leferink NGH, Antonyuk SV, Houwman JA, Scrutton NS, Eady RR, Hasnain SS. Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase. Nat Commun 2014; 5:4395. [PMID: 25022223 PMCID: PMC4104443 DOI: 10.1038/ncomms5395] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022] Open
Abstract
Enzyme mechanisms are often probed by structure-informed point mutations and measurement of their effects on enzymatic properties to test mechanistic hypotheses. In many cases, the challenge is to report on complex, often inter-linked elements of catalysis. Evidence for long-range effects on enzyme mechanism resulting from mutations remains sparse, limiting the design/redesign of synthetic catalysts in a predictable way. Here we show that improving the accessibility of the active site pocket of copper nitrite reductase by mutation of a surface-exposed phenylalanine residue (Phe306), located 12 Å away from the catalytic site type-2 Cu (T2Cu), profoundly affects intra-molecular electron transfer, substrate-binding and catalytic activity. Structures and kinetic studies provide an explanation for the lower affinity for the substrate and the alteration of the rate-limiting step in the reaction. Our results demonstrate that distant residues remote from the active site can have marked effects on enzyme catalysis, by driving mechanistic change through relatively minor structural perturbations. Residues within the catalytic site of enzymes are important for activity, but whether more distant residues are also sensitive to mutation is unclear. Here, Leferink et al. show that mutation of residues in copper nitrate reductase that are 12Å away from the active site perturb enzyme function.
Collapse
Affiliation(s)
- Nicole G H Leferink
- 1] Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK [2]
| | - Svetlana V Antonyuk
- 1] Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK [2]
| | - Joseline A Houwman
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK
| | - Robert R Eady
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - S Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
27
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
28
|
Akkilic N, van der Grient F, Kamran M, Sanghamitra NJM. Chemically-induced redox switching of a metalloprotein reveals thermodynamic and kinetic heterogeneity, one molecule at a time. Chem Commun (Camb) 2014; 50:14523-6. [DOI: 10.1039/c4cc06334a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FRET-based detection of individual azurin–Cy5 molecules shows an on (reduction)–off (oxidation) fluorescence switching, reveals the redox parameters.
Collapse
Affiliation(s)
- Namik Akkilic
- Biological and Soft Matter Physics
- LION
- Leiden University
- 2333 CA Leiden, The Netherlands
| | - Fenna van der Grient
- Biological and Soft Matter Physics
- LION
- Leiden University
- 2333 CA Leiden, The Netherlands
| | - Muhammad Kamran
- Biological and Soft Matter Physics
- LION
- Leiden University
- 2333 CA Leiden, The Netherlands
| | | |
Collapse
|
29
|
Elmalk AT, Salverda JM, Tabares LC, Canters GW, Aartsma TJ. Probing redox proteins on a gold surface by single molecule fluorescence spectroscopy. J Chem Phys 2012; 136:235101. [PMID: 22779620 DOI: 10.1063/1.4728107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interaction between the fluorescently labeled redox protein, azurin, and a thin gold film is characterized using single-molecule fluorescence intensity and lifetime measurements. Fluorescence quenching starts at distances below 2.3 nm from the gold surface. At shorter distances the quantum yield may decrease down to fourfold for direct attachment of the protein to bare gold. Outside of the quenching range, up to fivefold enhancement of the fluorescence is observed on average with increasing roughness of the gold layer. Fluorescence-detected redox activity of individual azurin molecules, with a lifetime switching ratio of 0.4, is demonstrated for the first time close to a gold surface.
Collapse
Affiliation(s)
- Abdalmohsen T Elmalk
- Leiden Institute of Physics, Leiden University, Huygens Laboratory, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Keesey RL, Ryan MD. Spectroelectrochemical elucidation of the kinetics of two closely spaced electron transfers. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Leferink NGH, Eady RR, Hasnain SS, Scrutton NS. Laser-flash photolysis indicates that internal electron transfer is triggered by proton uptake by Alcaligenes xylosoxidans copper-dependent nitrite reductase. FEBS J 2012; 279:2174-81. [DOI: 10.1111/j.1742-4658.2012.08601.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Nicolardi S, Andreoni A, Tabares LC, van der Burgt YEM, Canters GW, Deelder AM, Hensbergen PJ. Top-down FTICR MS for the identification of fluorescent labeling efficiency and specificity of the Cu-protein azurin. Anal Chem 2012; 84:2512-20. [PMID: 22320330 DOI: 10.1021/ac203370f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent protein labeling has been an indispensable tool in many applications of biochemical, biophysical, and cell biological research. Although detailed information about the labeling stoichiometry and exact location of the label is often not necessary, for other purposes, this information is crucial. We have studied the potential of top-down electrospray ionization (ESI)-15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to study the degree and positioning of fluorescent labeling. For this purpose, we have labeled the Cu-protein azurin with the fluorescent label ATTO 655-N-hydroxysuccinimide(NHS)-ester and fractionated the sample using anion exchange chromatography. Subsequently, individual fractions were analyzed by ESI-15T FTICR to determine the labeling stoichiometry, followed by top-down MS fragmentation, to locate the position of the label. Results showed that, upon labeling with ATTO 655-NHS, multiple different species of either singly or doubly labeled azurin were formed. Top-down fragmentation of different species, either with or without the copper, resulted in a sequence coverage of approximately 50%. Different primary amine groups were found to be (potential) labeling sites, and Lys-122 was identified as the major labeling attachment site. In conclusion, we have demonstrated that anion exchange chromatography in combination with ultrahigh resolution 15T ESI-FTICR top-down mass spectrometry is a valuable tool for measuring fluorescent labeling efficiency and specificity.
Collapse
Affiliation(s)
- Simone Nicolardi
- Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Ash PA, Vincent KA. Spectroscopic analysis of immobilised redox enzymes under direct electrochemical control. Chem Commun (Camb) 2011; 48:1400-9. [PMID: 22057715 DOI: 10.1039/c1cc15871f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reviews recent developments in spectroscopic analysis of electrode-immobilised enzymes under direct, unmediated electrochemical control. These methods unite the suite of spectroscopic methods available for characterisation of structural, electronic and coordination changes in proteins with the exquisite control over complex redox enzymes that can be achieved in protein film electrochemistry in which immobilised protein molecules exchange electrons directly with an electrode. This combination is particularly powerful in studies of highly active enzymes where redox states can be controlled even under fast electrocatalytic turnover. We examine examples in which UV-visible, IR, Raman and MCD spectroscopy have been combined with direct electrochemistry to probe redox-dependent chemistry, and consider future opportunities for 'direct' spectroelectrochemistry of immobilised enzymes.
Collapse
Affiliation(s)
- Philip A Ash
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | | |
Collapse
|
34
|
Krzemiński Ł, Cronin S, Ndamba L, Canters GW, Aartsma TJ, Evans SD, Jeuken LJC. Orientational Control over Nitrite Reductase on Modified Gold Electrode and Its Effects on the Interfacial Electron Transfer. J Phys Chem B 2011; 115:12607-14. [DOI: 10.1021/jp205852u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Łukasz Krzemiński
- Institute of Membrane and Systems Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Samuel Cronin
- Institute of Membrane and Systems Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Lionel Ndamba
- Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | - Gerard W. Canters
- Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | - Thijs J. Aartsma
- Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | - Stephen D. Evans
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Lars J. C. Jeuken
- Institute of Membrane and Systems Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|