1
|
Du J, Wu L, Hu F, Liu JB, Leung CH, Wang W. Selective detection of mitochondrial Cu 2+ in living cells by a near-infrared iridium(III) complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 330:125637. [PMID: 39740585 DOI: 10.1016/j.saa.2024.125637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
The widespread use of copper (Cu) has raised concerns about environmental pollution and adverse effects on human health, highlighting the need to develop copper detection methods. Developing near-infrared (NIR) luminescent probes for imaging subcellular Cu2+ is still a challenge. In this work, we have developed a luminescence probe based on a NIR iridium(III) complex, which rapidly detects Cu2+ by combining salicylaldehyde and amine groups through a simple Schiff base reaction on the N^N ligand. The probe exhibits strong luminescence with a quantum yield of 0.66 and is able to detect Cu2+ with a limit of detection (LOD) of 0.31 μM, without interference from other metal ions. Mechanistic studies showed that the probe coordinated Cu2+ ions with a molar ratio of 1:1 and binding constant as low as 4.02 × 10-2 μM, and operated through photoinduced electron transfer (PeT) for luminescence quenching. Importantly, the photostability experiments confirmed the desirable photostability of the probe in aqueous solution and in cellulo compared with a commercial organic dye. Furthermore, cellular imaging experiments demonstrated its capability for the visualization of Cu2+ in the mitochondria of living cells, which paves the way for the study of the subcellular distribution of Cu2+ and related toxicity analysis.
Collapse
Affiliation(s)
- Jianxiong Du
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Lei Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Fahui Hu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jin-Biao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Ruan Z, Yang J, Li Y, Zhang KY. Dual-Emissive Iridium(III) Complexes and Their Applications in Biological Sensing and Imaging. Chembiochem 2024; 25:e202400094. [PMID: 38488304 DOI: 10.1002/cbic.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Phosphorescent iridium(III) complexes are widely recognized for their unique properties in the excited triplet state, making them crucial for various applications including biological sensing and imaging. Most of these complexes display single phosphorescence emission from the lowest-lying triplet state after undergoing highly efficient intersystem crossing (ISC) and ultrafast internal conversion (IC) processes. However, in cases where these excited-state processes are restricted, the less common phenomenon of dual emission has been observed. This dual emission phenomenon presents an opportunity for developing biological probes and imaging agents with multiple emission bands of different wavelengths. Compared to intensity-based biosensing, where the existence and concentration of an analyte are indicated by the brightness of the probe, the emission profile response involves modifications in emission color. This enables quantification by utilizing the intensity ratio of different wavelengths, which is self-calibrating and unaffected by the probe concentration and excitation laser power. Moreover, dual-emissive probes have the potential to demonstrate distinct responses to multiple analytes at separate wavelengths, providing orthogonal detection capabilities. In this concept, we focus on iridium(III) complexes displaying fluorescence-phosphorescence or phosphorescence-phosphorescence dual emission, along with their applications as biological probes for sensing and imaging.
Collapse
Affiliation(s)
- Zhipeng Ruan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jun Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Kashyap P, Sharma P, Gohil R, Rajpurohit D, Mishra D, Shrivastav PS. Progress in appended calix[4]arene-based receptors for selective recognition of copper ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123188. [PMID: 37515889 DOI: 10.1016/j.saa.2023.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
In the past two decades, there has been significant progress in the design and development of synthetic receptors for molecular recognition as they find application in the field of chemical, biological, medical, and environmental sciences. Synthetic receptors based on calix systems appended with fluorogenic and chromogenic groups have gained considerable attention for sensing and recognition of ions and molecules. Copper (Cu2+) is an essential element required in trace amounts in all living organisms to carry out various biological processes. The aim of this review is to summarize advancement in π-conjugated fluorogenic and chromogenic groups appended to calix[4]arene motifs for detection and quantitation of Cu2+ ion. The focus is to present a comprehensive account of extended calix[4]arene systems with different linkers and highlight the unique design and binding characteristics for the recognition and sensing of Cu2+ ions.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Payal Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Ritu Gohil
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
5
|
Blade G, Wessel AJ, Terpstra K, Mirica LM. Pentadentate and Hexadentate Pyridinophane Ligands Support Reversible Cu(II)/Cu(I) Redox Couples. INORGANICS 2023; 11:446. [PMID: 39301085 PMCID: PMC11412068 DOI: 10.3390/inorganics11110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Two new ligands were synthesized with the goal of copper stabilization, N,N'-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicN4) and N-(methyl),N'-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicMeN4), by selective functionalization of HN4 and TsHN4. These two ligands, when reacted with various copper salts, generated both Cu(II) and Cu(I) complexes. These ligands and Cu complexes were characterized by various methods, such as NMR, UV-Vis, MS, and EA. Each compound was also examined electrochemically, and each revealed reversible Cu(II)/Cu(I) redox couples. Additionally, stability constants were determined via spectrophotometric titrations, and radiolabeling and cytotoxicity experiments were performed to assess the chelators relevance to their potential use in vivo as 64Cu PET imaging agents.
Collapse
Affiliation(s)
- Glenn Blade
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| | - Andrew J Wessel
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | - Karna Terpstra
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Wu SH, Zhang Z, Zheng RH, Yang R, Wang L, Shao JY, Gong ZL, Zhong YW. Dual-Emissive Monoruthenium Complexes of N(CH 3)-Bridged Ligand: Synthesis, Characterization, and Substituent Effect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6792. [PMID: 37895773 PMCID: PMC10607950 DOI: 10.3390/ma16206792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Three monoruthenium complexes 1(PF6)2-3(PF6)2 bearing an N(CH3)-bridged ligand have been synthesized and characterized. These complexes have a general formula of [Ru(bpy)2(L)](PF6)2, where L is a 2,5-di(N-methyl-N'-(pyrid-2-yl)amino)pyrazine (dapz) derivative with various substituents, and bpy is 2,2'-bipyridine. The photophysical and electrochemical properties of these compounds have been examined. The solid-state structure of complex 3(PF6)2 is studied by single-crystal X-ray analysis. These complexes show two well-separated emission bands centered at 451 and 646 nm (Δλmax = 195 nm) for 1(PF6)2, 465 and 627 nm (Δλmax = 162 nm) for 2(PF6)2, and 455 and 608 nm (Δλmax = 153 nm) for 3(PF6)2 in dilute acetonitrile solution, respectively. The emission maxima of the higher-energy emission bands of these complexes are similar, while the lower-energy emission bands are dependent on the electronic nature of substituents. These complexes display two consecutive redox couples owing to the stepwise oxidation of the N(CH3)-bridged ligand and ruthenium component. Moreover, these experimental observations are analyzed by computational investigation.
Collapse
Affiliation(s)
- Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Zhe Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Ren-Hui Zheng
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Rong Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.-Y.S.); (Y.-W.Z.)
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.-Y.S.); (Y.-W.Z.)
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.-Y.S.); (Y.-W.Z.)
| |
Collapse
|
7
|
Zhu R, Dai P, Yang J, Zhou J, Zhang J, Zhang KY, Li Y, Liu S, Lo KKW, Zhao Q. Dual-emissive Iridium(III) Complexes as Phosphorescent Probes with Orthogonal Responses to Analyte Binding and Oxygen Quenching. Angew Chem Int Ed Engl 2023; 62:e202309178. [PMID: 37503796 DOI: 10.1002/anie.202309178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
Phosphorescent probes often show sensitive response toward analytes at a specific wavelength. However, oxygen quenching usually occurs at the same wavelength and thus hinders the accurate detection of analytes. In this study, we have developed dual-emissive iridium(III) complexes that exhibit phosphorescence responses to copper(II) ions at a wavelength distinct from that where oxygen quenching occurs. The complexes displayed colorimetric phosphorescence response in aqueous solutions under different copper(II) and oxygen conditions. In cellular imaging, variation in oxygen concentration over a large range from 5 % to 80 % can modulate the intensity and lifetime of green phosphorescence without affecting the response of red phosphorescence toward intracellular copper(II) ions.
Collapse
Affiliation(s)
- Rongji Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jun Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jie Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | | | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
8
|
Pandit NR, Bej S, Das R, Ghosal N, Mondal A, Pal R, Ghosh M, Banerjee P, Biswas B. Anion-directed structural tuning of two azomethine-derived Zn 2+ complexes with optoelectronic recognition of Cu 2+ in aqueous medium with anti-cancer activities: from micromolar to femtomolar sensitivity with DFT revelation. Dalton Trans 2023; 52:11130-11142. [PMID: 37496325 DOI: 10.1039/d3dt01901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, two novel mononuclear transition metal Zn2+ complexes i.e. [Zn(HL)(N3)(OAc)] (NS-1) & [Zn(HL)2(ClO4)2] (NS-2) have been synthesised using a tridentate clickable Schiff base ligand, HL (2-methyl-2-((pyridin-2-ylmethyl)amino)propan-1-ol), and the polyatomic monoanions N3- and ClO4- for NS-1 and NS-2 respectively. Interestingly, NS-1 and NS-2 have been explored for the detection of Cu2+ with an LOD of 48.6 fM (response time ∼6 s) and 2.4 μM respectively through two mutually independent pathways that were studied using sophisticated methods like UV-Vis, cyclic voltammetry, ESI-MS etc. with theoretical DFT support. Herein, both chemosensors are equally responsive towards the detection of Cu2+ in aqueous as well as other targeted real field samples with appreciable recovery percentage (74.8-102%), demonstrating their practical applicability. Moreover, the detection of unbound Cu2+ in a human urine specimen was also analysed which may be helpful for the diagnosis of Cu2+-related disorders like Wilson's disease. Taking one step ahead, TLC strips have been employed for on-field detection of the targeted analytes by contact mode analysis. Additionally, the anti-cancer activity of these complexes has also been studied on breast cancer cells with the help of the MTT assay. It has been found that at a 0.5 mM dose, both NS-1 and NS-2 could kill 81.4% and 73.2% of cancer cells respectively. However, it has been found that NS-1 destroys normal cells together with cancer cells. Hence, NS-2 could be administered as a better anticancer drug for MDA-MB-231 cancer cells in comparison with NS-1. In a nutshell, the present work describes how anion-directed synthesis of two architecturally different metal complexes leads toward the detection of the same analyte via an independent chemodosimetric pathway along with their anti-cancer activities on breast cancer cells.
Collapse
Affiliation(s)
- Nithun Ranjan Pandit
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
| | - Sourav Bej
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Riyanka Das
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Nirajan Ghosal
- Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Ananya Mondal
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
- Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Meenakshi Ghosh
- Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Biplab Biswas
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
9
|
Jiang C, Cañada LM, Nguyen NB, Halamicek MDS, Nguyen SH, Teets TS. Substituent-Dependent Azide Addition to Isocyanides Generates Strongly Luminescent Iridium Complexes. J Am Chem Soc 2023; 145:1227-1235. [PMID: 36603163 DOI: 10.1021/jacs.2c11062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ligand-centered functionalization reactions offer diverse strategies to prepare luminescent organometallic compounds. These compounds can have unique structures that are not accessible via traditional coordination chemistry and can possess enhanced or unusual photophysical properties. Here we show that bis-cyclometalated iridium bis-isocyanide complexes (1) react with azide (N3-) to form novel luminescent structures. The fate of the reaction with azide is determined primarily by the substituent on the aryl isocyanide. Those with electron-withdrawing substituents (CF3 or NO2) react with 1 equiv of azide followed by N2 extrusion, forming aryl cyanamido products (2). With electron-donating groups on the aryl isocyanide the reactivity is more diverse, and three outcomes are possible. In two cases, the isocyanide and azide undergo a [3 + 2] cycloaddition to form a C-bound tetrazolato structure (3). In three other cases, 2 equiv of azide are involved in the formation of a previously unobserved structure, where a tetrazolato and aryl cyanamido couple and rearrange to form a chelating ligand comprised of an N-bound tetrazolato and an acyclic diaminocarbene (4). Finally, a bimetallic aryl cyanamido complex (5) is isolated in one case. All compounds are luminescent, some with exceptional photoluminescence quantum yields as high as 0.81 in solution for sky-blue emission, and 0.87 for yellow emission and 0.65 for orange-red emission in polymer films.
Collapse
Affiliation(s)
- Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Louise M Cañada
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Ngoc Bao Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Michael D S Halamicek
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Sami H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
10
|
Chu X, Huang Y, Li W, Zhao S, Li H, Lu A. Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238506. [PMID: 36500597 PMCID: PMC9741083 DOI: 10.3390/molecules27238506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Three novel Ir(III) complexes, (ppy)2Ir(L-alanine) (Ir1) (ppy = 2-phenylpyridine), (F4ppy)2Ir(L-alanine) (Ir2) (F4ppy = 2-(4-fluorophenyl)pyridine), and (F2,4,5ppy)2Ir(L-alanine) (Ir3) (F2,4,5ppy = 2-(2,4,5-trifluorophenyl)pyridine), based on simple L-alanine as ancillary ligands were synthesized and investigated. Due to the introduction of fluorine substituents on the cyclometalated ligands, complexes Ir1-Ir3 exhibited yellow to sky-blue emissions (λem = 464-509 nm) in acetonitrile solution. The photoluminescence quantum yields (PLQYs) of Ir1-Ir3 ranged from 0.48-0.69, of which Ir3 with sky-blue luminescence had the highest PLQY of 0.69. The electrochemical study and density functional theory (DFT) calculations show that the highest occupied molecular orbital (HOMOs) energy of Ir1-Ir3 are stabilized by the introduction of fluorine substituents on the cyclometalated ligands, while L-alanine ancillary ligand has little contribution to HOMOs and lowest unoccupied molecular orbitals (LUMOs). Moreover, Ir1-Ir3 presented an excellent response to Cu2+ with a high selectivity, strong anti-interference ability, and short response time. Such a detection was based on significant phosphorescence quenching of their emissions, showing the potential application in chemosensors for Cu2+.
Collapse
|
11
|
Li WH, Zhao SS, Chu X, Qin ZQ, Zhang JX, Li HY. Two phosphorescent iridium(III) complexes containing simple L-alanine ligands as efficient sensors for Cu2+ ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Aoki S, Yokoi K, Hisamatsu Y, Balachandran C, Tamura Y, Tanaka T. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Cham) 2022; 380:36. [PMID: 35948812 DOI: 10.1007/s41061-022-00401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet-triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as "post-complexation functionalization (PCF)." In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue -red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.
Collapse
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan.
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
13
|
Phosphorescent Ir(III) Complexes for Biolabeling and Biosensing. Top Curr Chem (Cham) 2022; 380:35. [PMID: 35948820 DOI: 10.1007/s41061-022-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/27/2022] [Indexed: 10/15/2022]
Abstract
Cyclometalated Ir(III) complexes exhibit strong phosphorescence emission with lifetime of submicroseconds to several microseconds at room temperature. Their synthetic versatility enables broad control of physical properties, such as charge and lipophilicity, as well as emission colors. These favorable properties have motivated the use of Ir(III) complexes in luminescent bioimaging applications. This review examines the recent progress in the development of phosphorescent biolabels and sensors based on Ir(III) complexes. It begins with a brief introduction about the basic principles of the syntheses and photophysical processes of cyclometalated Ir(III) complexes. Focus is placed on illustrating the broad imaging utility of Ir(III) complexes. Phosphorescent labels illuminating intracellular organelles, including mitochondria, lysosomes, and cell membranes, are summarized. Ir(III) complexes capable of visualization of tumor spheroids and parasites are also introduced. Facile chemical modification of the cyclometalating ligands endows the Ir(III) complexes with strong sensing ability. Sensors of temperature, pH, CO2, metal ions, anions, biosulfur species, reactive oxygen species, peptides, and viscosity have recently been added to the molecular imaging tools. This diverse utility demonstrates the potential of phosphorescent Ir(III) complexes toward bioimaging applications.
Collapse
|
14
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
15
|
Li G, Li N, Cao Y, Shi C, Liu X, Zeng R, Wu M, Li Q, Yang C, Yuan A. Deep-Red/Near-Infrared to Blue-Green Phosphorescent Iridium(III) Complexes Featuring Three Differently Charged (0, -1, and -2) Ligands: Structures, Photophysics, and Organic Light-Emitting Diode Application. Inorg Chem 2022; 61:10548-10556. [PMID: 35763374 DOI: 10.1021/acs.inorgchem.2c01443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have designed and synthesized a new family of neutral phosphorescent iridium(III) complexes (Ir1-Ir6) featuring three differently charged (0, -1, and -2) ligands, in which biphenyl (bp) is used as a dianionic (-2) ligand, 4,6-difluorophenylpyridine (dfppy) or 1-phenylisoquinoline (piq) is used as a monoanionic (-1) ligand, and 2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen), 1,2-bis(diphenylphosphanyl)benzene (dppb), or 1,2-bis(diphenylphosphanyl)ethane (dppe) is used as a neutral (0) ligand. The X-ray structures confirm that three coordination carbon atoms of all complexes assume a facial geometry, which can be beneficial to the stability of the structure. More importantly, the emitting color of the complexes can be tuned from deep red/near-infrared (NIR) (680-710 nm) to blue-green (466-496 nm) with different monoanionic (-1) ligands and neutral (0) ligands. Interestingly, the complex Ir5 shows a significant aggregation-induced phosphorescent emission effect, while Ir6 with a similar structure shows an opposite aggregation-caused quenching effect, mainly due to slight differences in the neutral (0) ligand structure. Notably, all deep red/NIR-emitting complexes (Ir1-Ir4) exhibit a distinct charge transfer (CT) excited state from the dianionic (-2) ligand to the neutral (0) ligand according to density functional theory calculations, whereas the excited state of blue-green-emitting complexes (Ir5-Ir6) displays the CT from the dianionic (-2) ligand to the monoanionic (-1) ligand. Considering better stability and optical performance, the deep red-emitting complexes (Ir2 and Ir4) with a simple structure are used as emitting layers of organic light-emitting diode devices and achieved good maximum external quantum efficiency (4.9 and 5.8%) peaking at 676 and 655 nm, respectively, with a very low turn-on voltage (2.5 V). This research provides a good strategy for the design of phosphorescent iridium complexes based on three differently charged (0, -1, and -2) ligands and their optoelectric applications.
Collapse
Affiliation(s)
- Gang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Nengquan Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yibo Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xinyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Ruoqi Zeng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Meng Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| |
Collapse
|
16
|
Kim SY, Kim JH, Lee S, Yun BS, Son HJ, Kang SO. Tuning the Photophysical Properties of Homoleptic Tris-Cyclometalated Ir(III) Complexes by Facile Modification of the Imidazo-Phenanthridine and Their Application to Phosphorescent Organic Light-Emitting Diodes. ACS OMEGA 2022; 7:17234-17244. [PMID: 35647420 PMCID: PMC9134233 DOI: 10.1021/acsomega.2c01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 05/07/2023]
Abstract
To explore the excited-state electronic structure of the blue-emitting Ir(dmp)3 dopant material (dmp = 3-(2,6-dimethylphenyl)-7-methylimidazo[1,2-f]phenanthridine), which is notable for durable blue phosphorescent organic light-emitting diode (PhOLED), a series of homoleptic dmp-based Ir(III) complexes (DMP-R, tris[3-(2,6-dimethylphenyl)-7-R-imidazo[1,2-f]phenanthridin-12-yl-κC 12,κN 1]iridium, R = H, CH3, F, and CF3) were prepared by introducing an electron-donating group (EDG; -CH3) or an electron-withdrawing group (EWG; -F and -CF3) at the 7-position of the imidazo-phenanthridine ligand. The photophysical analysis demonstrated that the alteration from EDG to EWGs led to redshifted structureless emission profiles, which were correlated with variations in the 3MLCT/3ILCT ratio in the T1 excited state. From electrochemical studies and density functional theory calculations, it turned out that the excited-state nature of the dmp-based Ir(III) complexes was significantly affected by the inductive effect of the 7-substituent of the cyclometalating dmp ligand. As a result of the lowest unoccupied molecular orbital energy stabilization by the EWGs that suppressed the non-radiative pathway from the emissive triplet excited state to the 3 d-d state, the F- and CF3-modified Ir(dmp)3 complexes (DMP-F and DMP-CF 3 ) showed quantum yields of 27-30% in the solution state, which were at least 4- or 5-fold higher than those shown by DMP-H and DMP-CH 3 . A PhOLED device based on DMP-CF 3 [CIE chromaticity (0.17, 0.39)], which demonstrated a distinct 3MLCT characteristic, exhibited better electroluminescent efficiencies with an external quantum efficiency of 13.5% than that based on DMP-CH 3 .
Collapse
|
17
|
Ge ZR, Tong X, Huang YC, Li WH, Li HY, Lu AD, Li TY. Highly Luminescent Dinuclear Iridium(III) Complexes Containing Phenanthroline-Based Neutral Ligands as Chemosensors for Cu 2+ Ion. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ze-Rong Ge
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xin Tong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yi-Chuan Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wen-Hao Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hong-Yan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ai-Dang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tian-Yi Li
- School of Chemistry and Biological Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
18
|
Ali M, Memon N, Ali M, Chana AS, Gaur R, Jiahai Y. Recent development in fluorescent probes for copper ion detection. Curr Top Med Chem 2022; 22:835-854. [DOI: 10.2174/1568026622666220225153703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Copper is the third most common heavy metal and an indispensable component of life. Variations of body copper levels, both structural and cellular, are related to a number of disorders; consequently, pathophysiological importance of copper ions demands the development of sensitivity and selective for detecting these organisms in biological systems. In recent years, the area of fluorescent sensors for detecting copper metal ions has seen revolutionary advances. Consequently, closely related fields have raised awareness of several diseases linked to copper fluctuations. Further developments in this field of analysis could pave the way for new and innovative treatments to combat these diseases. This review reports on recent progress in the advancement of three fields of fluorescent probes; chemodosimeters, near IR fluorescent probes, and ratiometric fluorescent probes. Methods used to develop these fluorescent probes and the mechanisms that govern their reaction to specific analytes and their applications in studying biological systems, are also given.
Collapse
Affiliation(s)
- Mukhtiar Ali
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Manthar Ali
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Sami Chana
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Rashmi Gaur
- Natural Products Laboratory, International Joint Laboratory of tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ye Jiahai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
| |
Collapse
|
19
|
Li Q, Shi C, Huang M, Wu C, Wang H, Wu H, Zheng Y, Yang C, Yuan A. Three Types of Charged Ligands Based Carboxyl-Containing Iridium(III) Complexes: Structures, Photophysics, and Solution Processed OLED Application. Inorg Chem 2021; 60:17699-17704. [PMID: 34739254 DOI: 10.1021/acs.inorgchem.1c02296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel family of three types of charged (0, -1, -2) ligands based phosphorescent iridium(III) complexes with different carboxyl-containing dianionic (-2) ligands have been synthesized. Their single-crystal structures show that all neutral complexes (Ir1, Ir2, and Ir3) show a trans-N^N configuration between dianionic (-2) and monoanionic (-1) ligands, which is in contrast with the trans-N^C configuration in cationic complex Ir4, which has an interesting hydrogen bond in the solid state. Notably, Ir4 shows higher luminescence efficiency and an obvious blue shift emission relative to those in Ir1, Ir2, and Ir3. DFT calculations demonstrate that all neutral complexes (Ir1, Ir2, and Ir3) exhibit ligand-to-ligand charge transfer (LLCT) excited state character from the dianionic (-2) ligand to the neutral (0) ligand, which are completely different from the cationic complex Ir4 that exhibits an LLCT excited state from the monoanionic (-1) ligand to the neutral (0) ligand. Considering better solubility, Ir1 was eventually used in solution-processed OLED and achieved moderate efficiency (6.6%, 14.3 cd A-1, 2.8 lm W-1) with an orange light displaying CIEx,y coordinates of (0.53, 0.46). This work provides a new strategy to construct three types of charged (0, -1, -2) ligands based phosphorescent iridium(III) complexes and extends the range of iridium complex luminescent materials.
Collapse
Affiliation(s)
- Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Manli Huang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Cuicui Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Hongzhen Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Haotian Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Ying Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| |
Collapse
|
20
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 686] [Impact Index Per Article: 171.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
21
|
Zhao R, Wang Z, Tian X, Shu H, Yang Y, Xiao X, Wang Y. Excellent fluorescence detection of Cu 2+in water system using N-acetyl-L-cysteines modified CdS quantum dots as fluorescence probe. NANOTECHNOLOGY 2021; 32:405707. [PMID: 34192671 DOI: 10.1088/1361-6528/ac1016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 05/18/2023]
Abstract
View of the negative influence of metal ions on natural environment and human health, fast and quantitative detection of metals ions in water systems is significant. Ultra-small grain size CdS quantum dots (QDs) modified with N-acetyl-L-cysteines (NALC) (NALC-CdS QDs) are successfully prepared via a facile hydrothermal route. Based on the changes of fluorescence intensity of NALC-CdS QDs solution after adding metal ions, the fluorescence probe made from the NALC-CdS QDs is developed to detect metal ions in water systems. Among various metal ions, the fluorescence of NALC-CdS QDs effectively quenched by the addition of Cu2+, the probe shows high sensitivity and selectivity for detecting Cu2+in other interferential metal ions coexisted system. Importantly, the fluorescence intensity of NALC-CdS QDs changes upon the concentration of Cu2+, the probe displays an excellent linear relationship between the fluorescence quenching rate and the concentration of Cu2+in ranging from 1 to 25μM. Besides, the detected limitation of the probe towards Cu2+as low as 0.48μM. The measurement of Cu2+in real water sample is also carried out using the probe. The results indicate that NALC-CdS QDs fluorescence probe may be a promising candidate for quantitative Cu2+detection in practical application.
Collapse
Affiliation(s)
- Rongjun Zhao
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Zhezhe Wang
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Xu Tian
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Hui Shu
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yue Yang
- Department of Physics, Yunnan University, 650091 Kunming, People's Republic of China
| | - Xuechun Xiao
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yude Wang
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091 Kunming, People's Republic of China
| |
Collapse
|
22
|
Das R, Bej S, Hirani H, Banerjee P. Trace-Level Humidity Sensing from Commercial Organic Solvents and Food Products by an AIE/ESIPT-Triggered Piezochromic Luminogen and ppb-Level "OFF-ON-OFF" Sensing of Cu 2+: A Combined Experimental and Theoretical Outcome. ACS OMEGA 2021; 6:14104-14121. [PMID: 34124433 PMCID: PMC8190783 DOI: 10.1021/acsomega.1c00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Selective and sensitive moisture sensors have attracted immense attention due to their ability to monitor the humidity content in industrial solvents, food products, etc., for regulating industrial safety management. Herein, a hydroxy naphthaldehyde-based piezochromic luminogen, namely, 1-{[(2-hydroxyphenyl)imino]methyl}naphthalen-2-ol (NAP-1), has been synthesized and its photophysical and molecular sensing properties have been investigated by means of various spectroscopic tools. Owing to the synergistic effect of both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) along with the restriction of C=N isomerization, the probe shows bright yellowish-green-colored keto emission with high quantum yield after the interaction with a trace amount of water. This makes NAP-1 a potential sensor for monitoring water content in the industrial solvents with very low detection limits of 0.033, 0.032, 0.034, and 0.033% (v/v) from tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), and methanol, respectively. The probe could be used in the food industry to detect trace moisture in the raw food samples. The reversible switching behavior of NAP-1 makes it suitable for designing an INHIBIT logic gate with an additional application in inkless writing. In addition, an Internet of Things-(IoT) based prototype device has been proposed for on-site monitoring of the moisture content by a smartphone via Bluetooth or Wi-Fi. The aggregated probe also has the ability to recognize Cu2+ from a purely aqueous medium via the chelation-enhanced quenching (CHEQ) mechanism, leading to ∼84% fluorescence quenching with a Stern-Volmer quenching constant of 1.46 × 104 M-1 and with an appreciably low detection threshold of 57.2 ppb, far below than recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (U.S. EPA). The spectroscopic and theoretical calculations (density functional theory (DFT), time-dependent DFT (TD-DFT), and natural bond orbital (NBO) analysis) further empower the understanding of the mechanistic course of the interaction of the host-guest recognition event.
Collapse
Affiliation(s)
- Riyanka Das
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Sourav Bej
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Harish Hirani
- CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India
- Mechanical
Engineering Department, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Priyabrata Banerjee
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| |
Collapse
|
23
|
Haribabu J, Tamura Y, Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Yamada Y, Karvembu R, Aoki S. Synthesis and Anticancer Properties of Bis‐ and Mono(cationic peptide) Hybrids of Cyclometalated Iridium(III) Complexes: Effect of the Number of Peptide Units on Anticancer Activity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jebiti Haribabu
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
- Research Institute of Biomedical Science Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yasuyuki Yamada
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- JST, PRESTO, 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
24
|
Bonfiglio A, McCartin C, Carrillo U, Cebrián C, Gros PC, Fournel S, Kichler A, Daniel C, Mauro M. Ir
III
−Pyridoannelated N‐Heterocyclic Carbene Complexes: Potent Theranostic Agents via Mitochondria Targeting. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Bonfiglio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504 Université de Strasbourg & CNRS 23 rue du Loess 67083 Strasbourg France
| | - Conor McCartin
- 3Bio Team, CAMB UMR7199 CNRS-University of Strasbourg Faculté de Pharmacie 74 route du Rhin 67401 Illkirch cedex France
| | | | | | | | - Sylvie Fournel
- 3Bio Team, CAMB UMR7199 CNRS-University of Strasbourg Faculté de Pharmacie 74 route du Rhin 67401 Illkirch cedex France
| | - Antoine Kichler
- 3Bio Team, CAMB UMR7199 CNRS-University of Strasbourg Faculté de Pharmacie 74 route du Rhin 67401 Illkirch cedex France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg-CNRS 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504 Université de Strasbourg & CNRS 23 rue du Loess 67083 Strasbourg France
| |
Collapse
|
25
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Chen BB, Pan NL, Liao JX, Huang MY, Jiang DC, Wang JJ, Qiu HJ, Chen JX, Li L, Sun J. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer and antibacterial agents to induce both autophagy and apoptosis. J Inorg Biochem 2021; 219:111450. [PMID: 33826973 DOI: 10.1016/j.jinorgbio.2021.111450] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/28/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial damage will hinder the energy production of cells and produce excessive ROS (reactive oxygen species), resulting in cell death through autophagy or apoptosis. In this paper, four cyclometalated iridium(III) complexes (Ir1: [Ir(piq)2L]PF6; Ir2: [Ir(bzq)2L]PF6; Ir3: [Ir(dfppy)2L]PF6; Ir4: [Ir(thpy)2L]PF6; piq = 1-phenylisoquinoline; bzq = benzo[h]quinoline; dfppy = 2-(2,4-difluorophenyl)pyridine;thpy = 2-(2-thienyl)pyridine; L = 1,10-phenanthroline-5-amine) were synthesized and characterized. Cytotoxicity tests show that these complexes have excellent cytotoxicity to cancer cells, and mechanism studies indicatethat these complexes can specifically target mitochondria. Complexes Ir1 and Ir2 can damage the function of mitochondria, subsequently increasing intracellular levels of ROS, decreasing MMP (mitochondrial membrane potential), and interfering with ATP energy production, which leads to autophagy and apoptosis. Furthermore, autophagy induced by Ir1 and Ir2 can promote cell death in coordination with apoptosis. Surprisingly, these four complexes also showed moderate antibacterial activity to S. aureusand P. aeruginosa.
Collapse
Affiliation(s)
- Bing-Bing Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Pharmacy Department, The People's Hospital of Gaozhou, Maoming 525200, China
| | - Nan-Lian Pan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dong-Chun Jiang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Jie Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Hai-Jun Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Lin Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
27
|
Wang T, Hu Z, Nie X, Huang L, Hui M, Sun X, Zhang G. Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp 3-linked donor-acceptor electronic coupling. Nat Commun 2021; 12:1364. [PMID: 33649318 PMCID: PMC7921125 DOI: 10.1038/s41467-021-21676-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Aggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.
Collapse
Affiliation(s)
- Tao Wang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhubin Hu
- Division of Arts and Science, NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, China
| | - Xiancheng Nie
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Linkun Huang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Miao Hui
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Xiang Sun
- Division of Arts and Science, NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, China. .,Department of Chemistry, New York University, New York, NY, USA.
| | - Guoqing Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
28
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
29
|
Kumar S, Singh S, Kumar A, Kumar P. Recognition, mechanistic investigation and applications for the detection of biorelevant Cu2+/Fe2+/Fe3+ ions by ruthenium(ii)-polypyridyl based fluorescent sensors. Dalton Trans 2021; 50:2705-2721. [DOI: 10.1039/d0dt03488f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective recognition of biorelevant Cu2+ and Fe2+/Fe3+ ions using fluorescent Ru(ii)-polypyridyl based sensors via both “turn-on” and “turn-off” emissive response is the main focus of present article.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Applied Sciences and Humanities
- School of Engineering
- University of Petroleum and Energy Studies
- Dehradun-248007
- India
| | - Siddhant Singh
- Department of Chemistry
- School of Physical Sciences (SoPS)
- Doon University
- Dehradun
- India
| | - Arun Kumar
- Department of Chemistry
- School of Physical Sciences (SoPS)
- Doon University
- Dehradun
- India
| | - Pramod Kumar
- Department of Chemistry
- Mahamana Malviya College Khekra (Baghpat)
- C.C.S. University Meerut
- India
| |
Collapse
|
30
|
Majee P, Singha DK, Daga P, Hui S, Mahata P, Mondal SK. Photophysical studies of a room temperature phosphorescent Cd( ii) based MOF and its application towards ratiometric detection of Hg 2+ ions in water. CrystEngComm 2021. [DOI: 10.1039/d1ce00333j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A cadmium based MOF showed room temperature phosphorescence and interacted very selectively with Hg2+ ions. The phosphorescence emission at 520 nm gradually disappeared while low intensity fluorescence at 383 nm gradually increased.
Collapse
Affiliation(s)
- Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Debal Kanti Singha
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Pooja Daga
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
31
|
Das S, Pratim Das P, Walton JW, Ghoshal K, Patra L, Bhattacharyya M. FRET based ratiometric switch for selective sensing of Al 3+ with bio-imaging in human peripheral blood mononuclear cells. NEW J CHEM 2021. [DOI: 10.1039/d0nj05546h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FRET based ratiometric switch for selective sensing of Al3+ with bio-imaging in human peripheral blood mononuclear cells (PBMCs).
Collapse
Affiliation(s)
- Sangita Das
- Department of Chemistry
- Durham University
- Durham
- UK
| | - Partha Pratim Das
- Department of Earth System Sciences
- Yonsei University
- Seoul 120749
- Korea
| | | | - Kakali Ghoshal
- Department of Biochemistry
- University of Calcutta
- Kolkata 700019
- India
| | - Lakshman Patra
- Department of Chemistry
- Jadavpur University
- Jadavpur, Kolkata
- India
| | | |
Collapse
|
32
|
Deng P, Pei Y, Liu M, Song W, Wang M, Wang F, Wu C, Xu L. A rapid “on–off–on” mitochondria-targeted phosphorescent probe for selective and consecutive detection of Cu2+ and cysteine in live cells and zebrafish. RSC Adv 2021; 11:7610-7620. [PMID: 35423247 PMCID: PMC8695007 DOI: 10.1039/d0ra10794h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
The detection of mitochondrial Cu2+ and cysteine is very important for investigating cellular functions or dysfunctions. In this study, we designed a novel cyclometalated iridium(iii) luminescence chemosensor Ir bearing a bidentate chelating pyrazolyl-pyridine ligand as a copper-specific receptor. The biocompatible and photostable Ir complex exhibited not only mitochondria-targeting properties but also an “on–off–on” type phosphorescence change for the reversible dual detection of Cu2+ and cysteine. Ir had a highly sensitive (detection limit = 20 nM) and selective sensor performance for Cu2+ in aqueous solution due to the formation of a non-phosphorescent Ir–Cu(ii) ensemble through 1 : 1 binding. According to the displacement approach, Ir was released from the Ir–Cu(ii) ensemble accompanied with “turn-on” phosphorescence in the presence of 0–10 μM cysteine, with a low detection limit of 54 nM. This “on–off–on” process could be accomplished within 30 s and repeated at least five times without significant loss of signal strength. Moreover, benefiting from its good permeability, low cytotoxicity, high efficiency, and anti-interference properties, Ir was found to be suitable for imaging and detecting mitochondrial Cu2+ and cysteine in living cells and zebrafish. An iridium(iii) complex-based mitochondria targeting phosphorescent probe for selectively detecting Cu2+ and Cys in aqueous solution, living cells and zebrafish has been developed.![]()
Collapse
Affiliation(s)
- Peipei Deng
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| | - Yongyan Pei
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| | - Mengling Liu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| | - Wenzhu Song
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| | - Mengru Wang
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| | - Feng Wang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Chunxian Wu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| | - Li Xu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| |
Collapse
|
33
|
de Almeida A, Bonsignore R. Fluorescent metal-based complexes as cancer probes. Bioorg Med Chem Lett 2020; 30:127219. [DOI: 10.1016/j.bmcl.2020.127219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/09/2023]
|
34
|
Mullin WJ, Qin H, Mani T, Müller P, Panzer MJ, Thomas SW. Turning on solid-state phosphorescence of platinum acetylides with aromatic stacking. Chem Commun (Camb) 2020; 56:6854-6857. [PMID: 32432580 DOI: 10.1039/d0cc02119a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neat solids that phosphoresce under ambient conditions are rare due to aggregation-caused quenching. This communication describes a platinum acetylide (PtPE) that phosphoresces as a solid due to programmed aromatic stacking interactions of pendant groups that prevent intermolecular aggregation.
Collapse
Affiliation(s)
- William J Mullin
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Correia BB, Brown TR, Reibenspies JH, Lee HS, Hancock RD. Exciplex formation as an approach to selective Copper(II) fluorescent sensors. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Mitochondria-targeted phosphorescent cyclometalated iridium(III) complexes: synthesis, characterization, and anticancer properties. J Biol Inorg Chem 2020; 25:597-607. [PMID: 32232583 DOI: 10.1007/s00775-020-01783-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023]
Abstract
Cyclometalated iridium(III) complexes represent a promising approach to developing new anticancer metallodrugs. In this work, three phosphorescent cyclometalated iridium(III) complexes Ir1-Ir3 have been explored as mitochondria-targeted anticancer agents. All three complexes display higher antiproliferative activity than cisplatin against the cancer cells screened, and with the IC50 values ranging from 0.23 to 5.6 μM. Colocalization studies showed that these complexes are mainly localized in the mitochondria. Mechanism studies show that these complexes exert their anticancer efficacy through initiating a series of events related to mitochondrial dysfunction, including depolarization of mitochondrial membrane potential (MMP), elevation of intracellular reactive oxygen species (ROS) levels, and induction of apoptosis. Mitochondria-targted cyclometalated iridium complexes induce apoptosis through depolarized mitochondria, elevation of intracellular ROS and activated caspase.
Collapse
|
37
|
Eremina AA, Kinzhalov MA, Katlenok EA, Smirnov AS, Andrusenko EV, Pidko EA, Suslonov VV, Luzyanin KV. Phosphorescent Iridium(III) Complexes with Acyclic Diaminocarbene Ligands as Chemosensors for Mercury. Inorg Chem 2020; 59:2209-2222. [DOI: 10.1021/acs.inorgchem.9b02833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anzhelika A. Eremina
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Mikhail A. Kinzhalov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Evgene A. Katlenok
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Andrey S. Smirnov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Elena V. Andrusenko
- TheoMAT Group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Evgeny A. Pidko
- TheoMAT Group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Vitalii V. Suslonov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Konstantin V. Luzyanin
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
38
|
Kumar P, Kumar S. Copper ion luminescence on/off sensing by a quinoline-appended ruthenium(II)-polypyridyl complex in aqueous media. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Fan Q, Li J, Zhu Y, Yang Z, Shen T, Guo Y, Wang L, Mei T, Wang J, Wang X. Functional Carbon Quantum Dots for Highly Sensitive Graphene Transistors for Cu 2+ Ion Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4797-4803. [PMID: 31909585 DOI: 10.1021/acsami.9b20785] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cu2+ ions play essential roles in various biological events that occur in the human body. It is important to establish an efficient and reliable detection of Cu2+ ions for people's health. The solution-gated graphene transistors (SGGTs) have been extensively investigated as a promising platform for chemical and biological sensing applications. Herein, highly sensitive and highly selective sensor for Cu2+ ion detection is successfully constructed based on SGGTs with gate electrodes modified by functional carbon quantum dots (CQDs). The sensing mechanism of the sensor is that the coordination of CQDs and Cu2+ ions induces the capacitance change of the electrical double layer (EDL) near the gate electrode and then results in the change of channel current. Compared to other metal ions, Cu2+ ions have an excellent binding nature with CQDs that make it an ultrahigh selective sensor. The CQD-modified sensor achieves excellent Cu2+ ion detection with a minimal level of concentration (1 × 10-14 M), which is several orders of magnitude lower than the values obtained from other conventional detection methods. Interestingly, the device also displays a quick response time on the order of seconds. Due to the functionalized nature of CQDs, SGGTs with CQD-modified gate show good prospects to achieve multifunctional sensing platform in biochemical detections.
Collapse
Affiliation(s)
- Qin Fan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , China
| | - Yuhua Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , China
| | - Zilu Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , China
| | - Tao Shen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , China
| | - Yizhong Guo
- Institute of Microstructure and Properties of Advanced Materials , Beijing University of Technology , Beijing 100124 , China
| | - Lihua Wang
- Institute of Microstructure and Properties of Advanced Materials , Beijing University of Technology , Beijing 100124 , China
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , China
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , China
| |
Collapse
|
40
|
Scattergood PA, Ranieri AM, Charalambou L, Comia A, Ross DAW, Rice CR, Hardman SJO, Heully JL, Dixon IM, Massi M, Alary F, Elliott PIP. Unravelling the Mechanism of Excited-State Interligand Energy Transfer and the Engineering of Dual Emission in [Ir(C ∧N) 2(N ∧N)] + Complexes. Inorg Chem 2020; 59:1785-1803. [PMID: 31934759 DOI: 10.1021/acs.inorgchem.9b03003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fundamental insights into the mechanism of triplet-excited-state interligand energy transfer dynamics and the origin of dual emission for phosphorescent iridium(III) complexes are presented. The complexes [Ir(C∧N)2(N∧N)]+ (HC∧N = 2-phenylpyridine (1a-c), 2-(2,4-difluorophenyl)pyridine (2a-c), 1-benzyl-4-phenyl-1,2,3-triazole (3a-c); N∧N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (pytz, a), 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (pymtz, b), 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (pyztz, c)) are phosphorescent in room-temperature fluid solutions from triplet metal-to-ligand charge transfer (3MLCT) states admixed with either ligand-centered (3LC) (1a, 2a, and 2b) or ligand-to-ligand charge transfer (3LL'CT) character (1c, 2c, and 3a-c). Particularly striking is the observation that pyrimidine-based complex 1b exhibits dual emission from both 3MLCT/3LC and 3MLCT/3LL'CT states. At 77 K, the 3MLCT/3LL'CT component is lost from the photoluminescence spectra of 1b, with emission exclusively arising from its 3MLCT/3LC state, while for 2c switching from 3MLCT/3LL'CT- to 3MLCT/3LC-based emission is observed. Femtosecond transient absorption data reveal distinct spectral signatures characteristic of the population of 3MLCT/3LC states for 1a, 2a, and 2b which persist throughout the 3 ns time frame of the experiment. These 3MLCT/3LC state signatures are apparent in the transient absorption spectra for 1c and 2c immediately following photoexcitation but rapidly evolve to yield spectral profiles characteristic of their 3MLCT/3LL'CT states. Transient data for 1b reveals intermediate behavior: the spectral features of the initially populated 3MLCT/3LC state also undergo rapid evolution, although to a lesser extent than that observed for 1c and 2c, behavior assigned to the equilibration of the 3MLCT/3LC and 3MLCT/3LL'CT states. Density functional theory (DFT) calculations enabled minima to be optimized for both 3MLCT/3LC and 3MLCT/3LL'CT states of 1a-c and 2a-c. Indeed, two distinct 3MLCT/3LC minima were optimized for 1a, 1b, 2a, and 2b distinguished by upon which of the two C∧N ligands the excited electron resides. The 3MLCT/3LC and 3MLCT/3LL'CT states for 1b are very close in energy, in excellent agreement with experimental data demonstrating dual emission. Calculated vibrationally resolved emission spectra (VRES) for the complexes are in excellent agreement with experimental data, with the overlay of spectral maxima arising from emission from the 3MLCT/3LC and 3MLCT/3LL'CT states of 1b convincingly reproducing the observed experimental spectral features. Analysis of the optimized excited-state geometries enable the key structural differences between the 3MLCT/3LC and 3MLCT/3LL'CT states of the complexes to be identified and quantified. The calculation of interconversion pathways between triplet excited states provides for the first time a through-space mechanism for a photoinduced interligand energy transfer process. Furthermore, examination of structural changes between the possible emitting triplet excited states reveals the key bond vibrations that mediate energy transfer between these states. This work therefore provides for the first time detailed mechanistic insights into the fundamental photophysical processes of this important class of complexes.
Collapse
Affiliation(s)
- Paul A Scattergood
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom.,Centre for Functional Materials , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Anna M Ranieri
- School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces , Curtin University , Building 500, Kent Street , Bentley , Western Australia 6845 , Australia
| | - Luke Charalambou
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Adrian Comia
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Daniel A W Ross
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Craig R Rice
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques , UMR 5626 CNRS/Université Toulouse 3 - Paul Sabatier, Université de Toulouse , 118 route de Narbonne , Toulouse 31062 , France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques , UMR 5626 CNRS/Université Toulouse 3 - Paul Sabatier, Université de Toulouse , 118 route de Narbonne , Toulouse 31062 , France
| | - Massimiliano Massi
- School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces , Curtin University , Building 500, Kent Street , Bentley , Western Australia 6845 , Australia
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques , UMR 5626 CNRS/Université Toulouse 3 - Paul Sabatier, Université de Toulouse , 118 route de Narbonne , Toulouse 31062 , France
| | - Paul I P Elliott
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom.,Centre for Functional Materials , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| |
Collapse
|
41
|
Benjamin H, Zheng Y, Kozhevnikov VN, Siddle JS, O'Driscoll LJ, Fox MA, Batsanov AS, Griffiths GC, Dias FB, Monkman AP, Bryce MR. Unusual dual-emissive heteroleptic iridium complexes incorporating TADF cyclometalating ligands. Dalton Trans 2020; 49:2190-2208. [DOI: 10.1039/c9dt04672k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Five new neutral heteroleptic iridium(iii) complexes IrL2(pic) (2–6) based on the archetypical blue emitter FIrpic have been synthesised.
Collapse
Affiliation(s)
- Helen Benjamin
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | - Yonghao Zheng
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
- School of Optoelectronic Science and Engineering
| | - Valery N. Kozhevnikov
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
- Department of Applied Sciences
| | | | | | - Mark A. Fox
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | | | | | | | | | |
Collapse
|
42
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
43
|
Cyclometalated Iridium (III) complexes: Recent advances in phosphorescence bioimaging and sensing applications. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5413] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Alam P, Climent C, Alemany P, Laskar IR. “Aggregation-induced emission” of transition metal compounds: Design, mechanistic insights, and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100317] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Ma DL, Wong SY, Kang TS, Ng HP, Han QB, Leung CH. Iridium(III)-based chemosensors for the detection of metal ions. Methods 2019; 168:3-17. [DOI: 10.1016/j.ymeth.2019.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023] Open
|
46
|
Qu Y, Wu Y, Wang C, Zhao K, Wu H. A selective fluorescence probe for copper(II) ion in aqueous solution based on a 1,8-naphthalimide Schiff base derivative. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2019. [DOI: 10.1515/znb-2019-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
In order to realize real-time monitoring of Cu2+, a new fluorescent probe HL, a Schiff base derivative of N-n-butyl-4-[2]-1,8-naphthalimide, has been designed and synthesized. In methanol-HEPES [2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid] solution (1:1, v/v, pH = 7.4) HL showed excellent selectivity towards Cu2+ over other common coexisting metal ions. The fluorescence intensity for HL showed a good linearity with the concentration of Cu2+ ions in the range of 0.5–5.0 μm. Based on combined fluorescence titration, Job’s plot analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry results, Cu2+ forms a 1:2 complex with L. The fluorescence intensity of HL exhibits significant quenching after binding with Cu2+, owing to the strong, intrinsic paramagnetic behavior of Cu2+. Ultimately, in order to test the performance of the synthesized probe, HL was preliminarily applied to the determination of Cu2+ in the Yellow River and in tap water with satisfying results.
Collapse
Affiliation(s)
- Yao Qu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Yancong Wu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Cong Wang
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Kun Zhao
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Huilu Wu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| |
Collapse
|
47
|
Tabbì G, Magrì A, Rizzarelli E. The copper(II) binding centres of carbonic anhydrase are differently affected by reductants that ensure the redox intracellular environment. J Inorg Biochem 2019; 199:110759. [PMID: 31299377 DOI: 10.1016/j.jinorgbio.2019.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/25/2023]
Abstract
Copper is involved in several biological processes. The static and labile copper pools are controlled by means of a network of influx and efflux transporters, storage proteins, chaperones, transcription factors and small molecules as glutathione (GSH), which contributes to the cell reducing environment. To follow the fate of intracellular copper labile pool, a variant of human apocarbonic anhydrase has been proposed as fluorescent probe to monitor cytoplasmic Cu2+. Aware that in this cellular compartment copper ion is present as Cu+, electron spin resonance technique (ESR) was used to ascertain whether (bovine or human) carbonic anhydrase (CA) was able to accommodate Cu+ in the same sites occupied by Cu2+, in the presence of naturally occurring reducing agents such as ascorbate and GSH. Our ESR results on Cu2+ complexes with CA allow for a complete characterization of the two metal binding sites of the protein in solution. The use of the reported affinity constants of zinc in the catalytic site and of Cu2+ in the peripheral and catalytic site, allow us to obtain the speciation of copper species mimicking the spectroscopic study conditions. The different Cu2+ coordination features in the catalytic and the peripheral (the N-terminus cleft mouth) binding sites influence the chemical reduction effect of the two main naturally occurring reductants. Ascorbate reversibly reduces the Cu2+ complex with CA, while glutathione irreversibly induces the formation of Cu2+ complex with its oxidized form (GSSG). Our results questioned the use of CA as intracellular Cu2+ sensor. Furthermore, translating these findings to intracellular environment, the conversion of GSH in GSSG can significantly alter the metallostasis.
Collapse
Affiliation(s)
- Giovanni Tabbì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy
| | - Antonio Magrì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy; Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania, Italy; Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, Bari, Italy.
| |
Collapse
|
48
|
Arora A, Kaushal J, Kumar A, Kumar P, Kumar S. Ruthenium(II)‐Polypyridyl‐Based Sensor Bearing a DPA Unit for Selective Detection of Cu(II) Ion in Aqueous Medium. ChemistrySelect 2019. [DOI: 10.1002/slct.201900682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aayushi Arora
- Department of ChemistrySchool of Physical Sciences (SoPS)Doon University Dehradun, Uttarakhand India
| | - Jolly Kaushal
- Department of ChemistrySchool of Physical Sciences (SoPS)Doon University Dehradun, Uttarakhand India
| | - Arun Kumar
- Department of ChemistrySchool of Physical Sciences (SoPS)Doon University Dehradun, Uttarakhand India
| | - Pramod Kumar
- Department of ChemistryMahamana Malviya College Khekra (Baghpat)C.C.S. University Meerut India
| | - Sushil Kumar
- Department of ChemistrySchool of Physical Sciences (SoPS)Doon University Dehradun, Uttarakhand India
| |
Collapse
|
49
|
Choung KS, Marroquin K, Teets TS. Cyclometalated iridium-BODIPY ratiometric O 2 sensors. Chem Sci 2019; 10:5124-5132. [PMID: 31183064 PMCID: PMC6524664 DOI: 10.1039/c9sc00696f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/12/2019] [Indexed: 01/05/2023] Open
Abstract
Here we introduce a new class of ratiometric O2 sensors for hypoxic environments. Two-component structures composed of phosphorescent cyclometalated Ir(iii) complexes and the well-known organic fluorophore BODIPY have been prepared by the 1 : 1 reaction of bis-cyclometalated iridium synthons with pyridyl-substituted BODIPY compounds. Two different cyclometalating ligands are used, which determine the relative energies of the iridium-centered and BODIPY-centered excited states, and the nature of the linker between iridium and BODIPY also has a small influence on the photoluminescence. Some of the conjugates exhibit dual emission, with significant phosphorescence from the iridium site and fluorescence from the BODIPY, and thus function as ratiometric oxygen sensors. Oxygen quenching experiments demonstrate that as O2 is added the phosphorescence is quenched while the fluorescence is unaffected, with dynamic ranges that are well suited for hypoxic sensing (pO2 < 160 mmHg).
Collapse
Affiliation(s)
- Ku Sun Choung
- University of Houston , Department of Chemistry , 3585 Cullen Blvd., Room 112 , Houston , TX 77204-5003 , USA .
| | - Karen Marroquin
- University of Houston , Department of Chemistry , 3585 Cullen Blvd., Room 112 , Houston , TX 77204-5003 , USA .
| | - Thomas S Teets
- University of Houston , Department of Chemistry , 3585 Cullen Blvd., Room 112 , Houston , TX 77204-5003 , USA .
| |
Collapse
|
50
|
Rajaswathi K, Jayanthi M, Rajmohan R, Anbazhagan V, Vairaprakash P. Simple admixture of 4-nitrobenzaldehyde and 2,4-dimethylpyrrole for efficient colorimetric sensing of copper(II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:308-314. [PMID: 30677599 DOI: 10.1016/j.saa.2019.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 05/25/2023]
Abstract
An easily accessible chemo-probe based on physical mixture of 2,4-dimethylpyrrole and 4-nitrobenzaldehyde has been developed. Based on NMR spectroscopic analysis, catalyst free formation of dipyrromethane was observed in the physical mixture of chemo-probe. The probe is utilized in effective colorimetric sensing of copper(II) ions present in environmental solutions by instantaneous appearance of red colour, even in the co-existence of various metal ions. The lowest detection limit of 2.51 μM for this chemo-probe towards copper(II) sensing is significantly lower than the WHO prescribed level (<30 μM of copper(II) ions) in potable water. The sensing mechanism is explained via rapid formation of bis(dipyrrinato)copper(II) complex, as confirmed by Jobs plot, UV-Vis spectroscopy and IR spectroscopy.
Collapse
Affiliation(s)
- Karnan Rajaswathi
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Muruganandam Jayanthi
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Rajamani Rajmohan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|