1
|
Lorenz-Ochoa KA, Cho M, Parekh SH, Baiz CR. Interaction-Dependent Secondary Structure of Peptides in Biomolecular Condensates. J Am Chem Soc 2024; 146:33616-33625. [PMID: 39591652 DOI: 10.1021/jacs.4c11226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Biomolecular condensates provide a mechanism for compartmentalization of biomolecules in eukaryotic cells. These liquid-like condensates are formed via liquid-liquid phase separation, by a plethora of interactions, and can mediate several biological processes in healthy cells. Expansions of dipeptide repeat proteins, DPRs, in which arginine rich DPRs like poly-proline-arginine (PR), and poly-glycine-arginine (GR), partition RNA into condensates can however induce cell toxicity. Here, we use (GR)20 as a model for biological poly-GR and condense it using either excluded volume interactions with polyethylene glycol (PEG) as a crowder or direct electrostatic interactions with RNA oligomers. Using two-dimensional infrared (2D IR) spectroscopy, we observe that (GR)20 condensed through an excluded volume forms β-sheet structures, whereas (GR)20 condensed with RNA forms loops. We also investigate local hydrogen-bond dynamics in the condensate and compare the measurements with molecular dynamics simulations. Hydrogen bond lifetimes undergo a marked slowdown compared to dynamics in the dilute phase. This is representative of confined water within the percolated networks inside the condensate due to the interaction present in the condensate disrupting H-bond networks. Overall, our results show that both protein structure and dynamics are inherently dependent on the type of interactions that stabilize the condensates.
Collapse
Affiliation(s)
- Keegan A Lorenz-Ochoa
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Moonyeon Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Qian C, Liu Y, Meng W, Jiang Y, Wang S, Wang L. Modeling Infrared Spectroscopy of Nucleic Acids: Integrating Vibrational Non-Condon Effects with Machine Learning Schemes. J Chem Theory Comput 2024; 20:10080-10094. [PMID: 39526974 DOI: 10.1021/acs.jctc.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vibrational non-Condon effects, which describe how molecular vibrational transitions are influenced by a system's rotational and translational degrees of freedom, are often overlooked in spectroscopy studies of biological macromolecules. In this work, we explore these effects in the modeling of infrared (IR) spectra for nucleic acids in the 1600-1800 cm-1 region. Through electronic structure calculations, we reveal that the transition dipole moments of the C═O and C═C stretching modes in nucleobases are highly sensitive to solvation, hydrogen bonding, and base stacking conditions. To incorporate vibrational non-Condon effects into spectroscopy modeling, we use local electric fields on chromophore atoms as collective coordinates and leverage experimental IR spectra of oligonucleotides to develop deep neural network-based transition dipole strength (TDS) maps for the C═O and C═C chromophores. By integrating molecular dynamics simulations with a mixed quantum/classical treatment of the line shape theory, we apply the TDS maps to calculate the IR spectra of nucleoside 5'-monophosphates, DNA double helices and yeast phenylalanine tRNA. The resulting theoretical spectra show quantitative agreement with experimental measurements. While the predictions for nucleoside 5'-monophosphates are comparable to baseline performance, the TDS maps yield significantly improved IR peak intensities across all oligonucleotides. This theoretical framework effectively bridges atomistic simulations and IR spectroscopy experiments, offering molecular insights into how vibrational non-Condon effects impact the observed spectral features.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yaoyukun Jiang
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Sijian Wang
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Park JY, Kang M, Lim S, Cho H, Yang S, Baek SY, Tan L, Song C, Lee M, Yeom B, Ha JS, Lee S, Kim Y. Assembly of 2′,3′-Cyclic guanosine Monophosphate-Adenosine monophosphate and their spontaneous intracellular disassembly for enhanced antitumor immunity via natural STING pathway activation. CHEMICAL ENGINEERING JOURNAL 2024; 500:157037. [DOI: 10.1016/j.cej.2024.157037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Balduzzi E, Geinguenaud F, Sordyl D, Maiti S, Farsani MA, Nikolaev G, Arluison V, Bujnicki JM. NAIRDB: a database of Fourier transform infrared (FTIR) data for nucleic acids. Nucleic Acids Res 2024:gkae885. [PMID: 39413200 DOI: 10.1093/nar/gkae885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The Nucleic Acid InfraRed Data Bank (NAIRDB) serves as a comprehensive public repository dedicated to the archival and free distribution of Fourier transform infrared (FTIR) spectral data specific to nucleic acids. This database encompasses a collection of FTIR spectra covering diverse nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids and their various derivatives. NAIRDB covers details of the experimental conditions for FTIR measurements, literature links, primary sequence data, information about experimentally determined structures for related nucleic acid molecules and/or computationally modeled 3D structures. All entries undergo expert validation and curation to maintain the completeness, consistency and quality of the data. NAIRDB can be searched by similarity of nucleic acid sequences or by direct comparison of spectra. The database is open for the submission of the FTIR data for nucleic acids. NAIRDB is available at https://nairdb.genesilico.pl.
Collapse
Affiliation(s)
- Elsa Balduzzi
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
| | - Frédéric Geinguenaud
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, 74 rue Marcel Cachin, F-93017 Bobigny, France
| | - Dominik Sordyl
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Satyabrata Maiti
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Grigory Nikolaev
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|
5
|
Perets EA, Konstantinovsky D, Santiago T, Videla PE, Tremblay M, Velarde L, Batista VS, Hammes-Schiffer S, Yan ECY. Beyond the "spine of hydration": Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. J Chem Phys 2024; 161:095104. [PMID: 39230381 PMCID: PMC11377083 DOI: 10.1063/5.0220479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N-H stretch of DNA base pairs and the O-H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove "spine of hydration" is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Pablo E Videla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Qian C, Wang L. Unraveling the Structure-Spectrum Relationship of Yeast Phenylalanine Transfer RNA: Insights from Theoretical Modeling of Infrared Spectroscopy. Biochemistry 2024; 63:2075-2088. [PMID: 39099399 DOI: 10.1021/acs.biochem.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Yeast phenylalanine tRNA (tRNAphe) is a paradigmatic model in structural biology. In this work, we combine molecular dynamics simulations and spectroscopy modeling to establish a direct link between its structure, conformational dynamics, and infrared (IR) spectra. Employing recently developed vibrational frequency maps and coupling models, we apply a mixed quantum/classical treatment of the line shape theory to simulate the IR spectra of tRNAphe in the 1600-1800 cm-1 region across its folded and unfolded conformations and under varying concentrations of Mg2+ ions. The predicted IR spectra of folded and unfolded tRNAphe are in good agreement with experimental measurements, validating our theoretical framework. We then elucidate how the characteristic L-shaped tertiary structure of the tRNA and its modulation in response to diverse chemical environments give rise to distinct IR absorption peaks and line shapes. These calculations effectively bridge IR spectroscopy experiments and atomistic molecular simulations, unraveling the molecular origins of the observed IR spectra of tRNAphe. This work presents a robust theoretical protocol for modeling the IR spectroscopy of nucleic acids, which will facilitate its application as a sensitive probe for detecting the fluctuating secondary and tertiary structures of these essential biological macromolecules.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
Wang G, Yu P, Wang J. Structures and dynamics of 8-oxo-7,8-dihydro-2'-deoxyguanosine in neutral and basic aqueous solutions by spectroscopy. J Chem Phys 2024; 161:024201. [PMID: 38973759 DOI: 10.1063/5.0209256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
8-oxo-7,8-dihydro-2'-dexyoguanine (8-oxo-dG) can be tautomerized to a 6-enolate,8-keto tautomer through nearby-NH deprotonation at elevated pH. In this work, the N3-protonated 8-oxo-dG tautomers in deuterated pH-buffer solutions were studied using steady-state UV/Vis, FTIR, and ultrafast two-dimensional IR spectroscopies. The presence of 6,8-diketo and C6-anionic tautomers at neutral to basic conditions (pD = 7.4-12.0) was revealed by UV/Vis and FTIR results and was further confirmed by 2D IR signals in both diagonal and off-diagonal regions. However, the C6-enol tautomer, which may be an intermediate during the transition from 6,8-diketo to C6-enolate,C8-keto, was not observed appreciably due to its extreme low population. Furthermore, the neutral-to-anionic tautomeric transition of N3H-8-oxo-dG studied in this work occurs under more basic conditions than the N1H-8-oxo-dG reported previously, showing a higher pKa value for N3H than N1H. Finally, vibrational relaxation of the carbonyl stretching mode was found to be both molecular site dependent and pD dependent for 8oxo-dG. Taken together, this work shows that the ultrafast infrared spectroscopic method is effective for examining tautomers and their dynamics in nucleic acids.
Collapse
Affiliation(s)
- Guixiu Wang
- Department of Marine Technology, Rizhao Polytechnic, Yantai North Road, 16, Rizhao, Shandong Province 276800, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Peng HC, Mohan S, Huq MT, Bull JA, Michaud T, Piercy TC, Hilber S, Wettasinghe AP, Slinker JD, Kreutz C, Stelling AL. Isotope-Edited Variable Temperature Infrared Spectroscopy for Measuring Transition Temperatures of Single A-T Watson-Crick Base Pairs in DNA Duplexes. Anal Chem 2024; 96:8868-8874. [PMID: 38775341 DOI: 10.1021/acs.analchem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Experimental methods to determine transition temperatures for individual base pair melting events in DNA duplexes are lacking despite intense interest in these thermodynamic parameters. Here, we determine the dimensions of the thymine (T) C2═O stretching vibration when it is within the DNA duplex via isotopic substitutions at other atomic positions in the structure. First, we determined that this stretching state was localized enough to specific atoms in the molecule to make submolecular scale measurements of local structure and stability in high molecular weight complexes. Next, we develop a new isotope-edited variable temperature infrared method to measure melting transitions at various locations in a DNA structure. As an initial test of this "sub-molecular scale thermometer", we applied our T13C2 difference infrared signal to measure location-dependent melting temperatures (TmL) in a DNA duplex via variable temperature attenuated total reflectance Fourier transform infrared (VT-ATR-FTIR) spectroscopy. We report that the TmL of a single Watson-Crick A-T base pair near the end of an A-T rich sequence (poly T) is ∼34.9 ± 0.7°C. This is slightly lower than the TmL of a single base pair near the middle position of the poly T sequence (TmL ∼35.6±0.2°C). In addition, we also report that the TmL of a single Watson-Crick A-T base pair near the end of a 50% G-C sequence (12-mer) is ∼52.5 ± 0.3°C, which is slightly lower than the global melting Tm of the 12-mer sequence (TmL ∼54.0±0.9°C). Our results provide direct physical evidence for end fraying in DNA sequences with our novel spectroscopic methods.
Collapse
Affiliation(s)
- Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shrijaa Mohan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Muhammad T Huq
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Julie A Bull
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Troy Michaud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Turner C Piercy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Ashan P Wettasinghe
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jason D Slinker
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
9
|
Martínez-Fernández L, Kohl FR, Zhang Y, Ghosh S, Saks AJ, Kohler B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J Am Chem Soc 2024; 146:1914-1925. [PMID: 38215466 DOI: 10.1021/jacs.3c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Supriya Ghosh
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Andrew J Saks
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| |
Collapse
|
10
|
Schroeder SJ. Insights into nucleic acid helix formation from infrared spectroscopy. Biophys J 2024; 123:115-117. [PMID: 38130057 PMCID: PMC10808036 DOI: 10.1016/j.bpj.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Susan J Schroeder
- Department of Chemistry and Biochemistry, School of Biological Sciences, University of Oklahoma, Norman, Oklahoma.
| |
Collapse
|
11
|
Hunt NT. Biomolecular infrared spectroscopy: making time for dynamics. Chem Sci 2024; 15:414-430. [PMID: 38179520 PMCID: PMC10763549 DOI: 10.1039/d3sc05223k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Time resolved infrared spectroscopy of biological molecules has provided a wealth of information relating to structural dynamics, conformational changes, solvation and intermolecular interactions. Challenges still exist however arising from the wide range of timescales over which biological processes occur, stretching from picoseconds to minutes or hours. Experimental methods are often limited by vibrational lifetimes of probe groups, which are typically on the order of picoseconds, while measuring an evolving system continuously over some 18 orders of magnitude in time presents a raft of technological hurdles. In this Perspective, a series of recent advances which allow biological molecules and processes to be studied over an increasing range of timescales, while maintaining ultrafast time resolution, will be reviewed, showing that the potential for real-time observation of biomolecular function draws ever closer, while offering a new set of challenges to be overcome.
Collapse
Affiliation(s)
- Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| |
Collapse
|
12
|
Lorenz-Ochoa KA, Baiz CR. Ultrafast Spectroscopy Reveals Slow Water Dynamics in Biocondensates. J Am Chem Soc 2023; 145:27800-27809. [PMID: 38061016 DOI: 10.1021/jacs.3c10862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cells achieve high spatiotemporal control over biochemical processes through compartmentalization to membrane-bound as well as membraneless organelles that assemble by liquid-liquid phase separation. Characterizing the balance of forces within these environments is essential to understanding their stability and function, and water is an integral part of the condensate, playing an important role in mediating electrostatic and hydrogen-bonding interactions. Here, we investigate the ultrafast, picosecond hydrogen-bond dynamics of a model biocondensate consisting of a peptide poly-l-arginine (Poly-R) and the nucleic acid adenosine monophosphate (AMP) using coherent two-dimensional infrared (2D IR) spectroscopy. We investigated three vibrational modes: the arginine side-chain C═N stretches, an AMP ring mode, and the amide backbone carbonyl stretching modes. Dynamics slow considerably between the dilute phase and the condensate phase for each vibrational probe. For example, the arginine side-chain C═N modes slow from 0.38 to 2.26 ps due to strong electrostatic interactions. All-atom molecular dynamics simulations provide an atomistic interpretation of the H-bond network disruption resulting from electrostatic contributions as well as collapse within the condensate. Simulations predict that a fraction of water molecules are highly constrained within the condensate, explaining the observed slowdown in the H-bond dynamics.
Collapse
Affiliation(s)
- Keegan A Lorenz-Ochoa
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Nicolaidou E, Parker AW, Sazanovich IV, Towrie M, Hayes SC. Unraveling Excited State Dynamics of a Single-Stranded DNA-Assembled Conjugated Polyelectrolyte. J Phys Chem Lett 2023; 14:9794-9803. [PMID: 37883808 PMCID: PMC10641883 DOI: 10.1021/acs.jpclett.3c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Conformational templating of conjugated polyelectrolytes with single-stranded DNAs (ssDNAs) has the prospect of tailoring excited state dynamics for specific optoelectronic applications. We use ultrafast time-resolved infrared spectroscopy to study the photophysics of a cationic polythiophene assembled with different ssDNAs, inducing distinct conformations (flexible disordered structures vs more rigid complexes with increased backbone planarity). Intrachain polarons are always produced upon selective excitation of the polymer, the extent being dependent on backbone torsional order. Polaron formation and decay were monitored through evolution of IR-active vibrational modes that interfere with mid-IR polaron electronic absorption giving rise to Fano-antiresonances. Selective UV excitation of ssDNAs revealed that stacking interactions between thiophene rings and nucleic acid bases can promote the formation of an intermolecular charge transfer complex. The findings inform designers of functional conjugated polymers by identifying that involvement of the scaffold in the photophysics needs to be considered when developing such structures for optoelectronic applications.
Collapse
Affiliation(s)
- Eliana Nicolaidou
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Anthony W. Parker
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Sophia C. Hayes
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
14
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Thermodynamics and kinetics of DNA and RNA dinucleotide hybridization to gaps and overhangs. Biophys J 2023; 122:3323-3339. [PMID: 37469144 PMCID: PMC10465710 DOI: 10.1016/j.bpj.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Hybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential noncanonical base-pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2-40 μs depending on the template and temperature. Dinucleotide hybridization and dehybridization involve a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
15
|
Chen L, Ma Z, Fournier JA. Ultrafast transient vibrational action spectroscopy of cryogenically cooled ions. J Chem Phys 2023; 159:041101. [PMID: 37486043 DOI: 10.1063/5.0155490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
Ultrafast transient vibrational action spectra of cryogenically cooled Re(CO)3(CH3CN)3+ ions are presented. Nonlinear spectra were collected in the time domain by monitoring the photodissociation of a weakly bound N2 messenger tag as a function of delay times and phases between a set of three infrared pulses. Frequency-resolved spectra in the carbonyl stretch region show relatively strong bleaching signals that oscillate at the difference frequency between the two observed vibrational features as a function of the pump-probe waiting time. This observation is consistent with the presence of nonlinear pathways resulting from underlying cross-peak signals between the coupled symmetric-asymmetric C≡O stretch pair. The successful demonstration of frequency-resolved ultrafast transient vibrational action spectroscopy of dilute molecular ion ensembles provides an exciting, new framework for the study of molecular dynamics in isolated, complex molecular ion systems.
Collapse
Affiliation(s)
- Liangyi Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Zifan Ma
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
16
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Direct monitoring of the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization from gaps and overhangs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536266. [PMID: 37090657 PMCID: PMC10120721 DOI: 10.1101/2023.04.10.536266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Hybridization of short nucleic acid segments (<4 nucleotides) to single-strand templates occurs as a critical intermediate in processes such as non-enzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood due to experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential non-canonical base pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2 to 40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involves a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
- The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, United States
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
- The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Ashwood B, Jones MS, Ferguson AL, Tokmakoff A. Disruption of energetic and dynamic base pairing cooperativity in DNA duplexes by an abasic site. Proc Natl Acad Sci U S A 2023; 120:e2219124120. [PMID: 36976762 PMCID: PMC10083564 DOI: 10.1073/pnas.2219124120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
DNA duplex stability arises from cooperative interactions between multiple adjacent nucleotides that favor base pairing and stacking when formed as a continuous stretch rather than individually. Lesions and nucleobase modifications alter this stability in complex manners that remain challenging to understand despite their centrality to biology. Here, we investigate how an abasic site destabilizes small DNA duplexes and reshapes base pairing dynamics and hybridization pathways using temperature-jump infrared spectroscopy and coarse-grained molecular dynamics simulations. We show how an abasic site splits the cooperativity in a short duplex into two segments, which destabilizes small duplexes as a whole and enables metastable half-dissociated configurations. Dynamically, it introduces an additional barrier to hybridization by constraining the hybridization mechanism to a step-wise process of nucleating and zipping a stretch on one side of the abasic site and then the other.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Michael S. Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL60637
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL60637
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
18
|
Meng W, Peng HC, Liu Y, Stelling A, Wang L. Modeling the Infrared Spectroscopy of Oligonucleotides with 13C Isotope Labels. J Phys Chem B 2023; 127:2351-2361. [PMID: 36898003 DOI: 10.1021/acs.jpcb.2c08915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The carbonyl stretching modes have been widely used in linear and two-dimensional infrared (IR) spectroscopy to probe the conformation, interaction, and biological functions of nucleic acids. However, due to their universal appearance in nucleobases, the IR absorption bands of nucleic acids are often highly congested in the 1600-1800 cm-1 region. Following the fruitful applications in proteins, 13C isotope labels have been introduced to the IR measurements of oligonucleotides to reveal their site-specific structural fluctuations and hydrogen bonding conditions. In this work, we combine recently developed frequency and coupling maps to develop a theoretical strategy that models the IR spectra of oligonucleotides with 13C labels directly from molecular dynamics simulations. We apply the theoretical method to nucleoside 5'-monophosphates and DNA double helices and demonstrate how elements of the vibrational Hamiltonian determine the spectral features and their changes upon isotope labeling. Using the double helices as examples, we show that the calculated IR spectra are in good agreement with experiments and the 13C isotope labeling technique can potentially be applied to characterize the stacking configurations and secondary structures of nucleic acids.
Collapse
Affiliation(s)
- Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Allison Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
19
|
Howe CP, Greetham GM, Procacci B, Parker AW, Hunt NT. Sequence-Dependent Melting and Refolding Dynamics of RNA UNCG Tetraloops Using Temperature-Jump/Drop Infrared Spectroscopy. J Phys Chem B 2023; 127:1586-1597. [PMID: 36787177 PMCID: PMC9969394 DOI: 10.1021/acs.jpcb.2c08709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Time-resolved temperature-jump/drop infrared (IR) spectroscopy has been used to measure the impact of stem base sequence on the melting and refolding dynamics of ribonucleic acid (RNA) tetraloops. A series of three 12-nucleotide RNA hairpin sequences were studied, each featuring a UACG tetraloop motif and a double-stranded stem containing four base pairs. In each case, the stem comprised three GC pairs plus a single AU base pair inserted at the closing point of the loop (RNAloop), in the middle of the stem (RNAmid), or at the stem terminus (RNAend). Results from analogous DNA tetraloop (TACG) sequences were also obtained. Inclusion of AU or AT base pairs in the stem leads to faster melting of the stem-loop structure compared to a stem sequence featuring four GC base pairs while refolding times were found to be slower, consistent with a general reduction in stem-loop stability caused by the AU/AT pair. Independent measurement of the dynamic timescales for melting and refolding of ring vibrational modes of guanine (GR) and adenine (AR) provided position-specific insight into hairpin dynamics. The GR-derived data showed that DNA sequences melted more quickly (0.5 ± 0.1 to 0.7 ± 0.1 μs at 70 °C) than analogous RNA sequences (4.3 ± 0.4 to 4.4 ± 0.3 μs at 70 °C). Position-sensitive data from the AR modes suggests that DNA hairpins begin melting from the terminal end of the stem toward the loop while RNA sequences begin melting from the loop. Refolding timescales for both RNA and DNA hairpins were found to be similar (250 ± 50 μs at 70 °C) except for RNAend and DNAloop which refolded much more slowly (746 ± 36 and 430 ± 31 μs, respectively), showing that the refolding pathway is significantly impaired by the placement of AU/AT pairs at different points in the stem. We conclude that conformational changes of analogous pairs of RNA and DNA tetraloops proceed by different mechanisms.
Collapse
Affiliation(s)
- C P Howe
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - G M Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, Oxon, U.K
| | - B Procacci
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - A W Parker
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, Oxon, U.K
| | - N T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
20
|
Hanes AT, Grieco C, Lalisse RF, Hadad CM, Kohler B. Vibrational relaxation by methylated xanthines in solution: Insights from 2D IR spectroscopy and calculations. J Chem Phys 2023; 158:044302. [PMID: 36725522 DOI: 10.1063/5.0135412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two-dimensional infrared (2D IR) spectroscopy, infrared pump-infrared probe spectroscopy, and density functional theory calculations were used to study vibrational relaxation by ring and carbonyl stretching modes in a series of methylated xanthine derivatives in acetonitrile and deuterium oxide (heavy water). Isotropic signals from the excited symmetric and asymmetric carbonyl stretch modes decay biexponentially in both solvents. Coherent energy transfer between the symmetric and asymmetric carbonyl stretching modes gives rise to a quantum beat in the time-dependent anisotropy signals. The damping time of the coherent oscillation agrees with the fast decay component of the carbonyl bleach recovery signals, indicating that this time constant reflects intramolecular vibrational redistribution (IVR) to other solute modes. Despite their similar frequencies, the excited ring modes decay monoexponentially with a time constant that matches the slow decay component of the carbonyl modes. The slow decay times, which are faster in heavy water than in acetonitrile, approximately match the ones observed in previous UV pump-IR probe measurements on the same compounds. The slow component is assigned to intermolecular energy transfer to solvent bath modes from low-frequency solute modes, which are populated by IVR and are anharmonically coupled to the carbonyl and ring stretch modes. 2D IR measurements indicate that the carbonyl stretching modes are weakly coupled to the delocalized ring modes, resulting in slow exchange that cannot explain the common solvent-dependence. IVR is suggested to occur at different rates for the carbonyl vs ring modes due to differences in mode-specific couplings and not to differences in the density of accessible states.
Collapse
Affiliation(s)
- Alex T Hanes
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Christopher Grieco
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
21
|
Wei Z, Lü XF, Wang W, Mele G, Jiang ZY. Excellent removal performance of 4,4'-biphenyldicarboxaldehyde m-phenylenediamine Schiff base magnetic polymer towards phenanthrene and 9-phenanthrol: Experimental, modeling and DFT calculations studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129920. [PMID: 36099739 DOI: 10.1016/j.jhazmat.2022.129920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Phenanthrene (PTH) and 9-phenanthrol (9-PTH) exhibited severe health threats and ecological hazards, for this reason, exploring a high-efficient removing strategy for PTH and 9-PTH could be considered of great urgency. Herein the 4,4'-biphenyldicarboxaldehyde m-phenylenediamine Schiff base magnetic polymer (magnetic BIPH-PHEN) was successfully fabricated via Schiff base polycondensation reaction and the subsequently one-pot embedded method. The mutual aromatic nucleus of BIPH-PHEN polymer and PTH/9-PTH could form π-π interaction, thus improving the capture ability, the embedded Fe3O4 nanoparticles provided the possibility for rapid separation. The physical and chemical properties of the magnetic BIPH-PHEN were systematically characterized. The removal rate of magnetic BIPH-PHEN towards PTH and 9-PTH was 85.65 % and 98.52 %, respectively (PTH or 9-PTH: 8 mg/L; Adsorbent: 0.2 g/L). The DFT calculations including energy calculations and electrostatic potential distribution analyzed the different bonding modes and proposed the most possible bonding modes in the adsorbent/adsorbate system. Moreover, the LUMO and HOMO orbits combined with energy gaps analysis proved the existence and specific types of the π-π interaction. The monolayer adsorption occurred on the homogeneous magnetic BIPH-PHEN surface, simultaneously the chemisorption was dominant. This work not only proposed new sights on assembling magnetic Schiff base polymer for removing polycyclic aromatic hydrocarbons, but also provided a deeper understanding of intramolecular interactions.
Collapse
Affiliation(s)
- Zhengwen Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xiang-Fei Lü
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Wei Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Zhen-Yi Jiang
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
22
|
Brüggemann J, Wolter M, Jacob CR. Quantum-chemical calculation of two-dimensional infrared spectra using localized-mode VSCF/VCI. J Chem Phys 2022; 157:244107. [PMID: 36586972 DOI: 10.1063/5.0135273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Computational protocols for the simulation of two-dimensional infrared (2D IR) spectroscopy usually rely on vibrational exciton models which require an empirical parameterization. Here, we present an efficient quantum-chemical protocol for predicting static 2D IR spectra that does not require any empirical parameters. For the calculation of anharmonic vibrational energy levels and transition dipole moments, we employ the localized-mode vibrational self-consistent field (L-VSCF)/vibrational configuration interaction (L-VCI) approach previously established for (linear) anharmonic theoretical vibrational spectroscopy [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365-3377 (2014)]. We demonstrate that with an efficient expansion of the potential energy surface using anharmonic one-mode potentials and harmonic two-mode potentials, 2D IR spectra of metal carbonyl complexes and dipeptides can be predicted reliably. We further show how the close connection between L-VCI and vibrational exciton models can be exploited to extract the parameters of such models from those calculations. This provides a novel route to the fully quantum-chemical parameterization of vibrational exciton models for predicting 2D IR spectra.
Collapse
Affiliation(s)
- Julia Brüggemann
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
23
|
Dong T, Yu P, Zhao J, Wang J. Probing the local structure and dynamics of nucleotides using vibrationally enhanced alkynyl stretching. Phys Chem Chem Phys 2022; 24:29988-29998. [PMID: 36472165 DOI: 10.1039/d2cp03920f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monitoring the site-specific local structure and dynamics of polynucleotides and DNA is important for understanding their biological functions. However, structurally characterizing these biomolecules with high time resolution has been known to be experimentally challenging. In this work, several 5-silylethynyl-2'-deoxynucleosides and 5-substituted phenylethynyl-2'-deoxynucleosides on the basis of deoxycytidine (dC) and deoxythymidine (dT) were synthesized, in which the alkynyl group shows intensified CC stretching vibration with infrared transition dipole moment magnitude close to that of typical CO stretching, and exhibits structural sensitivities in both vibrational frequency and spectral width. In particular, 5-trimethylsilylethynyl-2'-dC (TMSEdC, molecule 1a) was examined in detail using femtosecond nonlinear IR spectroscopy. The solvent dependent CC stretching frequency of 1a can be reasonably interpreted mainly as the hydrogen-bonding effect between the solvent and cytosine base ring structure. Transient 2D IR and pump-probe IR measurements of 1a carried out comparatively in two aprotic solvents (DMSO and THF) and one protic solvent (MeOH) further reveal solvent dependent ultrafast vibrational properties, including diagonal anharmonicity, spectral diffusion, vibrational relaxation and anisotropy dynamics. These observed sensitivities are rooted in an extended π-conjugation of the base ring structure in which the CC group is actively involved. Our results show that the intensified CC stretching vibration can potentially provide a site-specific IR probe for monitoring the equilibrium and ultrafast structural dynamics of polynucleotides.
Collapse
Affiliation(s)
- Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Kraka E, Quintano M, La Force HW, Antonio JJ, Freindorf M. The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. J Phys Chem A 2022; 126:8781-8798. [DOI: 10.1021/acs.jpca.2c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Hunter W. La Force
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Juliana J. Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| |
Collapse
|
25
|
Perez FP, Bandeira JP, Perez Chumbiauca CN, Lahiri DK, Morisaki J, Rizkalla M. Multidimensional insights into the repeated electromagnetic field stimulation and biosystems interaction in aging and age-related diseases. J Biomed Sci 2022; 29:39. [PMID: 35698225 PMCID: PMC9190166 DOI: 10.1186/s12929-022-00825-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
We provide a multidimensional sequence of events that describe the electromagnetic field (EMF) stimulation and biological system interaction. We describe this process from the quantum to the molecular, cellular, and organismal levels. We hypothesized that the sequence of events of these interactions starts with the oscillatory effect of the repeated electromagnetic stimulation (REMFS). These oscillations affect the interfacial water of an RNA causing changes at the quantum and molecular levels that release protons by quantum tunneling. Then protonation of RNA produces conformational changes that allow it to bind and activate Heat Shock Transcription Factor 1 (HSF1). Activated HSF1 binds to the DNA expressing chaperones that help regulate autophagy and degradation of abnormal proteins. This action helps to prevent and treat diseases such as Alzheimer's and Parkinson's disease (PD) by increasing clearance of pathologic proteins. This framework is based on multiple mathematical models, computer simulations, biophysical experiments, and cellular and animal studies. Results of the literature review and our research point towards the capacity of REMFS to manipulate various networks altered in aging (Reale et al. PloS one 9, e104973, 2014), including delay of cellular senescence (Perez et al. 2008, Exp Gerontol 43, 307-316) and reduction in levels of amyloid-β peptides (Aβ) (Perez et al. 2021, Sci Rep 11, 621). Results of these experiments using REMFS at low frequencies can be applied to the treatment of patients with age-related diseases. The use of EMF as a non-invasive therapeutic modality for Alzheimer's disease, specifically, holds promise. It is also necessary to consider the complicated and interconnected genetic and epigenetic effects of the REMFS-biological system's interaction while avoiding any possible adverse effects.
Collapse
Affiliation(s)
- Felipe P Perez
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Joseph P Bandeira
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristina N Perez Chumbiauca
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Rheumatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| |
Collapse
|
26
|
Perets EA, Olesen KB, Yan ECY. Chiral Sum Frequency Generation Spectroscopy Detects Double-Helix DNA at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5765-5778. [PMID: 35482888 DOI: 10.1021/acs.langmuir.2c00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many DNA-based technologies involve the immobilization of DNA and therefore require a fundamental understanding of the DNA structure-function relationship at interfaces. We present three immobilization methods compatible with chiral sum frequency generation (SFG) spectroscopy at interfaces. They are the "anchor" method for covalently attaching DNA on a glass surface, the "island" method for dropcasting DNA on solid substrates, and the "buoy" method using a hydrocarbon moiety for localizing DNA at the air-water interface. Although SFG was previously used to probe DNA, the chiral and achiral SFG responses of single-stranded and double-stranded DNA have not been compared systemically. Using the three immobilization methods, we obtain the achiral and chiral C-H stretching spectra. The results introduce four potential applications of chiral SFG. First, chiral SFG gives null response from single-stranded DNA but prominent signals from double-stranded DNA, providing a simple binary readout for label-free detection of DNA hybridization. Second, with heterodyne detection, chiral SFG gives an opposite-signed spectral response useful for distinguishing native (D-) right-handed double helix from non-native (L-) left-handed double helix. Third, chiral SFG captures the aromatic C-H stretching modes of nucleobases that emerge upon hybridization, revealing the power of chiral SFG to probe highly localized molecular structures within DNA. Finally, chiral SFG is sensitive to macroscopic chirality but not local chiral centers and thus can detect not only canonical antiparallel double helix but also other DNA secondary structures, such as a poly-adenine parallel double helix. Our work benchmarks the SFG responses of DNA immobilized by the three distinct methods, building a basis for new chiral SFG applications to solve fundamental and biotechnological problems.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kristian B Olesen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
27
|
Zapata Trujillo JC, McKemmish LK. Meta‐analysis of uniform scaling factors for harmonic frequency calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Biswas A, Mallik BS. Vibrational Spectral Dynamics and Ion-Probe Interactions of the Hydrogen-Bonded Liquids in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Price DA, Wedamulla P, Hill TD, Loth TM, Moran SD. The polarization dependence of 2D IR cross-peaks distinguishes parallel-stranded and antiparallel-stranded DNA G-quadruplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120596. [PMID: 34801392 DOI: 10.1016/j.saa.2021.120596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Guanine-rich nucleic acid sequences have a tendency to form four-stranded non-canonical motifs known as G-quadruplexes. These motifs may adopt a wide range of structures characterized by size, strand orientation, guanine base conformation, and fold topology. Using three K+-bound model systems, we show that vibrational coupling between guanine C6 = O and ring modes varies between parallel-stranded and antiparallel-stranded G-quadruplexes, and that such structures can be distinguished by comparison of the polarization dependences of cross-peaks in their two-dimensional infrared (2D IR) spectra. Combined with previously defined vibrational frequency trends, this analysis reveals key features of a 30-nucleotide unimolecular variant of the Bcl-2 proximal promoter that are consistent with its reported structure. This study shows that 2D IR spectroscopy is a convenient method for analyzing G-quadruplex structures that can be applied to complex sequences where traditional high-resolution methods are limited by solubility and disorder.
Collapse
Affiliation(s)
- David A Price
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Poornima Wedamulla
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Tayler D Hill
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Taylor M Loth
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Sean D Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States.
| |
Collapse
|
30
|
Fedeles BI, Li D, Singh V. Structural Insights Into Tautomeric Dynamics in Nucleic Acids and in Antiviral Nucleoside Analogs. Front Mol Biosci 2022; 8:823253. [PMID: 35145998 PMCID: PMC8822119 DOI: 10.3389/fmolb.2021.823253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
DNA (2'-deoxyribonucleic acid) and RNA (ribonucleic acid) play diverse functional roles in biology and disease. Despite being comprised primarily of only four cognate nucleobases, nucleic acids can adopt complex three-dimensional structures, and RNA in particular, can catalyze biochemical reactions to regulate a wide variety of biological processes. Such chemical versatility is due in part to the phenomenon of nucleobase tautomerism, whereby the bases can adopt multiple, yet distinct isomeric forms, known as tautomers. For nucleobases, tautomers refer to structural isomers that differ from one another by the position of protons. By altering the position of protons on nucleobases, many of which play critical roles for hydrogen bonding and base pairing interactions, tautomerism has profound effects on the biochemical processes involving nucleic acids. For example, the transient formation of minor tautomers during replication could generate spontaneous mutations. These mutations could arise from the stabilization of mismatches, in the active site of polymerases, in conformations involving minor tautomers that are indistinguishable from canonical base pairs. In this review, we discuss the evidence for tautomerism in DNA, and its consequences to the fidelity of DNA replication. Also reviewed are RNA systems, such as the riboswitches and self-cleaving ribozymes, in which tautomerism plays a functional role in ligand recognition and catalysis, respectively. We also discuss tautomeric nucleoside analogs that are efficacious as antiviral drug candidates such as molnupiravir for coronaviruses and KP1212 for HIV. The antiviral efficacy of these analogs is due, in part, to their ability to exist in multiple tautomeric forms and induce mutations in the replicating viral genomes. From a technical standpoint, minor tautomers of nucleobases are challenging to identify directly because they are rare and interconvert on a fast, millisecond to nanosecond, time scale. Nevertheless, many approaches including biochemical, structural, computational and spectroscopic methods have been developed to study tautomeric dynamics in RNA and DNA systems, and in antiviral nucleoside analogs. An overview of these methods and their applications is included here.
Collapse
Affiliation(s)
- Bogdan I. Fedeles
- Departments of Chemistry and Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Deyu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Vipender Singh
- Department of Biochemistry and Biophysics, Novartis Institute of Biomedical Research, Cambridge, MA, United States
| |
Collapse
|
31
|
Ozaki Y, Beć KB, Morisawa Y, Yamamoto S, Tanabe I, Huck CW, Hofer TS. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem Soc Rev 2021; 50:10917-10954. [PMID: 34382961 DOI: 10.1039/d0cs01602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. and Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
32
|
Dale J, Howe CP, Toncrova H, Fritzsch R, Greetham GM, Clark IP, Towrie M, Parker AW, McLeish TC, Hunt NT. Combining steady state and temperature jump IR spectroscopy to investigate the allosteric effects of ligand binding to dsDNA. Phys Chem Chem Phys 2021; 23:15352-15363. [PMID: 34254612 DOI: 10.1039/d1cp02233d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes in the structural dynamics of double stranded (ds)DNA upon ligand binding have been linked to the mechanism of allostery without conformational change, but direct experimental evidence remains elusive. To address this, a combination of steady state infrared (IR) absorption spectroscopy and ultrafast temperature jump IR absorption measurements has been used to quantify the extent of fast (∼100 ns) fluctuations in (ds)DNA·Hoechst 33258 complexes at a range of temperatures. Exploiting the direct link between vibrational band intensities and base stacking shows that the absolute magnitude of the change in absorbance caused by fast structural fluctuations following the temperature jump is only weakly dependent on the starting temperature of the sample. The observed fast dynamics are some two orders of magnitude faster than strand separation and associated with all points along the 10-base pair duplex d(GCATATATCC). Binding the Hoechst 33258 ligand causes a small but consistent reduction in the extent of these fast fluctuations of base pairs located outside of the ligand binding region. These observations point to a ligand-induced reduction in the flexibility of the dsDNA near the binding site, consistent with an estimated allosteric propagation length of 15 Å, about 5 base pairs, which agrees well with both molecular simulation and coarse-grained statistical mechanics models of allostery leading to cooperative ligand binding.
Collapse
Affiliation(s)
- Jessica Dale
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| | - C Peter Howe
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| | - Hedvika Toncrova
- Department of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Robby Fritzsch
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Thomas C McLeish
- Department of Physics, University of York, Heslington, York YO10 5DD, UK.
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
33
|
Fick RJ, Liu AY, Nussbaumer F, Kreutz C, Rangadurai A, Xu Y, Sommer RD, Shi H, Scheiner S, Stelling AL. Probing the Hydrogen-Bonding Environment of Individual Bases in DNA Duplexes with Isotope-Edited Infrared Spectroscopy. J Phys Chem B 2021; 125:7613-7627. [PMID: 34236202 PMCID: PMC8311644 DOI: 10.1021/acs.jpcb.1c01351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Measuring the strength
of the hydrogen bonds between DNA base pairs
is of vital importance for understanding how our genetic code is physically
accessed and recognized in cells, particularly during replication
and transcription. Therefore, it is important to develop probes for
these key hydrogen bonds (H-bonds) that dictate events critical to
cellular function, such as the localized melting of DNA. The vibrations
of carbonyl bonds are well-known probes of their H-bonding environment,
and their signals can be observed with infrared (IR) spectroscopy.
Yet, pinpointing a single bond of interest in the complex IR spectrum
of DNA is challenging due to the large number of carbonyl signals
that overlap with each other. Here, we develop a method using isotope
editing and infrared (IR) spectroscopy to isolate IR signals from
the thymine (T) C2=O carbonyl. We use solvatochromatic studies
to show that the TC2=O signal’s position in the IR spectrum
is sensitive to the H-bonding capacity of the solvent. Our results
indicate that C2=O of a single T base within DNA duplexes experiences
weak H-bonding interactions. This finding is consistent with the existence
of a third, noncanonical CH···O H-bond between adenine
and thymine in both Watson–Crick and Hoogsteen base pairs in
DNA.
Collapse
Affiliation(s)
- Robert J Fick
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Amy Y Liu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Felix Nussbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Atul Rangadurai
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Yu Xu
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Roger D Sommer
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States.,Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
34
|
Di Meo V, Moccia M, Sanità G, Crescitelli A, Lamberti A, Galdi V, Rendina I, Esposito E. Advanced DNA Detection via Multispectral Plasmonic Metasurfaces. Front Bioeng Biotechnol 2021; 9:666121. [PMID: 34055762 PMCID: PMC8149789 DOI: 10.3389/fbioe.2021.666121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
We propose and demonstrate a sensing platform based on plasmonic metasurfaces for the detection of very low concentrations of deoxyribo-nucleic acid (DNA) fragments. The platform relies on surface-enhanced infrared absorption spectroscopy, implemented via a multispectral metasurface. Specifically, different regions (“pixels”) are engineered so as to separately cover the medium-infrared range of the electromagnetic spectrum extending from the functional-groups to the fingerprint region of a single analyte. In conjunction with a suitable bio-functionalization, this enables univocal and label-free recognition of specific molecules. For experimental validation, we fabricate a large-area gold metasurface on a silicon chip, and functionalize it with a recognition layer of peptide nucleic acid (PNA). Our experimental results indicate the possibility to detect complementary DNA fragments in concentrations as low as 50 fM, i.e., well below the value attained by standard methods, with additional advantages in terms of processing time, versatility and ease of implementation/operation.
Collapse
Affiliation(s)
- Valentina Di Meo
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy
| | - Massimo Moccia
- Fields and Waves Laboratory, Department of Engineering, University of Sannio, Benevento, Italy
| | - Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Alessio Crescitelli
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenzo Galdi
- Fields and Waves Laboratory, Department of Engineering, University of Sannio, Benevento, Italy
| | - Ivo Rendina
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy
| | - Emanuela Esposito
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy
| |
Collapse
|
35
|
Zhang X, Chen X, Kuroda DG. Computing the frequency fluctuation dynamics of highly coupled vibrational transitions using neural networks. J Chem Phys 2021; 154:164514. [PMID: 33940799 DOI: 10.1063/5.0044911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The description of frequency fluctuations for highly coupled vibrational transitions has been a challenging problem in physical chemistry. In particular, the complexity of their vibrational Hamiltonian does not allow us to directly derive the time evolution of vibrational frequencies for these systems. In this paper, we present a new approach to this problem by exploiting the artificial neural network to describe the vibrational frequencies without relying on the deconstruction of the vibrational Hamiltonian. To this end, we first explored the use of the methodology to predict the frequency fluctuations of the amide I mode of N-methylacetamide in water. The results show good performance compared with the previous experimental and theoretical results. In the second part, the neural network approach is used to investigate the frequency fluctuations of the highly coupled carbonyl stretch modes for the organic carbonates in the solvation shell of the lithium ion. In this case, the frequency fluctuation predicted by the neural networks shows a good agreement with the experimental results, which suggests that this model can be used to describe the dynamics of the frequency in highly coupled transitions.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
36
|
Copp SM, Gonzàlez-Rosell A. Large-scale investigation of the effects of nucleobase sequence on fluorescence excitation and Stokes shifts of DNA-stabilized silver clusters. NANOSCALE 2021; 13:4602-4613. [PMID: 33605954 PMCID: PMC8043073 DOI: 10.1039/d0nr08300c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
DNA-stabilized silver clusters (AgN-DNAs) exhibit diverse sequence-programmed fluorescence, making these tunable nanoclusters promising sensors and bioimaging probes. Recent advances in the understanding of AgN-DNA structures and optical properties have largely relied on detailed characterization of single species isolated by chromatography. Because most AgN-DNAs are unstable under chromatography, such studies do not fully capture the diversity of these clusters. As an alternative method, we use high-throughput synthesis and spectroscopy to measure steady state Stokes shifts of hundreds of AgN-DNAs. Steady state Stokes shift is of interest because its magnitude is determined by energy relaxation processes which may be sensitive to specific cluster geometry, attachment to the DNA template, and structural engagement of solvent molecules. We identify 305 AgN-DNA samples with single-peaked emission and excitation spectra, a characteristic of pure solutions and single emitters, which thus likely contain a dominant emissive AgN-DNA species. Steady state Stokes shifts of these samples vary widely, are in agreement with values reported for purified clusters, and are several times larger than for typical organic dyes. We then examine how DNA sequence selects AgN-DNA excitation energies and Stokes shifts, comment on possible mechanisms for energy relaxation processes in AgN-DNAs, and discuss how differences in AgN-DNA structure and DNA conformation may result in the wide distribution of optical properties observed here. These results may aid computational studies seeking to understand the fluorescence process in AgN-DNAs and the relations of this process to AgN-DNA structure.
Collapse
Affiliation(s)
- Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2585, USA. and Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA and Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697-2580, USA
| | - Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2585, USA.
| |
Collapse
|
37
|
Zolotoukhina T, Yamada M, Iwakura S. Vibrational Spectra of Nucleotides in the Presence of the Au Cluster Enhancer in MD Simulation of a SERS Sensor. BIOSENSORS 2021; 11:37. [PMID: 33572778 PMCID: PMC7911439 DOI: 10.3390/bios11020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Surface-enhanced Raman scattering (SERS) nanoprobes have shown tremendous potential in in vivo imaging. The development of single oligomer resolution in the SERS promotes experiments on DNA and protein identification using SERS as a nanobiosensor. As Raman scanners rely on a multiple spectrum acquisition, faster imaging in real-time is required. SERS weak signal requires averaging of the acquired spectra that erases information on conformation and interaction. To build spectral libraries, the simulation of measurement conditions and conformational variations for the nucleotides relative to enhancer nanostructures would be desirable. In the molecular dynamic (MD) model of a sensing system, we simulate vibrational spectra of the cytosine nucleotide in FF2/FF3 potential in the dynamic interaction with the Au20 nanoparticles (NP) (EAM potential). Fourier transfer of the density of states (DOS) was performed to obtain the spectra of bonds in reaction coordinates for nucleotides at a resolution of 20 to 40 cm-1. The Au20 was optimized by ab initio density functional theory with generalized gradient approximation (DFT GGA) and relaxed by MD. The optimal localization of nucleotide vs. NP was defined and the spectral modes of both components vs. interaction studied. Bond-dependent spectral maps of nucleotide and NP have shown response to interaction. The marker frequencies of the Au20-nucleotide interaction have been evaluated.
Collapse
Affiliation(s)
- Tatiana Zolotoukhina
- Department of Mechanical Engineering, University of Toyama, Toyama 930-8555, Japan
| | | | | |
Collapse
|
38
|
Zhang Y, He C, Petty JT, Kohler B. Time-Resolved Vibrational Fingerprints for Two Silver Cluster-DNA Fluorophores. J Phys Chem Lett 2020; 11:8958-8963. [PMID: 33030904 DOI: 10.1021/acs.jpclett.0c02486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA-templated silver clusters are chromophores in which the nucleobases encode the cluster spectra and brightness. We describe the coordination environments of two nearly identical Ag106+ clusters that form with 18-nucleotide strands CCCCA CCCCT CCCX TTTT, with X = guanosine and inosine. For the first time, femtosecond time-resolved infrared (TRIR) spectroscopy with visible excitation and mid-infrared probing is used to correlate the response of nucleobase vibrational modes to electronic excitation of the metal cluster. A rich pattern of transient TRIR peaks in the 1400-1720 cm-1 range decays synchronously with the visible emission. Specific infrared signatures associated with the single guanosine/inosine along with a subset of cytidines, but not the thymidines, are observed. These fingerprints suggest that the network of bonds between a silver cluster adduct and its polydentate DNA ligands can be deciphered to rationally tune the coordination and thus spectra of molecular silver chromophores.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Chen He
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
39
|
Zhang XX, Brantley SL, Corcelli SA, Tokmakoff A. DNA minor-groove binder Hoechst 33258 destabilizes base-pairing adjacent to its binding site. Commun Biol 2020; 3:525. [PMID: 32963293 PMCID: PMC7508854 DOI: 10.1038/s42003-020-01241-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the dynamic interactions of ligands to DNA is important in DNA-based nanotechnologies. By structurally tracking the dissociation of Hoechst 33258-bound DNA (d(CGCAAATTTGCG)2) complex (H-DNA) with T-jump 2D-IR spectroscopy, the ligand is found to strongly disturb the stability of the three C:G base pairs adjacent to A:T the binding site, with the broken base pairs being more than triple at 100 ns. The strong stabilization effect of the ligand on DNA duplex makes this observation quite striking, which dramatically increases the melting temperature and dissociation time. MD simulations demonstrate an important role of hydration water and counter cations in maintaining the separation of terminal base pairs. The hydrogen bonds between the ligand and thymine carbonyls are crucial in stabilizing H-DNA, whose breaking signal appearing prior to the complete dissociation. Thermodynamic analysis informs us that H-DNA association is a concerted process, where H cooperates with DNA single strands in forming H-DNA.
Collapse
Affiliation(s)
- Xin-Xing Zhang
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA.
| | - Shelby L Brantley
- Department of Chemistry and Biochemistry, University of Norte Dame, Notre Dame, IN, 46556, USA
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Norte Dame, Notre Dame, IN, 46556, USA.
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA
| |
Collapse
|
40
|
Ashwood B, Lewis NHC, Sanstead PJ, Tokmakoff A. Temperature-Jump 2D IR Spectroscopy with Intensity-Modulated CW Optical Heating. J Phys Chem B 2020; 124:8665-8677. [PMID: 32902979 DOI: 10.1021/acs.jpcb.0c07177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulsed temperature-jump (T-jump) spectroscopy with infrared (IR) detection has been widely used to study biophysical processes occurring from nanoseconds to ∼1 ms with structural sensitivity. However, many systems exhibit structural dynamics on time scales longer than the millisecond barrier that is set by the time scale for thermal relaxation of the sample. We developed a linear and nonlinear infrared spectrometer coupled to an intensity-modulated continuous wave (CW) laser to probe T-jump-initiated chemical reactions from <1 ms to seconds. Time-dependent modulation of the CW laser leads to a <1 ms heating time as well as a constant final temperature (±3%) for the duration of the heating time. Temperature changes of up to 75 °C in D2O are demonstrated, allowing for nonequilibrium measurements inaccessible to standard pulsed optical T-jump setups. T-jump linear absorption, pump-probe, and two-dimensional IR (2D IR) spectroscopy are applied to the unfolding and refolding of ubiquitin and a model intercalated motif (i-motif) DNA sequence, and analysis of the observed signals is used to demonstrate the limits and utility of each method. Overall, the ability to probe temperature-induced chemical processes from <1 ms to many seconds with 2D IR spectroscopy provides multiple new avenues for time-dependent spectroscopy in chemistry and biophysics.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Paul J Sanstead
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
41
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
42
|
Price DA, Kartje ZJ, Hughes JA, Hill TD, Loth TM, Watts JK, Gagnon KT, Moran SD. Infrared Spectroscopy Reveals the Preferred Motif Size and Local Disorder in Parallel Stranded DNA G-Quadruplexes. Chembiochem 2020; 21:2792-2804. [PMID: 32372560 DOI: 10.1002/cbic.202000136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/04/2020] [Indexed: 12/23/2022]
Abstract
Infrared spectroscopy detects the formation of G-quadruplexes in guanine-rich nucleic acid sequences through shifts in the guanine C=O stretch mode. Here, we use ultrafast 2D infrared (IR) spectroscopy and isotope substitution to show that these shifts arise from vibrational delocalization among stacked G-quartets. This provides a direct measure of the sizes of locally ordered motifs in heterogeneous samples with substantial disordered regions. We find that parallel-stranded, potassium-bound DNA G-quadruplexes are limited to five consecutive G-quartets and 3-4 consecutive layers are preferred for longer polyguanine tracts. The resulting potassium-dependent G-quadruplex assembly landscape reflects the polyguanine tract lengths found in genomes, the ionic conditions prevalent in healthy mammalian cells, and the onset of structural disorder in disease states. Our study describes spectral markers that can be used to probe other G-quadruplex structures and provides insight into the fundamental limits of their formation in biological and artificial systems.
Collapse
Affiliation(s)
- David A Price
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Zachary J Kartje
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, 1245 Lincoln Drive, Carbondale, IL 62901, USA.,RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Joanna A Hughes
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Tayler D Hill
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Taylor M Loth
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Keith T Gagnon
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, 1245 Lincoln Drive, Carbondale, IL 62901, USA.,Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Sean D Moran
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| |
Collapse
|
43
|
Beć KB, Grabska J, Huck CW. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal Chim Acta 2020; 1133:150-177. [PMID: 32993867 DOI: 10.1016/j.aca.2020.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Infrared (IR; or mid-infrared, MIR; 4000-400 cm-1; 2500-25,000 nm) spectroscopy has become one of the most powerful and versatile tools at the disposal of modern bioscience. Because of its high molecular specificity, applicability to wide variety of samples, rapid measurement and non-invasivity, IR spectroscopy forms a potent approach to elucidate qualitative and quantitative information from various kinds of biological material. For these reasons, it became an established bioanalytical technique with diverse applications. This work aims to be a comprehensive and critical review of the recent accomplishments in the field of biomolecular and bioanalytical IR spectroscopy. That progress is presented on a wider background, with fundamental characteristics, the basic principles of the technique outlined, and its scientific capability directly compared with other methods being used in similar fields (e.g. near-infrared, Raman, fluorescence). The article aims to present a complete examination of the topic, as it touches the background phenomena, instrumentation, spectra processing and data analytical methods, spectra interpretation and related information. To suit this goal, the article includes a tutorial information essential to obtain a thorough perspective of bio-related applications of the reviewed methodologies. The importance of the fundamental factors to the final performance and applicability of IR spectroscopy in various areas of bioscience is explained. This information is interpreted in critical way, with aim to gain deep understanding why IR spectroscopy finds extraordinarily intensive use in this remarkably diverse and dynamic field of research and utility. The major focus is placed on the diversity of the applications in which IR biospectroscopy has been established so far and those onto which it is expanding nowadays. This includes qualitative and quantitative analytical spectroscopy, spectral imaging, medical diagnosis, monitoring of biophysical processes, and studies of physicochemical properties and dynamics of biomolecules. The application potential of IR spectroscopy in light of the current accomplishments and the future prospects is critically evaluated and its significance in the progress of bioscience is comprehensively presented.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| |
Collapse
|
44
|
Green JA, Improta R. Vibrations of the guanine-cytosine pair in chloroform: an anharmonic computational study. Phys Chem Chem Phys 2020; 22:5509-5522. [PMID: 32104818 DOI: 10.1039/c9cp06373k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We compute at the anharmonic level the vibrational spectra of the Watson-Crick dimer formed by guanosine (G) and cytidine (C) in chloroform, together with those of G, C and the most populated GG dimer. The spectra for deuterated and partially deuterated GC are also computed. We use DFT calculations, with B3LYP and CAM-B3LYP as reference functionals. Solvent effects from chloroform are included via the Polarizable Continuum Model (PCM), and by performing tests on models including up two chloroform molecules. Both B3LYP and CAM-B3LYP calculations reproduce the shape of the experimental spectra well in the fingerprint region (1500-1700 cm-1) and in the N-H stretching region (2800-3600 cm-1), with B3LYP providing better quantitative agreement with experiments. According to our calculations, the N-H amido streching mode of G falls at ∼2900 cm-1, while the N-H amino of G and C falls at ∼3100 cm-1 when hydrogen-bonded, or ∼3500 cm-1 when free. Overtone and combination bands strongly contribute to the absorption band at ∼3300 cm-1. Inclusion of bulk solvent effects significantly increases the accuracy of the computed spectra, while solute-solvent interactions have a smaller, though still noticeable, effect. Some key aspects of the anharmonic treatment of strongly vibrationally coupled supermolecular systems and the related methodological issues are also discussed.
Collapse
Affiliation(s)
- James A Green
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| |
Collapse
|
45
|
Jiang Y, Wang L. Modeling the vibrational couplings of nucleobases. J Chem Phys 2020; 152:084114. [PMID: 32113367 PMCID: PMC7046491 DOI: 10.1063/1.5141858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrational spectroscopy, in particular infrared spectroscopy, has been widely used to probe the three-dimensional structures and conformational dynamics of nucleic acids. As commonly used chromophores, the C=O and C=C stretch modes in the nucleobases exhibit distinct spectral features for different base pairing and stacking configurations. To elucidate the origin of their structural sensitivity, in this work, we develop transition charge coupling (TCC) models that allow one to efficiently calculate the interactions or couplings between the C=O and C=C chromophores based on the geometric arrangements of the nucleobases. To evaluate their performances, we apply the TCC models to DNA and RNA oligonucleotides with a variety of secondary and tertiary structures and demonstrate that the predicted couplings are in quantitative agreement with the reference values. We further elucidate how the interactions between the paired and stacked bases give rise to characteristic IR absorption peaks and show that the TCC models provide more reliable predictions of the coupling constants as compared to the transition dipole coupling scheme. The TCC models, together with our recently developed through-bond coupling constants and vibrational frequency maps, provide an effective theoretical strategy to model the vibrational Hamiltonian, and hence the vibrational spectra of nucleic acids in the base carbonyl stretch region directly from atomistic molecular simulations.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
46
|
Chalyavi F, Adeyiga O, Weiner JM, Monzy JN, Schmitz AJ, Nguyen JK, Fenlon EE, Brewer SH, Odoh SO, Tucker MJ. 2D-IR studies of cyanamides (NCN) as spectroscopic reporters of dynamics in biomolecules: Uncovering the origin of mysterious peaks. J Chem Phys 2020; 152:074201. [PMID: 32087671 PMCID: PMC7028433 DOI: 10.1063/1.5138654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanamides (NCN) have been shown to have a larger transition dipole strength than cyano-probes. In addition, they have similar structural characteristics and vibrational lifetimes to the azido-group, suggesting their utility as infrared (IR) spectroscopic reporters for structural dynamics in biomolecules. To access the efficacy of NCN as an IR probe to capture the changes in the local environment, several model systems were evaluated via 2D IR spectroscopy. Previous work by Cho [G. Lee, D. Kossowska, J. Lim, S. Kim, H. Han, K. Kwak, and M. Cho, J. Phys. Chem. B 122(14), 4035-4044 (2018)] showed that phenylalanine analogues containing NCN show strong anharmonic coupling that can complicate the interpretation of structural dynamics. However, when NCN is embedded in 5-membered ring scaffolds, as in N-cyanomaleimide and N-cyanosuccinimide, a unique band structure is observed in the 2D IR spectrum that is not predicted by simple anharmonic frequency calculations. Further investigation indicated that electron delocalization plays a role in the origins of the band structure. In particular, the origin of the lower frequency transitions is likely a result of direct interaction with the solvent.
Collapse
Affiliation(s)
- Farzaneh Chalyavi
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, USA
| | - Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, USA
| | - Julia M. Weiner
- Department of Chemistry, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Judith N. Monzy
- Department of Chemistry, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Andrew J. Schmitz
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, USA
| | - Justin K. Nguyen
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, USA
| | - Edward E. Fenlon
- Department of Chemistry, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Scott H. Brewer
- Department of Chemistry, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Samuel O. Odoh
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, USA
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, USA
| |
Collapse
|
47
|
Sanstead PJ, Ashwood B, Dai Q, He C, Tokmakoff A. Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA. J Phys Chem B 2020; 124:1160-1174. [PMID: 31986043 PMCID: PMC7136776 DOI: 10.1021/acs.jpcb.9b11511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The naturally occurring nucleobase 5-methylcytosine (mC) and its oxidized derivatives 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC) play important roles in epigenetic regulation and, along with cytosine (C), represent nucleobases currently implicated in the active cytosine demethylation pathway. Despite considerable interest in these modified bases, their impact on the thermodynamic stability of double-stranded DNA (dsDNA) remains ambiguous and their influence on hybridization kinetics and dynamics is even less well-understood. To address these unknowns, we employ steady-state and time-resolved infrared spectroscopy to measure the influence of cytosine modification on the thermodynamics and kinetics of hybridization by assessing the impact on local base pairing dynamics, shifts in the stability of the duplex state, and changes to the hybridization transition state. Modification with mC leads to more tightly bound base pairing below the melting transition and stabilizes the duplex relative to canonical DNA, but the free energy barrier to dehybridization at physiological temperature is nevertheless reduced slightly. Both hmC and fC lead to an increase in local base pair fluctuations, a reduction in the cooperativity of duplex melting, and a lowering of the dissociation barrier, but these effects are most pronounced when the 5-position is formylated. The caC nucleobase demonstrates little impact on dsDNA under neutral conditions, but we find that this modification can dynamically switch between C-like and fC-like behavior depending on the protonation state of the 5-position carboxyl group. Our results provide a consistent thermodynamic and kinetic framework with which to describe the modulation of the physical properties of double-stranded DNA containing these modified nucleobases.
Collapse
Affiliation(s)
- Paul J. Sanstead
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
48
|
Ashwood B, Sanstead PJ, Dai Q, He C, Tokmakoff A. 5-Carboxylcytosine and Cytosine Protonation Distinctly Alter the Stability and Dehybridization Dynamics of the DNA Duplex. J Phys Chem B 2020; 124:627-640. [PMID: 31873021 DOI: 10.1021/acs.jpcb.9b11510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Applications associated with nucleobase protonation events are grounded in their fundamental impact on DNA thermodynamics, structure, and hybridization dynamics. Of the canonical nucleobases, N3 protonation of cytosine (C) is the most widely utilized in both biology and nanotechnology. Naturally occurring C derivatives that shift the N3 pKa introduce an additional level of tunability. The epigenetic nucleobase 5-carboxylcytosine (caC) presents a particularly interesting example since this derivative forms Watson-Crick base pairs of similar stability and displays pH-dependent behavior over the same range as the canonical nucleobase. However, the titratable group in caC corresponds to the exocyclic carboxyl group rather than N3, and the implications of these divergent protonation events toward DNA hybridization thermodynamics, kinetics, and base pairing dynamics remain poorly understood. Here, we study the pH dependence of these physical properties using model oligonucleotides containing C and caC with FTIR and temperature-jump IR spectroscopy. We demonstrate that N3 protonation of C completely disrupts duplex stability, leading to large shifts in the duplex/single-strand equilibrium, a reduction in the cooperativity of melting, and an acceleration in the rate of duplex dissociation. In contrast, while increasing 5-carboxyl protonation in caC-containing duplexes induces an increase in base pair fluctuations, the DNA duplex can tolerate substantial protonation without significant perturbation to the duplex/single-strand equilibrium. However, 5-carboxyl protonation has a large impact on hybridization kinetics by reducing the transition state free energy. Our thermodynamic and kinetic analysis provides new insight on the impact of two divergent protonation mechanisms in naturally occurring nucleobases on the biophysical properties of DNA.
Collapse
|
49
|
Beć KB, Grabska J, Czarnecki MA, Huck CW, Wójcik MJ, Nakajima T, Ozaki Y. IR Spectra of Crystalline Nucleobases: Combination of Periodic Harmonic Calculations with Anharmonic Corrections Based on Finite Models. J Phys Chem B 2019; 123:10001-10013. [DOI: 10.1021/acs.jpcb.9b06285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krzysztof B. Beć
- Institute of Analytical Chemistry, University of Innsbruck, A6020 Innsbruck, Austria
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Justyna Grabska
- Institute of Analytical Chemistry, University of Innsbruck, A6020 Innsbruck, Austria
| | - Mirosław A. Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Christian W. Huck
- Institute of Analytical Chemistry, University of Innsbruck, A6020 Innsbruck, Austria
| | - Marek J. Wójcik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
50
|
Fritzsch R, Greetham GM, Clark IP, Minnes L, Towrie M, Parker AW, Hunt NT. Monitoring Base-Specific Dynamics during Melting of DNA-Ligand Complexes Using Temperature-Jump Time-Resolved Infrared Spectroscopy. J Phys Chem B 2019; 123:6188-6199. [PMID: 31268327 DOI: 10.1021/acs.jpcb.9b04354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ultrafast time-resolved infrared spectroscopy employing nanosecond temperature-jump initiation has been used to study the melting of double-stranded (ds)DNA oligomers in the presence and absence of minor groove-binding ligand Hoechst 33258. Ligand binding to ds(5'-GCAAATTTCC-3'), which binds Hoechst 33258 in the central A-tract region with nanomolar affinity, causes a dramatic increase in the timescales for strand melting from 30 to ∼250 μs. Ligand binding also suppresses premelting disruption of the dsDNA structure, which takes place on 100 ns timescales and includes end-fraying. In contrast, ligand binding to the ds(5'-GCATATATCC-3') sequence, which exhibits an order of magnitude lower affinity for Hoechst 33258 than the A-tract motif, leads to an increase by only a factor of 5 in melting timescales and reduced suppression of premelting sequence perturbation and end-fraying. These results demonstrate a dynamic impact of the minor groove ligand on the dsDNA structure that correlates with binding strength and thermodynamic stabilization of the duplex. Moreover, the ability of the ligand to influence base pairs distant from the binding site has potential implications for allosteric communication mechanisms in dsDNA.
Collapse
Affiliation(s)
- Robby Fritzsch
- Department of Physics, SUPA , University of Strathclyde , Glasgow G4 0NG , U.K
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Lucy Minnes
- Department of Physics, SUPA , University of Strathclyde , Glasgow G4 0NG , U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute , University of York , Heslington, York YO10 5DD , U.K
| |
Collapse
|