1
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Zhao Q, Ma L, Chen S, Huang L, She G, Sun Y, Shi W, Mu L. Tracking mitochondrial Cu(I) fluctuations through a ratiometric fluorescent probe in AD model cells: Towards understanding how AβOs induce mitochondrial Cu(I) dyshomeostasis. Talanta 2024; 271:125716. [PMID: 38301373 DOI: 10.1016/j.talanta.2024.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Mitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-β oligomers (AβOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AβOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I). CHC-NS4 possesses excellent ratiometric response, high selectivity to Cu(I) and specific ability to target mitochondria. Under mitochondrial dysfunction induced by oligomycin, mitochondrial Cu(I) levels gradually increased, which may be related to inhibition of ATP7A-mediated Cu(I) exportation and/or high expression of COX. On this basis, CHC-NS4 was further utilized to visualize the fluctuations of mitochondrial Cu(I) levels during progression of AD model cells induced by AβOs. It was found that mitochondrial Cu(I) levels were gradually elevated during the AD progression, which depended on not only AβOs concentration but also incubation time. Moreover, endocytosis maybe served as a prime pathway mode for mitochondrial Cu(I) dyshomeostasis induced by AβOs during AD progression. These results have provided a novel inspiration into mitochondrial copper biology in AD pathogenesis.
Collapse
Affiliation(s)
- Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Chen
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Rulmont C, Stigliani JL, Hureau C, Esmieu C. Rationally Designed Cu(I) Ligand to Prevent CuAβ-Generated ROS Production in the Alzheimer's Disease Context. Inorg Chem 2024; 63:2340-2351. [PMID: 38243896 DOI: 10.1021/acs.inorgchem.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
In the context of Alzheimer's disease, copper (Cu) can be loosely bound to the amyloid-β (Aβ) peptide, leading to the formation of CuAβ, which can catalytically generate reactive oxygen species that contribute to oxidative stress. To fight against this phenomenon, the chelation therapy approach has been developed and consists of using a ligand able to remove Cu from Aβ and to redox-silence it, thus stopping the reactive oxygen species (ROS) production. A large number of Cu(II) chelators has been studied, allowing us to define and refine the properties required to design a "good" ligand, but without strong therapeutic outcomes to date. Those chelators targeted the Cu(II) redox state. Herein, we explore a parallel and relevant alternative pathway by designing a chelator able to target the Cu(I) redox state. To that end, we designed LH2 ([1N3S] binding set) and demonstrated that (i) it is perfectly able to extract Cu(I) from Cu(I)Aβ even in the presence of an excess of Zn(II) and (ii) it redox-silences the Cu, preventing the formation of ROS. We showed that LH2 that is sensitive to oxidation can efficiently replace the [Zn(II)L] complex without losing its excellent ability to stop the ROS production while increasing its resistance to oxidation.
Collapse
Affiliation(s)
- Clément Rulmont
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| | | | | | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| |
Collapse
|
4
|
Okuda K, Takashima I, Takagi A. Advances in reaction-based synthetic fluorescent probes for studying the role of zinc and copper ions in living systems. J Clin Biochem Nutr 2023; 72:1-12. [PMID: 36777081 PMCID: PMC9899921 DOI: 10.3164/jcbn.22-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the behavior of essential trace metal elements in living organisms has attracted more and more attention as their dynamics have been found to be tightly regulated by metallothionines, transporters, etc. As the physiological and/or pathological roles of such metal elements are critical, there have been many non-invasive methods developed to determine their cellular functions, mainly by small molecule fluorescent probes. In this review, we focus on probes that detect intracellular zinc and monovalent copper. Both zinc and copper act not only as tightly bound cofactors of enzymes and proteins but also as signaling factors as labile or loosely bound species. Many fluorescent probes that detect mobile zinc or monovalent copper are recognition-based probes, whose detection is hindered by the abundance of intracellular chelators such as glutathione which interfere with the interaction between probe and metal. In contrast, reaction-based probes release fluorophores triggered by zinc or copper and avoid interference from such intracellular chelators, allowing the detection of even low concentrations of such metals. Here, we summarize the current status of the cumulative effort to develop such reaction-based probes and discuss the strategies adopted to overcome their shortcomings.
Collapse
Affiliation(s)
- Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan,To whom correspondence should be addressed. E-mail:
| | - Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
5
|
Wu SY, Shen Y, Shkolnikov I, Campbell RE. Fluorescent Indicators For Biological Imaging of Monatomic Ions. Front Cell Dev Biol 2022; 10:885440. [PMID: 35573682 PMCID: PMC9093666 DOI: 10.3389/fcell.2022.885440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.
Collapse
Affiliation(s)
- Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Irene Shkolnikov
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Hou J, Jia P, Yang K, Bu T, Zhao S, Li L, Wang L. Fluorescence and Colorimetric Dual-Mode Ratiometric Sensor Based on Zr-Tetraphenylporphyrin Tetrasulfonic Acid Hydrate Metal-Organic Frameworks for Visual Detection of Copper Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13848-13857. [PMID: 35286802 DOI: 10.1021/acsami.1c23199] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a special heavy metal ion, copper ions (Cu2+) play an indispensable role in the fields of environmental protection and safety. Their excessive intake not only easily leads to diseases but also affects human health. Therefore, it is particularly important to construct a facile, effective, and highly selective Cu2+ probe. Herein, a novel Zr-tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) metal-organic framework (ZTM) was fabricated using TPPS as the ligand and exhibited strong red fluorescence with a high quantum yield of 12.22%. In addition, we designed a ratiometric fluorescent probe by introducing green fluorescein isothiocyanate (FITC), which was not subject to environmental interference and had high accuracy. When exposed to different amounts of Cu2+, the fluorescence emission at 667 nm from ZTMs is remarkably quenched, while that at 515 nm from FITC is enhanced, accompanied by a change in the solutions' fluorescence color from red to green under a UV lamp. Besides, the ZTMs solutions display an excellent ratiometric colorimetric response for Cu2+ and produce an obvious color change (from green to colorless) that is visible to the naked eye. The fabricated ZTMs@FITC fluorescent probe exhibits distinguished performance for Cu2+ detection with linear ranges of 0.1 to 5 μM and 5 to 50 μM, as well as a low detection limit of 5.61 nM. Moreover, a colorimetric sensor based on ZTMs exhibits a good linear range from 0.1 to 20 μM for Cu2+ with the detection limit of 4.96 nM. Furthermore, the dual-signal ratiometric sensor has significant specificity for Cu2+ and is successfully applied for monitoring Cu2+ in water samples, which proves its practical application value in the environment and biological systems.
Collapse
Affiliation(s)
- Jinjie Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Longwen Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| |
Collapse
|
7
|
Sammut D, Bugeja N, Szaciłowski K, Magri DC. Molecular engineering of fluorescent bichromophore 1,3,5-triaryl-Δ 2-pyrazoline and 4-amino-1,8-naphthalimide molecular logic gates. NEW J CHEM 2022. [DOI: 10.1039/d2nj02422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emissive bichromophoric solvatochromatic molecules are introduced as a new platform for the development of fluorescent molecular logic gates.
Collapse
Affiliation(s)
- Darlene Sammut
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| | - Nathalie Bugeja
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| | - Konrad Szaciłowski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Kraków, Poland
| | - David C. Magri
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| |
Collapse
|
8
|
West MES, Yao CY, Melaugh G, Kawamoto K, Uchiyama S, de Silva AP. Fluorescent Molecular Logic Gates Driven by Temperature and by Protons in Solution and on Solid. Chemistry 2021; 27:13268-13274. [PMID: 34233035 DOI: 10.1002/chem.202101892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/22/2022]
Abstract
Temperature-driven fluorescent NOT logic is demonstrated by exploiting predissociation in a 1,3,5-trisubstituted Δ2 -pyrazoline on its own and when grafted onto silica microparticles. Related Δ2 -pyrazolines become proton-driven YES and NOT logic gates on the basis of fluorescent photoinduced electron transfer (PET) switches. Additional PASS 1 and YES+PASS 1 logic gates on silica are also demonstrated within the same family. Beside these small-molecule systems, a polymeric molecular thermometer based on a benzofurazan-derivatized N-isopropylacrylamide copolymer is attached to silica to produce temperature-driven fluorescent YES logic.
Collapse
Affiliation(s)
- Matthew E S West
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| | - Chao-Yi Yao
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| | - Gavin Melaugh
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Kyoko Kawamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - A Prasanna de Silva
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| |
Collapse
|
9
|
Roudeau S, Trist BG, Carmona A, Davies KM, Halliday GM, Rufin Y, Claverol S, Van Malderen SJM, Falkenberg G, Double KL, Ortega R. Native Separation and Metallation Analysis of SOD1 Protein from the Human Central Nervous System: a Methodological Workflow. Anal Chem 2021; 93:11108-11115. [PMID: 34348022 DOI: 10.1021/acs.analchem.1c01128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of the metal content of metalloproteins in tissues from the human central nervous system (CNS) can be compromised by preparative techniques which alter levels of, or interactions between, metals and the protein of interest within a complex mixture. We developed a methodological workflow combining size exclusion chromatography, native isoelectric focusing, and either proton or synchrotron X-ray fluorescence within electrophoresis gels to analyze the endogenous metal content of copper-zinc superoxide dismutase (SOD1) purified from minimal amounts (<20 mg) of post-mortem human brain and spinal cord tissue. Abnormal metallation and aggregation of SOD1 are suspected to play a role in amyotrophic lateral sclerosis and Parkinson's disease, but data describing SOD1 metal occupancy in human tissues have not previously been reported. Validating our novel approach, we demonstrated step-by-step metal preservation, preserved SOD1 activity, and substantial enrichment of SOD1 protein versus confounding metalloproteins. We analyzed tissues from nine healthy individuals and five CNS regions (occipital cortex, substantia nigra, locus coeruleus, dorsal spinal cord, and ventral spinal cord). We found that Cu and Zn were bound to SOD1 in a ratio of 1.12 ± 0.28, a ratio very close to the expected value of 1. Our methodological workflow can be applied to the study of endogenous native SOD1 in a pathological context and adapted to a range of metalloproteins from human tissues and other sources.
Collapse
Affiliation(s)
- Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR-5797, F-33170 Gradignan, France
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | | | - Katherine M Davies
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Yann Rufin
- Plateforme Biochimie et Biophysique (BioProt), Univ. Bordeaux, F-33077 Bordeaux, France
| | - Stéphane Claverol
- Plateforme Proteome, Univ. Bordeaux, Camperdown, F-33076 Bordeaux, France
| | | | | | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR-5797, F-33170 Gradignan, France
| |
Collapse
|
10
|
Isaac M, Denisov SA, McClenaghan ND, Sénèque O. Bioinspired Luminescent Europium-Based Probe Capable of Discrimination between Ag + and Cu . Inorg Chem 2021; 60:10791-10798. [PMID: 34236828 DOI: 10.1021/acs.inorgchem.1c01486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Due to their similar coordination properties, discrimination of Cu+ and Ag+ by water-soluble luminescent probes is challenging. We have synthesized LCC4Eu, an 18 amino acid cyclic peptide bearing a europium complex, which is able to bind one Cu+ or Ag+ ion by the side chains of two methionines, a histidine and a 3-(1-naphthyl)-l-alanine. In this system, the naphthyl moiety establishes a cation-π interaction with these cations. It also acts as an antenna for the sensitization of Eu3+ luminescence. Interestingly, when excited at 280 nm, LCC4Eu behaves as a turn-on probe for Ag+ (+150% Eu emission) and as a turn-off probe for Cu+ (-50% Eu3+ emission). Shifting the excitation wavelength to 305 nm makes the probe responsive to Ag+ (+380% Eu3+ emission) but not to Cu+ or other physiological cations. Thus, LCC4Eu is uniquely capable of discriminating Ag+ from Cu+. A detailed spectroscopic characterization based on steady-state and time-resolved measurements clearly demonstrates that Eu3+ sensitization relies on electronic energy transfer from the naphthalene triplet state to the Eu3+ excited states and that the cation-π interaction lowers the energy of this triplet state by 700 and 2400 cm-1 for Ag+ and Cu+, respectively. Spectroscopic data point to a modulation of the efficiency of the electronic energy transfer caused by the differential red shift of the naphthalene triplet, deciphering the differential luminescence response of LCC4Eu toward Ag+ and Cu+.
Collapse
Affiliation(s)
- Manon Isaac
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| | - Sergey A Denisov
- Université Bordeaux, CNRS, ISM (UMR 5255), 33405 Talence, France
| | | | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| |
Collapse
|
11
|
|
12
|
Magri DC. Logical sensing with fluorescent molecular logic gates based on photoinduced electron transfer. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Sousa RPCL, Figueira RB, Costa SPG, M. Raposo MM. Optical Fiber Sensors for Biocide Monitoring: Examples, Transduction Materials, and Prospects. ACS Sens 2020; 5:3678-3709. [PMID: 33226221 DOI: 10.1021/acssensors.0c01615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antifouling biocides are toxic to the marine environment impacting negatively on the aquatic ecosystems. These biocides, namely, tributyltin (TBT) and Cu(I) compounds, are used to avoid biofouling; however, their toxicity turns TBT and Cu(I) monitoring an important health issue. Current monitoring methods are expensive and time-consuming. This review provides an overview of the actual state of the art of antifouling paints' biocides, including their impact and toxicity, as well as the reported methods for TBT and Cu(I) detection over the past decade. The principles of optical fiber sensors (OFS) applications, with focus on environmental applications, and the use of organic chemosensors in this type of sensors are debated. The multiplexing ability of OFS and their application on aquatic environments are also discussed.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rita B. Figueira
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana P. G. Costa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Manuela M. Raposo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
14
|
Yi XQ, He YF, Cao YS, Shen WX, Lv YY. Porphyrinic Probe for Fluorescence "Turn-On" Monitoring of Cu + in Aqueous Buffer and Mitochondria. ACS Sens 2019; 4:856-864. [PMID: 30868875 DOI: 10.1021/acssensors.8b01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc(II) porphyrin derivative (ZPSN) was designed and synthesized, and this probe exhibited rapid, selective and reversible binding to Cu+ for fluorescence monitoring in pure aqueous buffer. The detection mechanism is based on Cu+-activated disruption of axial coordination between the pyridyl ligand and the zinc center, which changes the molecular geometry and inhibits intramolecular electron transfer (ET), leading to fluorescence enhancement of the probe. The proposed sensing mechanism was supported by UV-vis spectroscopy/fluorescence spectral titration, NMR spectroscopy, mass spectrometry, and time-resolved fluorescence decay studies. The dissociation constant was calculated to be 6.53 × 10-11 M. CLSM analysis strongly suggested that ZPSN could penetrate live cells and successfully visualize Cu+ in mitochondria. This strategy may establish a design and offer a potential building block for construction of other metal sensors based on a similar mechanism.
Collapse
Affiliation(s)
- Xiao-Qin Yi
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
- College of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Yuan-Fan He
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yu-Sheng Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Wang-Xing Shen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yuan-Yuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| |
Collapse
|
15
|
Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6040048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent progress in the area of molecular logic, in particular molecules capable of sensing for acidity and oxidizability, are gathered together in this short review. Originally proposed as AND logic gates that provide a high fluorescence output when simultaneously protonated and oxidized, the concept has been extended from two-input to three-input variants and to include molecules that function as INHIBIT logic gates. Photochemical concepts such as photoinduced electron transfer (PET) and internal charge transfer (ICT) are exploited as favorite design concepts. This review highlights the evolution of Pourbaix sensors with anthracene, pyrazoline, and naphthalimide fluorophores. Future applications abound in various disciplines from corrosion science, material science, geochemistry to cell imaging.
Collapse
|
16
|
Jia S, Ramos-Torres KM, Kolemen S, Ackerman CM, Chang CJ. Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores. ACS Chem Biol 2018; 13:1844-1852. [PMID: 29112372 PMCID: PMC6370296 DOI: 10.1021/acschembio.7b00748] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon-rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper pools in the Atp7a-/- fibroblast cell model of the genetic copper disorder Menkes disease. Moreover, we showcase the utility of the red-emitting phosphorus-rhodol based dye Copper Phosphorus Fluor 1 (CPF1) in dual-color, dual-analyte imaging experiments with the green-emitting calcium indicator Calcium Green-1 to enable simultaneous detection of fluctuations in copper and calcium pools in living cells. The results provide a starting point for advancing tools to study the contributions of copper to health and disease and for exploiting the rapidly growing palette of heteroatom-substituted xanthene dyes to rationally tune the optical properties of fluorescent indicators for other biologically important analytes.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Safacan Kolemen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Mehta R, Qureshi MH, Purchal MK, Greer SM, Gong S, Ngo C, Que EL. A new probe for detecting zinc-bound carbonic anhydrase in cell lysates and cells. Chem Commun (Camb) 2018; 54:5442-5445. [PMID: 29745391 DOI: 10.1039/c8cc02034e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report the synthesis and application of a small molecule probe for carbonic anhydrase (CA) to track holo-CA in cell lysates and live-cell models of zinc dyshomeostasis. The probe displays a 12-fold increase in fluorescence upon binding to bovine CA and also responds to human CA isoforms.
Collapse
Affiliation(s)
- Radhika Mehta
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Das S, Sarkar A, Rakshit A, Datta A. A Sensitive Water-Soluble Reversible Optical Probe for Hg2+ Detection. Inorg Chem 2018; 57:5273-5281. [DOI: 10.1021/acs.inorgchem.8b00310] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sayani Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Anindita Sarkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Ananya Rakshit
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
19
|
Au-Yeung HY, Chan CY, Tong KY, Yu ZH. Copper-based reactions in analyte-responsive fluorescent probes for biological applications. J Inorg Biochem 2017; 177:300-312. [DOI: 10.1016/j.jinorgbio.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
|
20
|
Redox-Enabled, pH-Disabled Pyrazoline-Ferrocene INHIBIT Logic Gates. Chemphyschem 2017; 18:1742-1745. [DOI: 10.1002/cphc.201700345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/23/2017] [Indexed: 11/07/2022]
|
21
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Hu Z, Hu J, Wang H, Zhang Q, Zhao M, Brommesson C, Tian Y, Gao H, Zhang X, Uvdal K. A TPA-caged precursor of (imino)coumarin for “turn-on” fluorogenic detection of Cu+. Anal Chim Acta 2016; 933:189-95. [DOI: 10.1016/j.aca.2016.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 01/14/2023]
|
23
|
Jung KH, Oh ET, Park HJ, Lee KH. Development of new peptide-based receptor of fluorescent probe with femtomolar affinity for Cu(+) and detection of Cu(+) in Golgi apparatus. Biosens Bioelectron 2016; 85:437-444. [PMID: 27208475 DOI: 10.1016/j.bios.2016.04.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Developing fluorescent probes for monitoring intracellular Cu(+) is important for human health and disease, whereas a few types of their receptors showing a limited range of binding affinities for Cu(+) have been reported. In the present study, we first report a novel peptide receptor of a fluorescent probe for the detection of Cu(+). Dansyl-labeled tripeptide probe (Dns-LLC) formed a 1:1 complex with Cu(+) and showed a turn-on fluorescent response to Cu(+) in aqueous buffered solutions. The dissociation constant of Dns-LLC for Cu(+) was determined to be 12 fM, showing that Dns-LLC had more potent binding affinity for Cu(+) than those of previously reported chemical probes for Cu(+). The binding mode study showed that the thiol group of the peptide receptor plays a critical role in potent binding with Cu(+) and the sulfonamide and amide groups of the probe might cooperate to form a complex with Cu(+). Dns-LLC detected Cu(+) selectively by a turn-on response among various biologically relevant metal ions, including Cu(2+) and Zn(2+). The selectivity of the peptide-based probe for Cu(+) was strongly dependent on the position of the cysteine residue in the peptide receptor part. The fluorescent peptide-based probe penetrated the living RKO cells and successfully detected Cu(+) in the Golgi apparatus in live cells by a turn-on response. Given the growing interest in imaging Cu(+) in live cells, a novel peptide receptor of Cu(+) will offer the potential for developing a variety of fluorescent probes for Cu(+) in the field of copper biochemistry.
Collapse
|
24
|
Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Rahaman SA, Roy B, Mandal S, Bandyopadhyay S. A Kamikaze Approach for Capturing Hg2+ Ions through the Formation of a One-Dimensional Metal–Organometallic Polymer. Inorg Chem 2016; 55:1069-75. [PMID: 26784576 DOI: 10.1021/acs.inorgchem.5b02104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sk. Atiur Rahaman
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata Mohanpur, Nadia, West Bengal 741246, India
| | - Biswajit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata Mohanpur, Nadia, West Bengal 741246, India
| | - Soumik Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata Mohanpur, Nadia, West Bengal 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
26
|
Vedamalai M, Kedaria D, Vasita R, Mori S, Gupta I. Design and synthesis of BODIPY-clickate based Hg2+ sensors: the effect of triazole binding mode with Hg2+ on signal transduction. Dalton Trans 2016; 45:2700-8. [DOI: 10.1039/c5dt04042f] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly selective BODIPY-clickates for mercury sensing are reported. These BODIPY clickates exhibits emission in red region with unprecedented large Stokes shifts (116 and 154 nm) upon mercury ion binding due to the intramolecular charge transfer processes.
Collapse
Affiliation(s)
- Mani Vedamalai
- Indian Institute of Technology Gandhinagar
- Ahmedabad-382424
- India
| | - Dhaval Kedaria
- School of Life Sciences
- Central University of Gujarat
- Gandhinagar
- India
| | - Rajesh Vasita
- School of Life Sciences
- Central University of Gujarat
- Gandhinagar
- India
| | - Shigeki Mori
- Integrated Centre for Sciences
- Ehime University
- Matsuyama
- Japan
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar
- Ahmedabad-382424
- India
| |
Collapse
|
27
|
Zhou M, Hu J, Zheng M, Song Q, Li J, Zhang Y. Photo-click construction of a targetable and activatable two-photon probe imaging protease in apoptosis. Chem Commun (Camb) 2016; 52:2342-5. [DOI: 10.1039/c5cc09973k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Targetable and activatable two-photon probes constructed using photo-click chemistry were conducted in mitochondria, lysosome and apoptosis imaging.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Analytical Chemistry for Life Science
- Institute of Chemistry & BioMedical Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Jing Hu
- State Key Laboratory of Analytical Chemistry for Life Science
- Institute of Chemistry & BioMedical Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Mengmeng Zheng
- State Key Laboratory of Analytical Chemistry for Life Science
- Institute of Chemistry & BioMedical Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Qinhua Song
- Department of Chemistry
- Joint Laboratory of Green Synthetic Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Science
- Institute of Chemistry & BioMedical Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science
- Institute of Chemistry & BioMedical Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
28
|
Ha Y, Murale DP, Manjare ST, Kim M, Jeong JA, Churchill DG. Solvent-controlled Novel Cu+and Cu+/2+Fluorescent “Turn-ON” Probing. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yonghwang Ha
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Dhiraj P. Murale
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Sudesh T. Manjare
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| | - Minseong Kim
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Jeong A. Jeong
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - David G. Churchill
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| |
Collapse
|
29
|
Morgan MT, McCallum A, Fahrni CJ. Rational Design of a Water-Soluble, Lipid-Compatible Fluorescent Probe for Cu(I) with Sub-Part-Per-Trillion Sensitivity. Chem Sci 2015; 7:1468-1473. [PMID: 28042469 PMCID: PMC5201193 DOI: 10.1039/c5sc03643g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Knowledge-driven optimization of the ligand and fluorophore architectures yielded an ultrasensitive Cu(i)-selective fluorescent probe featuring a 180-fold fluorescence contrast and 41% quantum yield.
Fluorescence probes represent an attractive solution for the detection of the biologically important Cu(i) cation; however, achieving a bright, high-contrast response has been a challenging goal. Concluding from previous studies on pyrazoline-based fluorescent Cu(i) probes, the maximum attainable fluorescence contrast and quantum yield were limited due to several non-radiative deactivation mechanisms, including ternary complex formation, excited state protonation, and colloidal aggregation in aqueous solution. Through knowledge-driven optimization of the ligand and fluorophore architectures, we overcame these limitations in the design of CTAP-3, a Cu(i)-selective fluorescent probe offering a 180-fold fluorescence enhancement, 41% quantum yield, and a limit of detection in the sub-part-per-trillion concentration range. In contrast to lipophilic Cu(i)-probes, CTAP-3 does not aggregate and interacts only weakly with lipid bilayers, thus maintaining a high contrast ratio even in the presence of liposomes.
Collapse
Affiliation(s)
- M T Morgan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA. ; Tel: +1 404 385-1164
| | - A McCallum
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA. ; Tel: +1 404 385-1164
| | - C J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA. ; Tel: +1 404 385-1164
| |
Collapse
|
30
|
Maity D, Raj A, Karthigeyan D, Kundu TK, Govindaraju T. A switch-on near-infrared fluorescence-ready probe for Cu(I): live cell imaging. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1041953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Debabrata Maity
- New Chemistry Unit, Bioorganic Chemistry Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | - Anand Raj
- New Chemistry Unit, Bioorganic Chemistry Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | - D. Karthigeyan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | - Tapas K. Kundu
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | - T. Govindaraju
- New Chemistry Unit, Bioorganic Chemistry Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| |
Collapse
|
31
|
Cotruvo JA, Aron AT, Ramos-Torres KM, Chang CJ. Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 2015; 44:4400-14. [PMID: 25692243 DOI: 10.1039/c4cs00346b] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
32
|
Zammit R, Pappova M, Zammit E, Gabarretta J, Magri DC. 1,3,5-Triarylpyrazolines — pH-driven off-on-off molecular logic devices based on a “receptor1-fluorophore-spacer-receptor2” format with internal charge transfer (ICT) and photoinduced electron transfer (PET) mechanisms. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0266] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The excited state photophysical properties of the 1,3,5-triarylpyrazolines 1–4 were studied in methanol and 1:1 (v/v) methanol–water, as well as 1:4 (v/v) methanol–water and water by fluorescence spectroscopy. The molecules 2–4 incorporate a “receptor1-fluorophore-spacer-receptor2” format while 1 is a reference compound based on a “fluorophore-receptor1” design. The molecular probes operate according to photoinduced electron transfer (PET) and internal charge transfer (ICT) processes. At basic and neutral pHs, 2–4 are essentially nonfluorescent due to PET from the electron-donating dimethylamino moiety appended on the 5-phenyl ring to the excited state of the 1,3,5-triarylpyrazoline fluorophore. At proton concentrations of 10−3 mol/L, the dimethylamino unit is protonated resulting in a strong blue fluorescence about 460 nm with significant quantum yields up to 0.54. At acid concentrations above 10−2 mol/L, fluorescence quenching is observed by an ICT mechanism due to protonation of the pyrazoline chromophore. Symmetrical off-on-off fluorescence–pH profiles are observed, spanning six log units with a narrow on window within three pH units. Hence, 2–4 are novel examples of ternary photonic pH sensing molecular devices.
Collapse
Affiliation(s)
- Ramon Zammit
- Department of Chemistry, University of Malta, Msida, MSD 2080, Malta
| | - Maria Pappova
- Department of Chemistry, University of Malta, Msida, MSD 2080, Malta
| | - Esther Zammit
- Department of Chemistry, University of Malta, Msida, MSD 2080, Malta
| | - John Gabarretta
- Department of Chemistry, University of Malta, Msida, MSD 2080, Malta
| | - David C. Magri
- Department of Chemistry, University of Malta, Msida, MSD 2080, Malta
| |
Collapse
|
33
|
Zhang L, Zou LY, Guo JF, Wang D, Ren AM. A theoretical study of a series of novel two-photon nitric oxide (NO) fluorescent probes based on BODIPY. NEW J CHEM 2015. [DOI: 10.1039/c5nj01023c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PET probing mechanism and intrinsic two-photon absorption properties of the studied molecules are rationally explained.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130061
- People's Republic of China
| | - Lu-Yi Zou
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130061
- People's Republic of China
| | - Jing-Fu Guo
- School of Physics
- Northeast Normal University
- P. R. China
| | - Dan Wang
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130061
- People's Republic of China
| | - Ai-Min Ren
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130061
- People's Republic of China
| |
Collapse
|
34
|
Verwilst P, Sunwoo K, Kim JS. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun (Camb) 2015; 51:5556-71. [DOI: 10.1039/c4cc10366a] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper ions are crucial to life, and some fundamental roles of copper in pathophysiology have been elucidated using fluorescent sensors.
Collapse
Affiliation(s)
- Peter Verwilst
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Kyoung Sunwoo
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| |
Collapse
|
35
|
Ha Y, Murale DP, Yun C, Manjare ST, Kim H, Kwak J, Lee YS, Churchill DG. H+-Assisted fluorescent differentiation of Cu+ and Cu2+: effect of Al3+-induced acidity on chemical sensing and generation of two novel and independent logic gating pathways. Chem Commun (Camb) 2015; 51:6357-60. [DOI: 10.1039/c4cc10025e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel logic gate containing protecting groups interacts with various species (acetonitrile) with fluorescence responses relating to ligand non innocence.
Collapse
Affiliation(s)
- Yonghwang Ha
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Dhiraj P. Murale
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Changsuk Yun
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Sudesh T. Manjare
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations
| | - Hyungjun Kim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Juhyoun Kwak
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Yoon Sup Lee
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - David G. Churchill
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| |
Collapse
|
36
|
Grubman A, White AR, Liddell JR. Mitochondrial metals as a potential therapeutic target in neurodegeneration. Br J Pharmacol 2014; 171:2159-73. [PMID: 24206195 DOI: 10.1111/bph.12513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022] Open
Abstract
Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders.
Collapse
Affiliation(s)
- A Grubman
- Department of Pathology, University of Melbourne, Melbourne, Vic., Australia
| | | | | |
Collapse
|
37
|
Abstract
For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.
Collapse
|
38
|
Morgan MT, Sumalekshmy S, Sarwar M, Beck H, Crooke S, Fahrni CJ. Probing ternary complex equilibria of crown ether ligands by time-resolved fluorescence spectroscopy. J Phys Chem B 2014; 118:14196-202. [PMID: 25313708 PMCID: PMC4266341 DOI: 10.1021/jp5077406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Ternary complex formation with solvent
molecules and other adventitious
ligands may compromise the performance of metal-ion-selective fluorescent
probes. As Ca(II) can accommodate more than 6 donors in the first
coordination sphere, commonly used crown ether ligands are prone to
ternary complex formation with this cation. The steric strain imposed
by auxiliary ligands, however, may result in an ensemble of rapidly
equilibrating coordination species with varying degrees of interaction
between the cation and the specific donor atoms mediating the fluorescence
response, thus diminishing the change in fluorescence properties upon
Ca(II) binding. To explore the influence of ligand architecture on
these equilibria, we tethered two structurally distinct aza-15-crown-5
ligands to pyrazoline fluorophores as reporters. Due to ultrafast
photoinduced electron-transfer (PET) quenching of the fluorophore
by the ligand moiety, the fluorescence decay profile directly reflects
the species composition in the ground state. By adjusting the PET
driving force through electronic tuning of the pyrazoline fluorophores,
we were able to differentiate between species with only subtle variations
in PET donor abilities. Concluding from a global analysis of the corresponding
fluorescence decay profiles, the coordination species composition
was indeed strongly dependent on the ligand architecture. Altogether,
the combination of time-resolved fluorescence spectroscopy with selective
tuning of the PET driving force represents an effective analytical
tool to study dynamic coordination equilibria and thus to optimize
ligand architectures for the design of high-contrast cation-responsive
fluorescence switches.
Collapse
Affiliation(s)
- M Thomas Morgan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW By determining metalloproteomes via high-throughput methodology, metalloproteomics provides a research strategy for investigating nutritional and metabolic issues relating to metals. In this review, we examine recent developments in metalloproteomics since its early days approximately 12 years ago, when we utilized metalloproteomics to investigate copper disposition in hepatocytes in relation to Wilson disease. RECENT FINDINGS A metalloproteome is the set of proteins that have metal-binding capacity by being metalloproteins or manifesting metal-binding sites. Like all proteomes, a metalloproteome is determined within the context of a well defined system. It can be ascertained for a single metal or multiple metals in that system. Apart from major technological advances in analytical techniques, recent work has examined metalloproteomes for metals other than copper, notably nickel, zinc and manganese. Given the importance of microbiomes to metabolism, microbial metalloproteomics is a rapidly expanding and promising new field. SUMMARY Metals play key roles in metabolic processes. Sufficient technological progress has taken place in the past decade to make metalloproteomics an exciting and innovative type of research in nutrition and metabolism. It elucidates how metals contribute to metabolic physiology across the phyla, including in microbes. For humans, it may clarify mechanisms as well as identify informative diagnostic or prognostic biomarkers.
Collapse
Affiliation(s)
- Eve A Roberts
- aDivision of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children bGenetics and Genome Biology Program cMolecular Structure and Function Program, The Hospital for Sick Children Research Institute dDepartments of Paediatrics eMedicine fPharmacology gBiochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Giuffrida ML, Rizzarelli E, Tomaselli GA, Satriano C, Trusso Sfrazzetto G. A novel fully water-soluble Cu(i) probe for fluorescence live cell imaging. Chem Commun (Camb) 2014; 50:9835-8. [DOI: 10.1039/c4cc02147a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev 2014; 114:4564-601. [PMID: 24588137 PMCID: PMC4096685 DOI: 10.1021/cr400546e] [Citation(s) in RCA: 1545] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle P. Carter
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Alexandra M. Young
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Amy E. Palmer
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| |
Collapse
|
42
|
Kamimura A, Nokubi T, Watanabe R, Ishikawa M, Nasu K, Uno H, Sumimoto M. 4,4′-Diarylsulfanyl-2,2′,5,5′-tetraoxybiaryl Derivatives as a Water-Soluble Fluorescent Dye. J Org Chem 2014; 79:1068-83. [DOI: 10.1021/jo402522y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Akio Kamimura
- Department
of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8611, Japan
| | - Tomomi Nokubi
- Department
of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8611, Japan
| | - Ryusuke Watanabe
- Department
of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8611, Japan
| | - Mari Ishikawa
- Department
of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8611, Japan
| | - Kotaro Nasu
- Department
of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8611, Japan
| | - Hidemitsu Uno
- Department
of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Michinori Sumimoto
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, Ube 755-8611, Japan
| |
Collapse
|
43
|
Liang J, Guo L, Ding Y, Xia L, Shen Y, Qin M, Xu Q, Cao Y, Wang W. Genetically encoded red fluorescent copper(I) sensors for cellular copper(I) imaging. Biochem Biophys Res Commun 2014; 443:894-8. [PMID: 24380863 DOI: 10.1016/j.bbrc.2013.12.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/11/2013] [Indexed: 01/25/2023]
Abstract
Copper ranks among the most important metal ions in living organism, owing to its key catalytic effect in a range of biochemical processes. Dysregulation of in vivo copper(I) metabolism is extremely toxic and would cause serious diseases in human, such as Wilson's and Menkes. Thus, it would be highly valuable to have a proper approach to monitor the dynamics of copper(I) in vivo, as it is directly related to the onset of human copper(I)-related diseases. Under these circumstance, developing fluorescent protein based copper(I) sensors is highly demanded. However, these established sensors are mostly based on green or yellow FPs. Fluorescent copper(I) sensors with a spectra in the red range are more desirable due to lower phototoxicity, less auto-fluorescent noise and better penetration of red light. In the present work, we grafted a special red FP into three different location of a copper(I) binding protein, and generate a series of red fluorescent copper(I) sensors. Despite their limited in vivo sensitivity toward copper(I), these sensors are viable for cellular copper(I) imaging. Furthermore, these red fluorescent copper(I) sensors are a good starting point to develop superior copper(I) biosensors capable of imaging copper(I) fluctuations within a truly biologically relevant concentration, and further effort to realize this endeavor is under way.
Collapse
Affiliation(s)
- Junyi Liang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Lele Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yin Ding
- Sate Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Xia
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Meng Qin
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
44
|
Delbianco M, Lamarque L, Parker D. Synthesis of meta and para-substituted aromatic sulfonate derivatives of polydentate phenylazaphosphinate ligands: enhancement of the water solubility of emissive europium(iii) EuroTracker® dyes. Org Biomol Chem 2014; 12:8061-71. [DOI: 10.1039/c4ob01143k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of a trifluoroethyl ester group to protect sulfonic acid moieties is used in the synthesis of a short series of water-soluble, very bright europium(iii) complexes.
Collapse
Affiliation(s)
| | | | - David Parker
- Department of Chemistry
- Durham University
- Durham DH1 3LE, UK
| |
Collapse
|
45
|
Hatai J, Bandyopadhyay S. Altered selectivity of a dipicolylamine based metal ion receptor. Chem Commun (Camb) 2014; 50:64-6. [DOI: 10.1039/c3cc46285d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Wang X, Miao Q, Song T, Yuan Q, Gao J, Liang G. A fluorescent switch for sequentially and selectively sensing copper(ii) andl-histidine in vitro and in living cells. Analyst 2014; 139:3360-4. [DOI: 10.1039/c4an00410h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new fluorescent switch was developed for sequential and selective sensing of Cu2+andl-histidine (l-His)in vitroand in living cells.
Collapse
Affiliation(s)
- Xiaojing Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei, China
| | - Qingqing Miao
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei, China
| | - Tingjie Song
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, China
| | - Qingpan Yuan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces
| |
Collapse
|
47
|
Li G, Gao J, Zhang Q. Synthesis, Characterization, and Sensing Behavior of an N-heteropentacene. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Abstract
The measurement of reliable Cu(I) protein binding affinities requires competing reference ligands with similar binding strengths; however, the literature on such reference ligands is not only sparse but often conflicting. To address this deficiency, we have created and characterized a series of water-soluble monovalent copper ligands, MCL-1, MCL-2, and MCL-3, that form well-defined, air-stable, and colorless complexes with Cu(I) in aqueous solution. X-ray structural data, electrochemical measurements, and an extensive network of equilibrium titrations showed that all three ligands form discrete Cu(I) complexes with 1:1 stoichiometry and are capable of buffering Cu(I) concentrations between 10(-10) and 10(-17) M. As most Cu(I) protein affinities have been obtained from competition experiments with bathocuproine disulfonate or 2,2'-bicinchoninic acid, we further calibrated their Cu(I) stability constants against the MCL series. To demonstrate the application of these reagents, we determined the Cu(I) binding affinity of CusF (log K = 14.3 ± 0.1), a periplasmic metalloprotein required for the detoxification of elevated copper levels in Escherichia coli . Altogether, this interconnected set of affinity standards establishes a reliable foundation that will facilitate the precise determination of Cu(I) binding affinities of proteins and small-molecule ligands.
Collapse
Affiliation(s)
- Pritha Bagchi
- School of Chemistry and Biochemistry, Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive,
Atlanta, GA 30332, U.S.A
| | - M. Thomas Morgan
- School of Chemistry and Biochemistry, Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive,
Atlanta, GA 30332, U.S.A
| | - John Bacsa
- X-ray Crystallography Center, Department of Chemistry, Emory
University, 1515 Dieckey Drive, Atlanta, GA 30322, U.S.A
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry, Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive,
Atlanta, GA 30332, U.S.A
| |
Collapse
|
49
|
Zhou L, Zhu CC, Xue YS, He WJ, Du HB, You XZ, Li YZ. Two fluorescent 2,6-substituted pyridyl boron-dipyrromethene dyes for selective sensing of cuprous ions. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Nokubi T, Nasu K, Watanabe R, Kamimura A. A New Water-soluble Fluorescent Dye Based on 2-Sulfanylhydroquinone Dimers. CHEM LETT 2013. [DOI: 10.1246/cl.130348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomomi Nokubi
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University
| | - Kotaro Nasu
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University
| | - Ryusuke Watanabe
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University
| | - Akio Kamimura
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University
| |
Collapse
|