1
|
Hiromoto T, Nishikawa K, Inoue S, Ogata H, Hori Y, Kusaka K, Hirano Y, Kurihara K, Shigeta Y, Tamada T, Higuchi Y. New insights into the oxidation process from neutron and X-ray crystal structures of an O 2-sensitive [NiFe]-hydrogenase. Chem Sci 2023; 14:9306-9315. [PMID: 37712026 PMCID: PMC10498676 DOI: 10.1039/d3sc02156d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
[NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F is an O2-sensitive enzyme that is inactivated in the presence of O2 but the oxidized enzyme can recover its catalytic activity by reacting with H2 under anaerobic conditions. Here, we report the first neutron structure of [NiFe]-hydrogenase in its oxidized state, determined at a resolution of 2.20 Å. This resolution allowed us to reinvestigate the structure of the oxidized active site and to observe the positions of protons in several short hydrogen bonds. X-ray anomalous scattering data revealed that a part of the Ni ion is dissociated from the active site Ni-Fe complex and forms a new square-planar Ni complex, accompanied by rearrangement of the coordinated thiolate ligands. One of the thiolate Sγ atoms is oxidized to a sulfenate anion but remains attached to the Ni ion, which was evaluated by quantum chemical calculations. These results suggest that the square-planar complex can be generated by the attack of reactive oxygen species derived from O2, as distinct from one-electron oxidation leading to a conventional oxidized form of the Ni-Fe complex. Another major finding of this neutron structure analysis is that the Cys17S thiolate Sγ atom coordinating to the proximal Fe-S cluster forms an unusual hydrogen bond with the main-chain amide N atom of Gly19S with a distance of 3.25 Å, where the amide proton appears to be delocalized between the donor and acceptor atoms. This observation provides insight into the contribution of the coordinated thiolate ligands to the redox reaction of the Fe-S cluster.
Collapse
Affiliation(s)
- Takeshi Hiromoto
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| | - Koji Nishikawa
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| | - Seiya Inoue
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Katsuhiro Kusaka
- Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society 162-1 Shirakata, Tokai Ibaraki 319-1106 Japan
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Kazuo Kurihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
| | - Yasuteru Shigeta
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| |
Collapse
|
2
|
Ding X, Wang Z, Zheng B, Shi S, Deng Y, Yu H, Zheng P. One-step asparaginyl endopeptidase ( OaAEP1)-based protein immobilization for single-molecule force spectroscopy. RSC Chem Biol 2022; 3:1276-1281. [PMID: 36320890 PMCID: PMC9533667 DOI: 10.1039/d2cb00135g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Enzymatic protein ligation has become the most powerful and widely used method for high-precision atomic force microscopy single-molecule force spectroscopy (AFM-SMFS) study of protein mechanics. However, this methodology typically requires the functionalization of the glass surface with a corresponding peptide sequence/tag for enzymatic recognition and multiple steps are needed. Thus, it is time-consuming and a high level of experience is needed for reliable results. To solve this problem, we simplified the procedure using two strategies both based on asparaginyl endopeptidase (AEP). First, we designed a heterobifunctional peptide-based crosslinker, GL-peptide-propargylglycine, which links to an N 3-functionalized surface via the click reaction. Then, the target protein with a C-terminal NGL sequence can be immobilized via the AEP-mediated ligation. Furthermore, we took advantage of the direct ligation between primary amino in a small molecule and protein with C-terminal NGL by AEP. Thus, the target protein can be immobilized on an amino-functionalized surface via AEP in one step. Both approaches were successfully applied to the AFM-SMFS study of eGFP, showing consistent single-molecule results.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
3
|
Yao RX, Shi JJ, Li KH, Liu X, Zhang HY, Wang M, Zhang WK. Exploring the Nanomechanical Properties of a Coordination-bond Based Supramolecular Polymer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Wang Z, Zhao Z, Li G, Zheng P. Single-Molecule Force Spectroscopy Reveals the Dynamic HgS Coordination Site in the De Novo-Designed Metalloprotein α 3DIV. J Phys Chem Lett 2022; 13:5372-5378. [PMID: 35678420 DOI: 10.1021/acs.jpclett.2c01316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The de novo-designed metalloprotein α3DIV binds to mercury via three cysteine residues under dynamic conditions. An unusual trigonal three-coordinate HgS3 site is formed in the protein in basic solution, whereas a linear two-coordinate HgS2 site is formed in acidic solution. Furthermore, it is unknown whether the two coordinated cysteines in the HgS2 site are fixed or not, which may lead to more dynamics. However, the signal for HgS2 sites with different cysteines may be similar or may be averaged and indistinguishable. To circumvent this problem, we adopt a single-molecule approach to study one mercury site at a time. Using atomic force microscopy-based single-molecule force spectroscopy, the protein is unfolded, and the HgS site is ruptured. The results confirm the formation of HgS3 and HgS2 sites at different pH values. Moreover, it is found that any two of the three cysteines in the protein bind to mercury in the HgS2 site.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhongxing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
5
|
Song Y, Ma Z, Zhang W. Manipulation of a Single Polymer Chain: From the Nanomechanical Properties to Dynamic Structure Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
6
|
Shi S, Wu T, Zheng P. Direct Measurements of the Cobalt-thiolate Bonds Strength in Rubredoxin by Single-Molecule Force Spectroscopy. Chembiochem 2022; 23:e202200165. [PMID: 35475313 DOI: 10.1002/cbic.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Indexed: 11/07/2022]
Abstract
Cobalt is a trace transition metal. Although it is not abundant on earth, tens of cobalt-containing proteins exist in life. Moreover, the characteristic spectrum of Co(II) ion makes it a powerful probe for the characterization of metal-binding proteins through the formation of cobalt-ligand bonds. Since most of these natural and artificial cobalt-containing proteins are stable, we believe that these cobalt-ligand bonds in the protein system are also mechanically stable. To prove this, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to directly measure the rupture force of Co(II)-thiolate bond in Co-substituted rubredoxin (CoRD). By combining the chemical denature/renature method for building metalloprotein and cysteine coupling-based polyprotein construction strategy, we successfully prepared the polyprotein sample (CoRD) n suitable for single-molecule study. Thus, we quantified the strength of Co(II)-thiolate bonds in rubredoxin with a rupture force of ~140 pN, revealing that the bond is a stable chemical bond. In addition, the Co-S bond is more labile than the Zn-S bond in proteins, similar to the result from the metal-competing titration experiment.
Collapse
Affiliation(s)
- Shengchao Shi
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Tao Wu
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Peng Zheng
- Nanjing University, School of Chemistry and Chemical Engineering, 168 Xianlin Ave, Nanjing, Jiangsu Province, 210023, Nanjing, CHINA
| |
Collapse
|
7
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
8
|
van der Lubbe SC, Haim A, van Heesch T, Fonseca Guerra C. Tuning the Binding Strength of Even and Uneven Hydrogen-Bonded Arrays with Remote Substituents. J Phys Chem A 2020; 124:9451-9463. [PMID: 33054218 PMCID: PMC7667637 DOI: 10.1021/acs.jpca.0c07815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Indexed: 12/20/2022]
Abstract
We investigated the tunability of hydrogen bond strength by altering the charge accumulation around the frontier atoms with remote substituents. For pyridine···H2O with NH2 and CN substituted at different positions on pyridine, we find that the electron-withdrawing CN group decreases the negative charge accumulation around the frontier atom N, resulting in weakening of the hydrogen bond, whereas the electron-donating NH2 group increases the charge accumulation around N, resulting in strengthening of the hydrogen bond. By applying these design principles on DDAA-AADD, DADA-ADAD, DAA-ADD, and ADA-DAD hydrogen-bonded dimers, we find that the effect of the substituent is delocalized over the whole molecular system. As a consequence, systems with an equal number of hydrogen bond donor (D) and acceptor (A) atoms are not tunable in a predictable way because of cancellation of counteracting strengthening and weakening effects. Furthermore, we show that the position of the substituent and long-range electrostatics can play an important role as well. Overall, the design principles presented in this work are suitable for monomers with an unequal number of donor and acceptor atoms and can be exploited to tune the binding strength of supramolecular building blocks.
Collapse
Affiliation(s)
- Stephanie
C. C. van der Lubbe
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Amsterdam Center of Multiscale
Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Anissa Haim
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Amsterdam Center of Multiscale
Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Thor van Heesch
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Amsterdam Center of Multiscale
Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Amsterdam Center of Multiscale
Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2333 CD Leiden, The Netherlands
| |
Collapse
|
9
|
Jayasree EG, Sukumar C. A DFT study on the cleavage of dichalcogenide bridges in cystines and selenocystines: Effect of hydrogen bonding. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Pang X, Tang B. Role of the copper ion in pseudoazurin during the mechanical unfolding process. Int J Biol Macromol 2020; 166:213-220. [PMID: 33172612 DOI: 10.1016/j.ijbiomac.2020.10.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 11/15/2022]
Abstract
Metalloproteins require the corresponding metal cofactors to exert their proper function. The presence of metal cofactors in the metalloprotein makes it more difficult to investigate its folding and unfolding process. In this study, we employed atomic-force-microscopy-based single-molecule force spectroscopy to reveal the unfolding process of pseudoazurin (PAZ) that belongs to blue copper proteins. Our study shows that holo-PAZ requires a higher rupture force for mechanical unfolding comparing with the apo-PAZ. This result demonstrates that the copper atom not only enables PAZ access to transfer electron, but should also have an influence on its stability. The results also suggest that the electronic configuration of the metal cofactors has a striking effect on the strength of the organometallic bonds. Moreover, the results also reveal that there is an intermediate state during the unfolding process of PAZ. This study provides insight into the characteristics of metalloproteins and leads to a better knowledge of their interaction at the individual molecule level.
Collapse
Affiliation(s)
- Xiangchao Pang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, China.
| |
Collapse
|
11
|
Chand A, Sahoo DK, Rana A, Jena S, Biswal HS. The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials. Acc Chem Res 2020; 53:1580-1592. [PMID: 32677432 DOI: 10.1021/acs.accounts.0c00289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.
Collapse
Affiliation(s)
- Apramita Chand
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
12
|
Scheurer M, Dreuw A, Head-Gordon M, Stauch T. The rupture mechanism of rubredoxin is more complex than previously thought. Chem Sci 2020; 11:6036-6044. [PMID: 34094096 PMCID: PMC8159389 DOI: 10.1039/d0sc02164d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The surprisingly low rupture force and remarkable mechanical anisotropy of rubredoxin have been known for several years. Exploiting the first combination of steered molecular dynamics and the quantum chemical Judgement of Energy DIstribution (JEDI) analysis, the common belief that hydrogen bonds between neighboring amino acid backbones and the sulfur atoms of the central FeS4 unit in rubredoxin determine the low mechanical resistance of the protein is invalidated. The distribution of strain energy in the central part of rubredoxin is elucidated in real-time with unprecedented detail, giving important insights into the mechanical unfolding pathway of rubredoxin. While structural anisotropy as well as the contribution of angle bendings in the FeS4 unit have a significant influence on the mechanical properties of rubredoxin, these factors are insufficient to explain the experimentally observed low rupture force. Instead, the rupture mechanism of rubredoxin is far more complex than previously thought and requires more than just a hydrogen bond network.
Collapse
Affiliation(s)
- Maximilian Scheurer
- Interdisciplinary Center for Scientific ComputingIm Neuenheimer Feld 20569120 HeidelbergGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific ComputingIm Neuenheimer Feld 20569120 HeidelbergGermany
| | - Martin Head-Gordon
- Department of Chemistry, University of CaliforniaBerkeleyCalifornia 94720USA,Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of CaliforniaBerkeleyCalifornia 94720USA
| | - Tim Stauch
- University of Bremen, Institute for Physical and Theoretical ChemistryLeobener Straße NW2D-28359 BremenGermany,Bremen Center for Computational Materials Science, University of BremenAm Fallturm 1D-28359 BremenGermany,MAPEX Center for Materials and Processes, University of BremenBibliothekstraße 1D-28359 BremenGermany
| |
Collapse
|
13
|
Dudev T, Frutos LM, Castaño O. How mechanical forces can modulate the metal affinity and selectivity of metal binding sites in proteins. Metallomics 2020; 12:363-370. [DOI: 10.1039/c9mt00283a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results obtained reveal that applying mechanical forces with a given strength and directionality can modulate the metal affinity and selectivity of metal binding sites in metalloproteins.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1164 Sofia
- Bulgaria
| | - Luis Manuel Frutos
- Departamento de Química Analítica
- Química Física e Ingeniería Química
- Universidad de Alcala
- Madrid
- Spain
| | - Obis Castaño
- Departamento de Química Analítica
- Química Física e Ingeniería Química
- Universidad de Alcala
- Madrid
- Spain
| |
Collapse
|
14
|
Ma Z, Yang P, Zhang X, Jiang K, Song Y, Zhang W. Quantifying the Chain Folding in Polymer Single Crystals by Single-Molecule Force Spectroscopy. ACS Macro Lett 2019; 8:1194-1199. [PMID: 35619456 DOI: 10.1021/acsmacrolett.9b00607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chain folding is a motif of polymer crystallization, which is essential for determining the crystallization kinetics. However, the experimental quantification of the chain folding remains a challenge because of limited instrumental resolution. Here, we quantify chain folding in solution-grown single crystals by using atomic force microscopy (AFM)-based single-molecule force spectroscopy. The fingerprint spectrum of force-induced chain motion allows us to decipher the adjacent and nonadjacent re-entry folding with spatial resolution of subnanometers. The average fractions of adjacent re-entry folds ⟨f⟩ are in the range 91-95% for polycaprolactone, poly-l-lactic acid, and polyamide 66, which is higher than the values determined by other classical technologies. The established single-molecule method is applicable to a broad range of crystalline polymer systems with different chain conformations or compositions.
Collapse
Affiliation(s)
- Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoye Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ke Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
15
|
Yuan G, Ma Q, Wu T, Wang M, Li X, Zuo J, Zheng P. Multistep Protein Unfolding Scenarios from the Rupture of a Complex Metal Cluster Cd 3S 9. Sci Rep 2019; 9:10518. [PMID: 31324867 PMCID: PMC6642161 DOI: 10.1038/s41598-019-47004-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Protein (un)folding is a complex and essential process. With the rapid development of single-molecule techniques, we can detect multiple and transient proteins (un)folding pathways/intermediates. However, the observation of multiple multistep (>2) unfolding scenarios for a single protein domain remains limited. Here, we chose metalloprotein with relatively stable and multiple metal-ligand coordination bonds as a system for such a purpose. Using AFM-based single-molecule force spectroscopy (SMFS), we successfully demonstrated the complex and multistep protein unfolding scenarios of the β-domain of a human protein metallothionein-3 (MT). MT is a protein of ~60 amino acids (aa) in length with 20 cysteines for various metal binding, and the β-domain (βMT) is of ~30 aa with an M3S9 metal cluster. We detected four different types of three-step protein unfolding scenarios from the Cd-βMT, which can be possibly explained by the rupture of Cd-S bonds in the complex Cd3S9 metal cluster. In addition, complex unfolding scenarios with four rupture peaks were observed. The Cd-S bonds ruptured in both single bond and multiple bonds modes. Our results provide not only evidence for multistep protein unfolding phenomena but also reveal unique properties of metalloprotein system using single-molecule AFM.
Collapse
Affiliation(s)
- Guodong Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Qun Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Tao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Mengdi Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Xi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Jinglin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China.
| |
Collapse
|
16
|
Song Y, Yang P, Jiang K, Zhang W. Force‐induced melting of a single polyethylene oxide chain from single crystal: Molecular behavior and influencing factors. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin University Changchun P. R. China
- Institute of Theoretical ChemistryJilin University Changchun P. R. China
| | - Peng Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin University Changchun P. R. China
| | - Ke Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin University Changchun P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin University Changchun P. R. China
| |
Collapse
|
17
|
Song Y, Ma Z, Yang P, Zhang X, Lyu X, Jiang K, Zhang W. Single-Molecule Force Spectroscopy Study on Force-Induced Melting in Polymer Single Crystals: The Chain Conformation Matters. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Li J, Li H. Mechanical Unfolding Pathway of the High-Potential Iron-Sulfur Protein Revealed by Single-Molecule Atomic Force Microscopy: Toward a General Unfolding Mechanism for Iron-sulfur Proteins. J Phys Chem B 2018; 122:9340-9349. [PMID: 30212202 DOI: 10.1021/acs.jpcb.8b07614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-potential iron-sulfur proteins (HiPIPs) are an important class of metalloproteins with a [4Fe-4S] cluster coordinated by four cysteine residues. Distinct from other iron-sulfur proteins, the cluster in HiPIP has a high reduction potential, making it an essential electron carrier in bacterial photosynthesis. Here, we combined single-molecule atomic force microscopy and protein engineering techniques to investigate the mechanical unfolding mechanism of HiPIP from Chromatium tepidum (cHiPIP). We found that cHiPIP unfolds in a two-step fashion with the protein sequence sequestered by the iron-sulfur center as a stable unfolding intermediate state. The rupture of the iron-sulfur center of cHiPIP proceeds in two distinct parallel pathways; one pathway involves the concurrent rupture of multiple iron-thiolate bonds, and the other one involves the sequential rupture of the iron-thiolate bonds. This mechanistic information was further confirmed by mutational studies. We found that the rupture of the iron-thiolate bonds in reduced and oxidized cHiPIP occurred in the range of 150-180 pN at a pulling speed of 400 nm/s, similar to that measured for iron-thiolate bonds in rubredoxin and ferredoxin. Our results may have important implications for understanding the general unfolding mechanism governing iron-sulfur proteins, as well as the mechanism governing the mechanical rupture of the iron-sulfur center.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Hongbin Li
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
19
|
Wang GF, Qin H, Gao X, Cao Y, Wang W, Wang FC, Wu HA, Cong HP, Yu SH. Graphene Thin Films by Noncovalent-Interaction-Driven Assembly of Graphene Monolayers for Flexible Supercapacitors. Chem 2018. [DOI: 10.1016/j.chempr.2018.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Li H, Zheng P. Single molecule force spectroscopy: a new tool for bioinorganic chemistry. Curr Opin Chem Biol 2018; 43:58-67. [DOI: 10.1016/j.cbpa.2017.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 01/14/2023]
|
21
|
Nunes-Alves A, Arantes GM. Mechanical Unfolding of Macromolecules Coupled to Bond Dissociation. J Chem Theory Comput 2017; 14:282-290. [DOI: 10.1021/acs.jctc.7b00805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ariane Nunes-Alves
- Department of Biochemistry,
Instituto de Quı́mica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Guilherme Menegon Arantes
- Department of Biochemistry,
Instituto de Quı́mica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
22
|
Black JW, Kamenetska M, Ganim Z. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents. NANO LETTERS 2017; 17:6598-6605. [PMID: 28972764 DOI: 10.1021/acs.nanolett.7b02413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.
Collapse
Affiliation(s)
- Jacob W Black
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| | - Maria Kamenetska
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| | - Ziad Ganim
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| |
Collapse
|
23
|
|
24
|
Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC. Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Evidence of a Tetrahedrally Coordinated Divalent Transition Metal Cofactor with Cysteine Ligation. Biochemistry 2017; 56:364-375. [PMID: 28045498 DOI: 10.1021/acs.biochem.6b00750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The EutT enzyme from Salmonella enterica, a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes, requires a divalent transition metal ion for catalysis, with Fe(II) yielding the highest activity. EutT contains a unique cysteine-rich HX11CCX2C(83) motif (where H and the last C occupy the 67th and 83rd positions, respectively, in the amino acid sequence) not found in other ACATs and employs an unprecedented mechanism for the formation of adenosylcobalamin. Recent kinetic and spectroscopic studies of this enzyme revealed that residues in the HX11CCX2C(83) motif are required for the tight binding of the divalent metal ion and are critical for the formation of a four-coordinate (4c) cob(II)alamin [Co(II)Cbl] intermediate in the catalytic cycle. However, it remained unknown which, if any, of the residues in the HX11CCX2C(83) motif bind the divalent metal ion. To address this issue, we have characterized Co(II)-substituted wild-type EutT (EutTWT/Co) by using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism (MCD) spectroscopies. Our results indicate that the reduced catalytic activity of EutTWT/Co relative to that of the Fe(II)-containing enzyme arises from the incomplete incorporation of Co(II) ions and, thus, a decrease in the relative population of 4c Co(II)Cbl. Our MCD data for EutTWT/Co also reveal that the Co(II) ions reside in a distorted tetrahedral coordination environment with direct cysteine sulfur ligation. Additional spectroscopic studies of EutT/Co variants possessing a single alanine substitution of either His67, His75, Cys79, Cys80, or Cys83 indicate that Cys80 coordinates to the Co(II) ion, while the additional residues are important for maintaining the structural integrity and/or high affinity of the metal binding site.
Collapse
Affiliation(s)
- Ivan G Pallares
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Theodore C Moore
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Hoffmann T, Tych KM, Crosskey T, Schiffrin B, Brockwell DJ, Dougan L. Rapid and Robust Polyprotein Production Facilitates Single-Molecule Mechanical Characterization of β-Barrel Assembly Machinery Polypeptide Transport Associated Domains. ACS NANO 2015; 9:8811-21. [PMID: 26284289 DOI: 10.1021/acsnano.5b01962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-molecule force spectroscopy by atomic force microscopy exploits the use of multimeric protein constructs, namely, polyproteins, to decrease the impact of nonspecific interactions, to improve data accumulation, and to allow the accommodation of benchmarking reference domains within the construct. However, methods to generate such constructs are either time- and labor-intensive or lack control over the length or the domain sequence of the obtained construct. Here, we describe an approach that addresses both of these shortcomings that uses Gibson assembly (GA) to generate a defined recombinant polyprotein rapidly using linker sequences. To demonstrate the feasibility of this approach, we used GA to make a polyprotein composed of alternating domains of I27 and TmCsp, (I27-TmCsp)3-I27)(GA), and showed the mechanical fingerprint, mechanical strength, and pulling speed dependence are the same as an analogous polyprotein constructed using the classical approach. After this benchmarking, we exploited this approach to facilitiate the mechanical characterization of POTRA domain 2 of BamA from E. coli (EcPOTRA2) by assembling the polyprotein (I27-EcPOTRA2)3-I27(GA). We show that, as predicted from the α + β topology, EcPOTRA2 domains are mechanically robust over a wide range of pulling speeds. Furthermore, we identify a clear correlation between mechanical robustness and brittleness for a range of other α + β proteins that contain the structural feature of proximal terminal β-strands in parallel geometry. We thus demonstrate that the GA approach is a powerful tool, as it circumvents the usual time- and labor-intensive polyprotein production process and allows for rapid production of new constructs for single-molecule studies. As shown for EcPOTRA2, this approach allows the exploration of the mechanical properties of a greater number of proteins and their variants. This improves our understanding of the relationship between structure and mechanical strength, increasing our ability to design proteins with tailored mechanical properties.
Collapse
Affiliation(s)
- Toni Hoffmann
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Katarzyna M Tych
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Thomas Crosskey
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Bob Schiffrin
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - David J Brockwell
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| |
Collapse
|
26
|
Abstract
Zinc fingers are highly ubiquitous structural motifs that provide stability to proteins, thus contributing to their correct folding. Despite the high thermodynamic stability of the ZnCys4 centers, their kinetic properties display remarkable lability. Here, we use a combination of protein engineering with single molecule force spectroscopy atomic force microscopy (AFM) to uncover the surprising mechanical lability (∼90 pN) of the individual Zn-S bonds that form the two equivalent zinc finger motifs embedded in the structure of the multidomain DnaJ chaperone. Rational mutations within the zinc coordinating residues enable direct identification of the chemical determinants that regulate the interplay between zinc binding-requiring the presence of all four cysteines-and disulfide bond formation. Finally, our observations show that binding to hydrophobic short peptides drastically increases the mechanical stability of DnaJ. Altogether, our experimental approach offers a detailed, atomistic vista on the fine chemical mechanisms that govern the nanomechanics of individual, naturally occurring zinc finger.
Collapse
Affiliation(s)
- Judit Perales-Calvo
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London , Strand, WC2R 2LS, London, United Kingdom
| | - Ainhoa Lezamiz
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London , Strand, WC2R 2LS, London, United Kingdom
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London , Strand, WC2R 2LS, London, United Kingdom
| |
Collapse
|
27
|
Giannotti MI, Cabeza de Vaca I, Artés JM, Sanz F, Guallar V, Gorostiza P. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding. J Phys Chem B 2015; 119:12050-8. [DOI: 10.1021/acs.jpcb.5b06382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marina I. Giannotti
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Physical
Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Israel Cabeza de Vaca
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona 08034, Spain
| | - Juan M. Artés
- Physical
Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Fausto Sanz
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Physical
Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Victor Guallar
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona 08034, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Pau Gorostiza
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
28
|
Beedle AEM, Lezamiz A, Stirnemann G, Garcia-Manyes S. The mechanochemistry of copper reports on the directionality of unfolding in model cupredoxin proteins. Nat Commun 2015; 6:7894. [PMID: 26235284 PMCID: PMC4532836 DOI: 10.1038/ncomms8894] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/24/2015] [Indexed: 11/09/2022] Open
Abstract
Understanding the directionality and sequence of protein unfolding is crucial to elucidate the underlying folding free energy landscape. An extra layer of complexity is added in metalloproteins, where a metal cofactor participates in the correct, functional fold of the protein. However, the precise mechanisms by which organometallic interactions are dynamically broken and reformed on (un)folding are largely unknown. Here we use single molecule force spectroscopy AFM combined with protein engineering and MD simulations to study the individual unfolding pathways of the blue-copper proteins azurin and plastocyanin. Using the nanomechanical properties of the native copper centre as a structurally embedded molecular reporter, we demonstrate that both proteins unfold via two independent, competing pathways. Our results provide experimental evidence of a novel kinetic partitioning scenario whereby the protein can stochastically unfold through two distinct main transition states placed at the N and C termini that dictate the direction in which unfolding occurs.
Collapse
Affiliation(s)
- Amy E M Beedle
- Department of Physics, King's College London, London WC2R 2LS, UK
| | - Ainhoa Lezamiz
- Randall Division of Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| | - Guillaume Stirnemann
- CNRS - Institut de Biologie Physico-Chimique - PSL Research University, Laboratoire de Biochimie Théorique, 75005 Paris, France
| | - Sergi Garcia-Manyes
- Department of Physics, King's College London, London WC2R 2LS, UK.,Randall Division of Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| |
Collapse
|
29
|
Zheng P, Arantes GM, Field MJ, Li H. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule. Nat Commun 2015; 6:7569. [PMID: 26108369 PMCID: PMC4491811 DOI: 10.1038/ncomms8569] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. The investigation of the chemical reactivity of metal centres in metalloproteins in aqueous solution is challenging. Here, the authors demonstrate the use of single molecule force spectroscopy to study the chemical reactivity of the iron-sulfur centre in rubredoxin in aqueous solution.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1.,School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210063, P. R. China
| | - Guilherme M Arantes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenue Lineu Prestes 748, São Paulo SP 05508-900, Brazil
| | - Martin J Field
- Institut de Biologie Structurale (IBS) Jean-Pierre Ebel, CEA/CNRS/Universite Joseph Fourier, 71 Avenue des Martyrs, CS 10090, Grenoble 9 38044, France
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
30
|
Kobayashi K, Fujikawa M, Kozawa T. Binding of promoter DNA to SoxR protein decreases the reduction potential of the [2Fe-2S] cluster. Biochemistry 2014; 54:334-9. [PMID: 25490746 DOI: 10.1021/bi500931w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The [2Fe-2S] transcriptional factor SoxR, a member of the MerR family, functions as a sensor of oxidative stress in Escherichia coli. The transcriptional activity of SoxR is regulated by the reversible oxidation and reduction of [2Fe-2S] clusters. Electrochemistry measurements on DNA-modified electrodes have shown a dramatic shift in the reduction potential of SoxR from -290 to +200 mV with the promoter DNA-bound [ Gorodetsky , A. A. , Dietrich , L. E. P. , Lee , P. E. , Demple , B. , , Newman , D. K. , and Barton , J. K. ( 2008 ) DNA binding shifts the reduction potential of the transcription factor SoxR , Proc. Natl. Acad. Sci. U.S.A. 105 , 3684 - 3689 ]. To determine the change of the SoxR reduction potential using the new condition, the one-electron oxidation-reduction properties of [2Fe-2S] cluster in SoxR were investigated in the absence and presence of the DNA. The [2Fe-2S] cluster of SoxR was completely reduced by nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CRP) in the presence of a NADPH generating system (glucose 6-dehydrogenase and glucose-6 phosphate), indicating that CRP can serve as an NADPH-dependent electron carrier for SoxR. The reduction potential of SoxR was measured from equilibrium data coupled with NADPH and CRP in the presence of electron mediators. The reduction potentials of DNA-bound and DNA-free states of SoxR were -320 and -293 mV versus NHE (normal hydrogen electrode), respectively. These results indicate that DNA binding causes a moderate shift in the reduction potential of SoxR.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
31
|
Hydrogen-bonded complexes between dimethyl sulfoxide and monoprotic acids: molecular properties and IR spectroscopy. J Mol Model 2014; 20:2477. [PMID: 25342154 DOI: 10.1007/s00894-014-2477-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
Abstract
MP2/6-31++G(d,p) and DFT B3LYP/6-31++G(d,p) calculations were performed of the structure, binding energies, and vibrational modes of complexes between dimethyl sulfoxide (DMSO) as a proton acceptor and monoprotic linear acids HX (X = F, Cl, CN) as well as monoprotic carboxylic acids HOOCR (R = -H, -CH3, -C6H5) in 1:1 and 1:2 stoichiometric ratios. The results show that two different structures are possible in the 1:2 ratio: in the first, the DMSO molecule interacts with both acid molecules (leading to a "Y" structure); in the second, the DMSO interacts with only one monoprotic acid. The second structure shows a lower stability per hydrogen bond. The spontaneities of the reactions to form the 1:1 and 1:2 complexes are greatly influenced by the X group of the linear acid. With the exception of HCN, all the reactions are spontaneous. In the 1:2 complexes with Y structure, we observed that the hydrogen atoms of the linear acid are coupled in symmetric and asymmetric modes, while this type of coupling is absent from the other 1:2 complexes.
Collapse
|
32
|
Zheng P, Wang Y, Li H. Reversible Unfolding-Refolding of Rubredoxin: A Single-Molecule Force Spectroscopy Study. Angew Chem Int Ed Engl 2014; 53:14060-3. [DOI: 10.1002/anie.201408105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 11/11/2022]
|
33
|
Zheng P, Wang Y, Li H. Reversible Unfolding-Refolding of Rubredoxin: A Single-Molecule Force Spectroscopy Study. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Esrafili MD, Mohammadian-Sabet F. Enhancement effect of lithium bonding on the strength ofπ-hole interactions in O2S···NCLi···NCX and O2S···CNLi···CNX complexes (X = H, F, CN, OH and CH3). Mol Phys 2014. [DOI: 10.1080/00268976.2014.944954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Esrafili MD, Vakili M, Solimannejad M. Cooperative effects in pnicogen bonding: (PH2F)2–7 and (PH2Cl)2–7 clusters. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.06.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Liu S, Motta A, Mouat AR, Delferro M, Marks TJ. Very Large Cooperative Effects in Heterobimetallic Titanium-Chromium Catalysts for Ethylene Polymerization/Copolymerization. J Am Chem Soc 2014; 136:10460-9. [DOI: 10.1021/ja5046742] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaofeng Liu
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Alessandro Motta
- Dipartimento
di Scienze Chimiche, Università di Catania and INSTM, UdR
Catania, 95125 Catania, Italy
| | - Aidan R. Mouat
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Massimiliano Delferro
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tobin J. Marks
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
37
|
Wei C, Lazim R, Zhang D. Importance of polarization effect in the study of metalloproteins: application of polarized protein specific charge scheme in predicting the reduction potential of azurin. Proteins 2014; 82:2209-19. [PMID: 24753270 DOI: 10.1002/prot.24584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/07/2014] [Accepted: 04/12/2014] [Indexed: 11/08/2022]
Abstract
Molecular dynamics (MD) simulation is commonly used in the study of protein dynamics, and in recent years, the extension of MD simulation to the study of metalloproteins is gaining much interest. Choice of force field is crucial in MD studies, and the inclusion of metal centers complicates the process of accurately describing the electrostatic environment that surrounds the redox centre. Herein, we would like to explore the importance of including electrostatic contribution from both protein and solvent in the study of metalloproteins. MD simulations with the implementation of thermodynamic integration will be conducted to model the reduction process of azurin from Pseudomonas aeruginosa. Three charge schemes will be used to derive the partial charges of azurin. These charge schemes differ in terms of the amount of immediate environment, respective to copper, considered during charge fitting, which ranges from the inclusion of copper and residues in the first coordination sphere during density functional theory charge fitting to the comprehensive inclusion of protein and solvent effect surrounding the metal centre using polarized protein-specific charge scheme. From the simulations conducted, the relative reduction potential of the mutated azurins respective to that of wild-type azurin (ΔEcal) were calculated and compared with experimental values. The ΔEcal approached experimental value with increasing consideration of environmental effect hence substantiating the importance of polarization effect in the study of metalloproteins. This study also attests the practicality of polarized protein-specific charge as a computational tool capable of incorporating both protein environment and solvent effect into MD simulations.
Collapse
Affiliation(s)
- Caiyi Wei
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
38
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Li Y, Qin M, Li Y, Cao Y, Wang W. Single molecule evidence for the adaptive binding of DOPA to different wet surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4358-4366. [PMID: 24716607 DOI: 10.1021/la501189n] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
3,4-Dihydroxyphenylalanine (DOPA) is the noncanonical amino acid widely found in mussel holdfast proteins, which is proposed to be responsible for their strong wet adhesion. This feature has also inspired the successful development of a range of DOPA-containing synthetic polymers for wet adhesions and surface coating. Despite the increasing applications of DOPA in material science, the underlying mechanism of DOPA-wet surface interactions remains unclear. In this work, we studied DOPA-surface interactions one bond at a time using atomic force microscope (AFM) based single molecule force spectroscopy. With our recently developed "multiple fishhook" protocol, we were able to perform high-throughput quantification of the binding strength of DOPA to various types of surfaces for the first time. We found that the dissociation forces between DOPA and nine different types of organic and inorganic surfaces are all in the range of 60-90 pN at a pulling speed of 1000 nm s(-1), suggesting the strong and versatile binding capability of DOPA to different types of surfaces. Moreover, by constructing the free energy landscape for the rupture events, we revealed several distinct binding modes between DOPA and different surfaces, which are directly related to the chemistry nature of the surfaces. These results explain the molecular origin of the versatile binding ability of DOPA. Moreover, we could quantitatively predict the relationship between DOPA contents and the binding strength based on the measured rupture kinetics. These serve as the bases for the quantitative prediction of the relationship between DOPA contents and adhesion strength to different wet surfaces, which is important for the design of novel DOPA based materials.
Collapse
Affiliation(s)
- Yiran Li
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University , 22 Hankou Road, Nanjing, Jiangsu, China 210093
| | | | | | | | | |
Collapse
|
40
|
Esrafili MD, Fatehi P, Solimannejad M. Mutual interplay between pnicogen bond and dihydrogen bond in HMH⋯HCN⋯PH2X complexes (M=Be, Mg, Zn; X=H, F, Cl). COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Widger LR, Davies CG, Yang T, Siegler MA, Troeppner O, Jameson GNL, Ivanović-Burmazović I, Goldberg DP. Dramatically accelerated selective oxygen-atom transfer by a nonheme iron(IV)-oxo complex: tuning of the first and second coordination spheres. J Am Chem Soc 2014; 136:2699-702. [PMID: 24471779 PMCID: PMC4004223 DOI: 10.1021/ja410240c] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
new ligand N3PyamideSR and its FeII complex
[FeII(N3PyamideSR)](BF4)2 (1) are described. Reaction of 1 with
PhIO at −40 °C gives metastable [FeIV(O)(N3PyamideSR)]2+ (2), containing a sulfide
ligand and a single amide H-bond donor in proximity to the terminal
oxo group. Direct evidence for H-bonding is seen in a structural analogue,
[FeII(Cl)(N3PyamideSR)](BF4)2 (3). Complex 2 exhibits rapid O-atom
transfer (OAT) toward external sulfide substrates, but no intramolecular
OAT. However, direct S-oxygenation does occur in
the reaction of 1 with mCPBA, yielding sulfoxide-ligated
[FeII(N3PyamideS(O)R)](BF4)2 (4). Catalytic OAT with 1 was also observed.
Collapse
Affiliation(s)
- Leland R Widger
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Carvalho ATP, Swart M. Electronic Structure Investigation and Parametrization of Biologically Relevant Iron–Sulfur Clusters. J Chem Inf Model 2014; 54:613-20. [DOI: 10.1021/ci400718m] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra T. P. Carvalho
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, 17071 Girona, Spain
- Department
of Cell and Molecular Biology, Computational and Systems Biology, Box 596, 751 24 Uppsala, Sweden
| | - Marcel Swart
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, 17071 Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
43
|
Zheng P, Chou CC, Guo Y, Wang Y, Li H. Single Molecule Force Spectroscopy Reveals the Molecular Mechanical Anisotropy of the FeS4 Metal Center in Rubredoxin. J Am Chem Soc 2013; 135:17783-92. [DOI: 10.1021/ja406695g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peng Zheng
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Chih-Chung Chou
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Ying Guo
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Yanyan Wang
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 30072 P. R. China
| | - Hongbin Li
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 30072 P. R. China
| |
Collapse
|
44
|
Insights into the function of YciM, a heat shock membrane protein required to maintain envelope integrity in Escherichia coli. J Bacteriol 2013; 196:300-9. [PMID: 24187084 DOI: 10.1128/jb.00921-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is an essential organelle that is important for cell shape and protection from toxic compounds. Proteins involved in envelope biogenesis are therefore attractive targets for the design of new antibacterial agents. In a search for new envelope assembly factors, we screened a collection of Escherichia coli deletion mutants for sensitivity to detergents and hydrophobic antibiotics, a phenotype indicative of defects in the cell envelope. Strains lacking yciM were among the most sensitive strains of the mutant collection. Further characterization of yciM mutants revealed that they display a thermosensitive growth defect on low-osmolarity medium and that they have a significantly altered cell morphology. At elevated temperatures, yciM mutants form bulges containing cytoplasmic material and subsequently lyse. We also discovered that yciM genetically interacts with envC, a gene encoding a regulator of the activity of peptidoglycan amidases. Altogether, these results indicate that YciM is required for envelope integrity. Biochemical characterization of the protein showed that YciM is anchored to the inner membrane via its N terminus, the rest of the protein being exposed to the cytoplasm. Two CXXC motifs are present at the C terminus of YciM and serve to coordinate a redox-sensitive iron center of the rubredoxin type. Both the N-terminal membrane anchor and the C-terminal iron center of YciM are important for function.
Collapse
|
45
|
Chen P, Keller AM, Joshi CP, Martell DJ, Andoy NM, Benítez JJ, Chen TY, Santiago AG, Yang F. Single-molecule dynamics and mechanisms of metalloregulators and metallochaperones. Biochemistry 2013; 52:7170-83. [PMID: 24053279 DOI: 10.1021/bi400597v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding how cells regulate and transport metal ions is an important goal in the field of bioinorganic chemistry, a frontier research area that resides at the interface of chemistry and biology. This Current Topic reviews recent advances from the authors' group in using single-molecule fluorescence imaging techniques to identify the mechanisms of metal homeostatic proteins, including metalloregulators and metallochaperones. It emphasizes the novel mechanistic insights into how dynamic protein-DNA and protein-protein interactions offer efficient pathways via which MerR-family metalloregulators and copper chaperones can fulfill their functions. This work also summarizes other related single-molecule studies of bioinorganic systems and provides an outlook toward single-molecule imaging of metalloprotein functions in living cells.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zheng B, Hou B, Wang Z, Yi P, Wu J, Ding X. Theoretical characters and nature of the intermolecular lithium bonded interactions B⋯LiCN/LiNC (B=pyridine, furan and thiophene). COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Arantes GM, Bhattacharjee A, Field MJ. Homolytic Cleavage of FeS Bonds in Rubredoxin under Mechanical Stress. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Arantes GM, Bhattacharjee A, Field MJ. Homolytic Cleavage of FeS Bonds in Rubredoxin under Mechanical Stress. Angew Chem Int Ed Engl 2013; 52:8144-6. [DOI: 10.1002/anie.201303462] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 11/07/2022]
|
49
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part I. {Fe(SγCys)4} proteins. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Zheng P, Takayama SIJ, Mauk AG, Li H. Single Molecule Force Spectroscopy Reveals That Iron Is Released from the Active Site of Rubredoxin by a Stochastic Mechanism. J Am Chem Soc 2013; 135:7992-8000. [DOI: 10.1021/ja402150q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peng Zheng
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia V6T 1Z1, Canada
| | - Shin-ichi J. Takayama
- Department of Biochemistry and
Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British
Columbia V6T 1Z3, Canada
| | - A. Grant Mauk
- Department of Biochemistry and
Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British
Columbia V6T 1Z3, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia V6T 1Z1, Canada
| |
Collapse
|