1
|
Liu Z, Yu YJ, Bai YQ, Chen MW, Zhou YG. Manganese Pentacarbonyl Bromide as Regeneration Catalyst Enabled Biomimetic Asymmetric Reduction. Org Lett 2024; 26:2535-2539. [PMID: 38526435 DOI: 10.1021/acs.orglett.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Using readily available manganese pentacarbonyl bromide as a regeneration catalyst, biomimetic asymmetric reduction of imines including quinoxalinones, benzoxazinones, and benzoxazine has been successfully developed in the presence of transfer catalyst chiral phosphoric acids, providing the chiral amines with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Jiang Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yu-Qing Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Han Z, Feng X, Du H. Asymmetric Transfer Hydrogenation of 2-Substituted Quinoxalines with Regenerable Dihydrophenanthridine. J Org Chem 2024; 89:3666-3671. [PMID: 38357876 DOI: 10.1021/acs.joc.3c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The asymmetric hydrogenation of quinoxalines represents one of the most efficient approaches for the synthesis of optically active tetrahyroquinoxalines. In this paper, we demonstrate a metal-free asymmetric transfer hydrogenation of 2-substituted quinoxalines with regenerable dihydrophenanthridine under H2 using a combination of chiral phosphoric acid and achiral borane as catalysts. A wide range of optically active 2-substituted tetrahydroquinoxalines were produced in high yields with ≤98% ee.
Collapse
Affiliation(s)
- Zaiqi Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Qian BC, Wang X, Wang Q, Zhu XQ, Shen GB. Thermodynamic evaluations of the acceptorless dehydrogenation and hydrogenation of pre-aromatic and aromatic N-heterocycles in acetonitrile. RSC Adv 2024; 14:222-232. [PMID: 38173608 PMCID: PMC10758765 DOI: 10.1039/d3ra08022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
N-heterocycles are important chemical hydrogen-storage materials, and the acceptorless dehydrogenation and hydrogenation of N-heterocycles as organic hydrogen carriers have been widely studied, with the main focus on the catalyst synthesis and design, investigation of the redox mechanisms, and extension of substrate scope. In this work, the Gibbs free energies of the dehydrogenation of pre-aromatic N-heterocycles (YH2) and the hydrogenation of aromatic N-heterocycles (Y), i.e., ΔGH2R(YH2) and ΔGH2A(Y), were derived by constructing thermodynamic cycles using Hess' law. The thermodynamic abilities for the acceptorless dehydrogenation and hydrogenation of 78 pre-aromatic N-heterocycles (YH2) and related 78 aromatic N-heterocycles (Y) were well evaluated and discussed in acetonitrile. Moreover, the applications of the two thermodynamic parameters in identifying pre-aromatic N-heterocycles possessing reversible dehydrogenation and hydrogenation properties and the selection of the pre-aromatic N-heterocyclic hydrogen reductants in catalytic hydrogenation were considered and are discussed in detail. Undoubtedly, this work focuses on two new thermodynamic parameters of pre-aromatic and aromatic N-heterocycles, namely ΔGH2R(YH2) and ΔGH2A(Y), which are important supplements to our previous work to offer precise insights into the chemical hydrogen storage and hydrogenation reactions of pre-aromatic and aromatic N-heterocycles.
Collapse
Affiliation(s)
- Bao-Chen Qian
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao Wang
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Qi Wang
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University Tianjin 300071 China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| |
Collapse
|
4
|
Matsubara R, Harada T, Xie W, Yabuta T, Xu J, Hayashi M. Sensitizer-Free Photochemical Regeneration of Benzimidazoline Organohydride. J Org Chem 2023; 88:12276-12288. [PMID: 37590088 DOI: 10.1021/acs.joc.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Organohydrides are an important class of organic compounds that can provide hydride anions for chemical and biochemical reactions, as demonstrated by reduced nicotinamide adenine dinucleotides serving as important natural redox cofactors. The coupling of hydride transfer from the organohydride to the substrate and subsequent regeneration of the organohydride from its oxidized form can realize organohydride-catalyzed reduction reactions. Depending on the structure of the organohydride, its hydridicity and ease of regeneration vary. Benzimidazoline (BIH) is one of the strongest synthetic C-H hydride donors; however, its reductive regeneration requires highly reducing conditions. In this study, we synthesized various oxidized and reduced forms of BIH derivatives with aryl groups at the 2-position and investigated their photophysical and electrochemical properties. 4-(Dimethylamino)phenyl-substituted BIH exhibited salient red-shifted absorption compared with other synthesized BIH derivatives, and visible-light-driven regeneration without using an external photosensitizer was achieved. This knowledge has significant implications for the future development of solar-energy-based catalytic photoreduction technologies that utilize organohydride regeneration strategies.
Collapse
Affiliation(s)
- Ryosuke Matsubara
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tatsuhiro Harada
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Weibin Xie
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tatsushi Yabuta
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Jiasheng Xu
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
5
|
Guo YY, Tian ZH, Han YC, Ma D, Shao T, Jiang Z. Hantzsch Ester as Efficient and Economical NAD(P)H Mimic for In Vitro Bioredox Reactions. Chemistry 2023; 29:e202301180. [PMID: 37263982 DOI: 10.1002/chem.202301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Biocatalysis has emerged as a valuable and reliable tool for industrial and academic societies, particularly in fields related to bioredox reactions. The cost of cofactors, especially those needed to be replenished at stoichiometric amounts or more, is the chief economic concern for bioredox reactions. In this study, a readily accessible, inexpensive, and bench-stable Hantzsch ester is verified as the viable and efficient NAD(P)H mimic by four enzymatic redox transformations, including two non-heme diiron N-oxygenases and two flavin-dependent reductases. This finding provides the potential to significantly reduce the costs of NAD(P)H-relying bioredox reactions.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ze-Hua Tian
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu-Chen Han
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dandan Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Tianju Shao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhiyong Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Beiranvand R, Dekamin MG. Trimesic acid-functionalized chitosan: A novel and efficient multifunctional organocatalyst for green synthesis of polyhydroquinolines and acridinediones under mild conditions. Heliyon 2023; 9:e16315. [PMID: 37260895 PMCID: PMC10227330 DOI: 10.1016/j.heliyon.2023.e16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Trimesic acid-functionalized chitosan (Cs/ECH-TMA) material was prepared through a simple procedure by using inexpensive and commercially available chitosan (Cs), epichlorohydrin (ECH) linker and trimesic acid (TMA). The obtained bio-based Cs/ECH-TMA material was characterized using energy-dispersive X-ray (EDX) and Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis. The Cs/ECH-TMA material was successfully used, as a multifunctional heterogeneous and sustainable catalyst, for efficient and expeditious synthesis of medicinally important polyhydroquinoline (PHQ) and polyhydroacridinedione (PHA) scaffolds through the Hantzsch condensation in a one-pot reaction. Indeed, the heterogeneous Cs/ECH-TMA material can be considered as a synergistic multifunctional organocatalyst due to the presence of a large number of acidic active sites in its structure as well as hydrophilicity. Both PHQs and PHAs were synthesized in the presence of biodegradable heterogeneous Cs/ECH-TMA catalytic system from their corresponding substrates in EtOH under reflux conditions and high to quantitative yields. The Cs/ECH-TMA catalyst is recyclable and can be reused at least four times without significant loss of its catalytic activity.
Collapse
|
7
|
Xie W, Xu J, Md Idros U, Katsuhira J, Fuki M, Hayashi M, Yamanaka M, Kobori Y, Matsubara R. Metal-free reduction of CO 2 to formate using a photochemical organohydride-catalyst recycling strategy. Nat Chem 2023:10.1038/s41557-023-01157-6. [PMID: 36959509 DOI: 10.1038/s41557-023-01157-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2023] [Indexed: 03/25/2023]
Abstract
Increasing levels of CO2 in the atmosphere is a problem that must be urgently resolved if the rise in current global temperatures is to be slowed. Chemically reducing CO2 into compounds that are useful as energy sources and carbon-based materials could be helpful in this regard. However, for the CO2 reduction reaction (CO2RR) to be operational on a global scale, the catalyst system must: use only renewable energy, be built from abundantly available elements and not require high-energy reactants. Although light is an attractive renewable energy source, most existing CO2RR methods use electricity and many of the catalysts used are based on rare heavy metals. Here we present a transition-metal-free catalyst system that uses an organohydride catalyst based on benzimidazoline for the CO2RR that can be regenerated using a carbazole photosensitizer and visible light. The system is capable of producing formate with a turnover number exceeding 8,000 and generates no other reduced products (such as H2 and CO).
Collapse
Affiliation(s)
- Weibin Xie
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jiasheng Xu
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ubaidah Md Idros
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jouji Katsuhira
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masaaki Fuki
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Tokyo, Japan.
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan.
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan.
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan.
| |
Collapse
|
8
|
Gao B, Han Z, Meng W, Feng X, Du H. Asymmetric Reduction of Quinolines: A Competition between Enantioselective Transfer Hydrogenation and Racemic Borane Catalysis. J Org Chem 2023. [PMID: 36799068 DOI: 10.1021/acs.joc.2c02905] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of quinolines with regenerable dihydrophenanthridine derived by a borane-catalyzed hydrogenation of phenanthridine under H2 has been successfully realized. Despite the competition of a racemic hydrogenation pathway, a variety of tetrahydroquinolines were furnished in high yields with up to 91% ee.
Collapse
Affiliation(s)
- Bochao Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaiqi Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Dai L, Liu Y, Xu Q, Wang M, Zhu Q, Yu P, Zhong G, Zeng X. A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202216534. [PMID: 36536515 DOI: 10.1002/anie.202216534] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Diaryl ethers are widespread in biologically active compounds, ligands and catalysts. It is known that the diaryl ether skeleton may exhibit atropisomerism when both aryl rings are unsymmetrically substituted with bulky groups. Despite recent advances, only very few catalytic asymmetric methods have been developed to construct such axially chiral compounds. We describe herein a dynamic kinetic resolution approach to axially chiral diaryl ethers via a Brønsted acid catalyzed atroposelective transfer hydrogenation (ATH) reaction of dicarbaldehydes with anilines. The desired diaryl ethers could be obtained in moderate to good chemical yields (up to 79 %) and high enantioselectivities (up to 95 % ee) under standard reaction conditions. Such structural motifs are interesting precursors for further transformations and may have potential applications in the synthesis of chiral ligands or catalysts.
Collapse
Affiliation(s)
- Linlong Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.,Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yuheng Liu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qing Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Meifang Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qiaohong Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Peiyuan Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
10
|
Kumar S, Prince, Gupta M, Lalji RSK, Singh BK. Microwave assisted regioselective halogenation of benzo[ b][1,4]oxazin-2-ones via sp 2 C-H functionalization. RSC Adv 2023; 13:2365-2371. [PMID: 36741130 PMCID: PMC9841512 DOI: 10.1039/d2ra07259a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
A microwave assisted, palladium-catalyzed regioselective halogenation of 3-phenyl-2H-benzo[b][1,4]oxazin-2-ones has been demonstrated using inexpensive and readily available N-halosuccinimide. The reaction utilizes the nitrogen atom present in the heterocyclic ring as the directing group to afford regioselective halogenated products in good to moderate yields. The established protocol provides wide substrate scope, high functional group tolerance, and high atom and step economy. The reaction proved to be cost-effective and time-saving as it required only a few minutes for completion and is amenable to gram scale. The halogen atoms present in synthesized products provide further scope for post-functionalization. Several post-functionalized products have also been synthesised to demonstrate the high utility of the reaction in the field of drug discovery and late-stage functionalization.
Collapse
Affiliation(s)
- Sandeep Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Prince
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Mohit Gupta
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Ram Sunil Kumar Lalji
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, Kirori-mal College, Delhi University Delhi 110007 India
| | - Brajendra K Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
11
|
Johansen CM, Boyd EA, Peters JC. Catalytic transfer hydrogenation of N 2 to NH 3 via a photoredox catalysis strategy. SCIENCE ADVANCES 2022; 8:eade3510. [PMID: 36288295 PMCID: PMC9604530 DOI: 10.1126/sciadv.ade3510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Inspired by momentum in applications of reductive photoredox catalysis to organic synthesis, photodriven transfer hydrogenations toward deep (>2 e-) reductions of small molecules are attractive compared to using harsh chemical reagents. Noteworthy in this context is the nitrogen reduction reaction (N2RR), where a synthetic photocatalyst system had yet to be developed. Noting that a reduced Hantzsch ester (HEH2) and related organic structures can behave as 2 e-/2 H+ photoreductants, we show here that, when partnered with a suitable catalyst (Mo) under blue light irradiation, HEH2 facilitates delivery of successive H2 equivalents for the 6 e-/6 H+ catalytic reduction of N2 to NH3; this catalysis is enhanced by addition of a photoredox catalyst (Ir). Reductions of additional substrates (nitrate and acetylene) are also described.
Collapse
|
12
|
Ren C, Ji G, Li X, Zhang J. Direct Synthesis of Adipic Esters and Adiponitrile via Photoassisted Cobalt‐Catalyzed Alkene Hydrodimerization. Chemistry 2022; 28:e202201442. [DOI: 10.1002/chem.202201442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng Ren
- The Institute for Advanced Studies Wuhan University 299 Bayi Rd 430072 Wuhan P. R. China
| | - Guanghao Ji
- The Institute for Advanced Studies Wuhan University 299 Bayi Rd 430072 Wuhan P. R. China
| | - Xiankai Li
- The Institute for Advanced Studies Wuhan University 299 Bayi Rd 430072 Wuhan P. R. China
| | - Jing Zhang
- The Institute for Advanced Studies Wuhan University 299 Bayi Rd 430072 Wuhan P. R. China
| |
Collapse
|
13
|
Bhat MF, Luján AP, Saifuddin M, Poelarends GJ. Chemoenzymatic Asymmetric Synthesis of Complex Heterocycles: Dihydrobenzoxazinones and Dihydroquinoxalinones. ACS Catal 2022; 12:11421-11427. [PMID: 36158903 PMCID: PMC9486952 DOI: 10.1021/acscatal.2c03008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alejandro Prats Luján
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
14
|
Gao B, Meng W, Feng X, Du H. Regenerable Dihydrophenanthridine via Borane-Catalyzed Hydrogenation for the Asymmetric Transfer Hydrogenation of Benzoxazinones. Org Lett 2022; 24:3955-3959. [PMID: 35622929 DOI: 10.1021/acs.orglett.2c01314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly enantioselective transfer hydrogenation of benzoxazinones with chiral phosphoric acids under H2 was successfully achieved, where boranes promoted the hydrogenation of phenanthridine for the regeneration of dihydrophenanthridine as the hydrogen donor. A variety of dihydrobenzoxazinones were obtained in high yields with up to 99% ee. The current work provides a promising solution to unreactive substrates for frustrated Lewis pair-catalyzed asymmetric hydrogenation.
Collapse
Affiliation(s)
- Bochao Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Pang M, Shi LL, Xie Y, Geng T, Liu L, Liao RZ, Tung CH, Wang W. Cobalt-Catalyzed Selective Dearomatization of Pyridines to N–H 1,4-Dihydropyridines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maofu Pang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Le-Le Shi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufang Xie
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianyi Geng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lan Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Zhu ZH, Ding YX, Zhou YG. Transfer-catalyst-free biomimetic asymmetric reduction of 3-sulfonyl coumarins with a regenerable NAD(P)H model. Chem Commun (Camb) 2022; 58:3973-3976. [PMID: 35254349 DOI: 10.1039/d1cc06896b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel transfer-catalyst-free biomimetic reduction of the tetrasubstituted olefins 3-sulfonyl coumarins with the chiral and regenerable [2.2]paracyclophane-based NAD(P)H model CYNAM has been developed, affording chiral 3-sulfonyl dihydrocoumarins with excellent enantioselectivities.
Collapse
Affiliation(s)
- Zhou-Hao Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Xuan Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
17
|
Chen DF, Gong LZ. Organo/Transition-Metal Combined Catalysis Rejuvenates Both in Asymmetric Synthesis. J Am Chem Soc 2022; 144:2415-2437. [DOI: 10.1021/jacs.1c11408] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dian-Feng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Shen GB, Qian BC, Zhang GS, Luo GZ, Fu YH, Zhu XQ. Thermodynamics regulated organic hydride/acid pairs as novel organic hydrogen reductants. Org Chem Front 2022. [DOI: 10.1039/d2qo01605b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Organic hydride/acid pairs could realize transformation of N-substituted organic hydrides from hydride reductants to thermodynamics regulated hydrogen reductants on conveniently choosing suitable organic hydrides and acids with various acidities.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Gao-Shuai Zhang
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Guang-Ze Luo
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Thermodynamics of the elementary steps of organic hydride chemistry determined in acetonitrile and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo01310j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the thermodynamics of the elementary step of 421 organic hydrides and unsaturated compounds releasing or accepting hydride or hydrogen determined in acetonitrile as well as their potential applications.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
20
|
Shi Y, Wang J, Yang F, Wang C, Zhang X, Chiu P, Yin Q. Direct asymmetric reductive amination of α-keto acetals: a platform for synthesizing diverse α-functionalized amines. Chem Commun (Camb) 2021; 58:513-516. [PMID: 34897338 DOI: 10.1039/d1cc06601c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report an efficient and straightforward method to synthesize enantio-enriched N-unprotected α-amino acetals via ruthenium-catalyzed direct asymmetric reductive amination. The α-amino acetal products are versatile and valuable platform molecules that can be converted to the corresponding α-amino acids, amino alcohols, and other derivatives by convenient transformations.
Collapse
Affiliation(s)
- Yongjie Shi
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jingxin Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feifan Yang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chenhan Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China. .,Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pauline Chiu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
21
|
Zhao ZB, Wang J, Zhu ZH, Chen MW, Zhou YG. Enantioselective Synthesis of 2-Functionalized Tetrahydroquinolines through Biomimetic Reduction. Org Lett 2021; 23:9112-9117. [PMID: 34766774 DOI: 10.1021/acs.orglett.1c03430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimetic asymmetric reduction of 2-functionalized quinolines has been successfully developed with the chiral and regenerable NAD(P)H model CYNAM in the presence of transfer catalyst simple achiral phosphoric acids, providing the chiral 2-functionalized tetrahydroquinolines with up to 99% ee. Using this methodology as a key step, a chiral and potent opioid analgesic containing a 1,2,3,4-tetrahydroquinoline motif was synthesized with high overall yield.
Collapse
Affiliation(s)
- Zi-Biao Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jie Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
22
|
Lin S, Chen Y, Yan H, Liu Y, Sun Y, Hao E, Shi C, Zhang D, Zhu N, Shi L. Activation of Chromium Catalysts by Photoexcited Hantzsch Ester for Decarboxylative Allylation of Aldehydes with Butadiene. Org Lett 2021; 23:8077-8081. [PMID: 34606288 DOI: 10.1021/acs.orglett.1c03098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metallaphotocatalysis often needs light-absorbing metal-polypyridyl complexes, semiconductors, or organic dyes, which can modify the oxidation state of metal catalysts. Here, we first report that photoexcitation of Hantzsch ester can directly activate chromium reagents through a single-electron transfer process. The synthetic application was demonstrated through a photoredox decarboxylative allylation of aldehydes with feedstock butadiene without exogenous photocatalysts, metallic reductants, or additives.
Collapse
Affiliation(s)
- Shuangjie Lin
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuqing Chen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Huaipu Yan
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yonghong Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuchen Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Caizhe Shi
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Dandan Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lei Shi
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
23
|
Pálvölgyi ÁM, Scharinger F, Schnürch M, Bica‐Schröder K. Chiral Phosphoric Acids as Versatile Tools for Organocatalytic Asymmetric Transfer Hydrogenations. European J Org Chem 2021; 2021:5367-5381. [PMID: 34819797 PMCID: PMC8597106 DOI: 10.1002/ejoc.202100894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Indexed: 12/05/2022]
Abstract
Herein, recent developments in the field of organocatalytic asymmetric transfer hydrogenation (ATH) of C=N, C=O and C=C double bonds using chiral phosphoric acid catalysis are reviewed. This still rapidly growing area of asymmetric catalysis relies on metal-free catalysts in combination with biomimetic hydrogen sources. Chiral phosphoric acids have proven to be extremely versatile tools in this area, providing highly active and enantioselective alternatives for the asymmetric reduction of α,β-unsaturated carbonyl compounds, imines and various heterocycles. Eventually, such transformations are more and more often used in multicomponent/cascade reactions, which undoubtedly shows their great synthetic potential and the bright future of organocatalytic asymmetric transfer hydrogenations.
Collapse
Affiliation(s)
- Ádám Márk Pálvölgyi
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | - Fabian Scharinger
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | - Michael Schnürch
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | | |
Collapse
|
24
|
Zhu ZH, Ding YX, Zhou YG. Biomimetic reduction of imines and heteroaromatics with chiral and regenerable [2.2]Paracyclophane-Based NAD(P)H model CYNAM. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Abdine RAA, Hedouin G, Colobert F, Wencel-Delord J. Metal-Catalyzed Asymmetric Hydrogenation of C═N Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Racha Abed Ali Abdine
- Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Gaspard Hedouin
- Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Françoise Colobert
- Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
26
|
Shen GB, Fu YH, Zhu XQ. Thermodynamic Network Cards of Hantzsch Ester, Benzothiazoline, and Dihydrophenanthridine Releasing Two Hydrogen Atoms or Ions on 20 Elementary Steps. J Org Chem 2020; 85:12535-12543. [PMID: 32880175 DOI: 10.1021/acs.joc.0c01726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, thermodynamic driving forces on 20 possible elementary steps of Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydrophenanthridine (PDH2) releasing two hydrogen atoms or ions were measured or derived from the related thermodynamic data using Hess' law in acetonitrile. Furthermore, thermodynamic network cards of HEH2, BTH2, and PDH2 releasing two hydrogen atoms or ions on 20 elementary steps were first established. Based on the thermodynamic network cards, hydride-donating, hydrogen-atom-donating, and electron-donating abilities of XH2 and XH-, and two hydrogen-atom(ion)-donating abilities of XH2 are discussed in detail. Obviously, the thermodynamic network cards of HEH2, BTH2, and PDH2 not only offer rational data guidance for organic synthetic chemists to properly choose an appropriate reducer among the three reducing agents to hydrogenate various unsaturated compounds but also strongly promote elucidatation of the detailed hydrogenation mechanisms.
Collapse
Affiliation(s)
- Guang-Bin Shen
- College of Chemistry, Nankai University, Tianjin 300071, China.,School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
27
|
Cao Y, Zhang S, Antilla JC. Catalytic Asymmetric 1,4-Reduction of α-Branched 2-Vinyl-azaarenes by a Chiral SPINOL-Derived Borophosphate. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Cao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shouqi Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jon C. Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province 310018, P. R. China
| |
Collapse
|
28
|
Shen GB, Xie L, Yu HY, Liu J, Fu YH, Yan M. Theoretical investigation on the nature of 4-substituted Hantzsch esters as alkylation agents. RSC Adv 2020; 10:31425-31434. [PMID: 35520635 PMCID: PMC9056415 DOI: 10.1039/d0ra06745h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023] Open
Abstract
Recently, a variety of 4-substituted Hantzsch esters (XRH) with different structures have been widely researched as alkylation reagents in chemical reactions, and the key step of the chemical process is the elementary step of XRH˙+ releasing R˙. The purpose of this work is to investigate the essential factors which determine whether or not an XRH is a great alkylation reagent using density functional theory (DFT). This study shows that the ability of an XRH acting as an alkylation reagent can be reasonably estimated by its ΔG≠RD(XRH˙+) value, which can be conveniently obtained through DFT computations. Moreover, the data also show that ΔG≠RD(XRH˙+) has no simple correlation with the structural features of XRH, including the electronegativity of the R substituent group and the magnitude of steric resistance; therefore, it is difficult to judge whether an XRH can provide R˙ solely by experience. Thus, these results are helpful for chemists to design 4-substituted Hantzsch esters (XRH) with novel structures and to guide the application of XRH as a free radical precursor in organic synthesis. This work presents a convenient computation method to estimate whether a 4-substituted Hantzsch ester can be a good alkyl radical donor.![]()
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Li Xie
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Hao-Yun Yu
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Jie Liu
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan 455000 P. R. China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University Rizhao Shandong 276800 P. R. China
| |
Collapse
|
29
|
Su YL, Liu GX, Liu JW, Tram L, Qiu H, Doyle MP. Radical-Mediated Strategies for the Functionalization of Alkenes with Diazo Compounds. J Am Chem Soc 2020; 142:13846-13855. [DOI: 10.1021/jacs.0c05183] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Geng-Xin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Wen Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Linh Tram
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
30
|
Zhao ZB, Li X, Chen MW, Zhao ZK, Zhou YG. Biomimetic asymmetric reduction of benzoxazinones and quinoxalinones using ureas as transfer catalysts. Chem Commun (Camb) 2020; 56:7309-7312. [PMID: 32478362 DOI: 10.1039/d0cc03091k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using ureas as transfer catalysts through hydrogen bonding activation, biomimetic asymmetric reduction of benzoxazinones and quinoxalinones with chiral and regenerable NAD(P)H models was described, giving chiral dihydrobenzoxazinones and dihydroquinoxalinones with high yields and excellent enantioselectivities. A key dihydroquinoxalinone intermediate of a BRD4 inhibitor was synthesized using biomimetic asymmetric reduction.
Collapse
Affiliation(s)
- Zi-Biao Zhao
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | | | | | | | | |
Collapse
|
31
|
Zhao Z, Li X, Wu B, Zhou Y. Biomimetic Asymmetric Reduction of Quinazolinones with Chiral and Regenerable
NAD
(P)H Models. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zi‐Biao Zhao
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Xiang Li
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Bo Wu
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Yong‐Gui Zhou
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
32
|
Zhang S, Li Y, Wang J, Hao X, Jin K, Zhang R, Duan C. A photocatalyst-free photo-induced denitroalkylation of β-nitrostyrenes with 4-alkyl substituted Hantzsch esters at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Zhu D, Wu Q, Li H, Li H, Lang J. Hantzsch Ester as a Visible‐Light Photoredox Catalyst for Transition‐Metal‐Free Coupling of Arylhalides and Arylsulfinates. Chemistry 2020; 26:3484-3488. [DOI: 10.1002/chem.201905281] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Da‐Liang Zhu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hai‐Yan Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hong‐Xi Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Jian‐Ping Lang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
34
|
Pan HJ, Hu X. Biomimetic Hydrogenation Catalyzed by a Manganese Model of [Fe]-Hydrogenase. Angew Chem Int Ed Engl 2020; 59:4942-4946. [PMID: 31820844 DOI: 10.1002/anie.201914377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 12/16/2022]
Abstract
[Fe]-hydrogenase is an efficient biological hydrogenation catalyst. Despite intense research, Fe complexes mimicking the active site of [Fe]-hydrogenase have not achieved turnovers in hydrogenation reactions. Herein, we describe the design and development of a manganese(I) mimic of [Fe]-hydrogenase. This complex exhibits the highest activity and broadest scope in catalytic hydrogenation among known mimics. Thanks to its biomimetic nature, the complex exhibits unique activity in the hydrogenation of compounds analogous to methenyl-H4 MPT+ , the natural substrate of [Fe]-hydrogenase. This activity enables asymmetric relay hydrogenation of benzoxazinones and benzoxazines, involving the hydrogenation of a chiral hydride transfer agent using our catalyst coupled to Lewis acid-catalyzed hydride transfer from this agent to the substrates.
Collapse
Affiliation(s)
- Hui-Jie Pan
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland
| |
Collapse
|
35
|
Zhang J, Yang JD, Cheng JP. Diazaphosphinanes as hydride, hydrogen atom, proton or electron donors under transition-metal-free conditions: thermodynamics, kinetics, and synthetic applications. Chem Sci 2020; 11:3672-3679. [PMID: 34094055 PMCID: PMC8152589 DOI: 10.1039/c9sc05883d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Exploration of new hydrogen donors is in large demand in hydrogenation chemistry. Herein, we developed a new 1,3,2-diazaphosphinane 1a, which can serve as a hydride, hydrogen atom or proton donor without transition-metal mediation. The thermodynamics and kinetics of these three pathways of 1a, together with those of its analog 1b, were investigated in acetonitrile. It is noteworthy that, the reduction potentials (Ered) of the phosphenium cations 1a-[P]+ and 1b-[P]+ are extremely low, being −1.94 and −2.39 V (vs. Fc+/0), respectively, enabling corresponding phosphinyl radicals to function as neutral super-electron-donors. Kinetic studies revealed an extraordinarily large kinetic isotope effect KIE(1a) of 31.3 for the hydrogen atom transfer from 1a to the 2,4,6-tri-(tert-butyl)-phenoxyl radical, implying a tunneling effect. Furthermore, successful applications of these diverse P–H bond energetic parameters in organic syntheses were exemplified, shedding light on more exploitations of these versatile and powerful diazaphosphinane reagents in organic chemistry. A new 1,3,2-diazaphosphinane, serving as a formal hydride, hydrogen-atom or proton donor without transition-metal mediation was exploited thermodynamically and kinetically. And, its promising potentials in versatile syntheses have been demonstrated.![]()
Collapse
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China .,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
36
|
Pan H, Hu X. Biomimetic Hydrogenation Catalyzed by a Manganese Model of [Fe]‐Hydrogenase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hui‐Jie Pan
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| |
Collapse
|
37
|
Wang J, Zhao ZB, Zhao Y, Luo G, Zhu ZH, Luo Y, Zhou YG. Chiral and Regenerable NAD(P)H Models Enabled Biomimetic Asymmetric Reduction: Design, Synthesis, Scope, and Mechanistic Studies. J Org Chem 2020; 85:2355-2368. [PMID: 31886670 DOI: 10.1021/acs.joc.9b03054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The coenzyme NAD(P)H plays an important role in electron as well as proton transmission in the cell. Thus, a variety of NAD(P)H models have been involved in biomimetic reduction, such as stoichiometric Hantzsch esters and achiral regenerable dihydrophenantheridine. However, the development of a general and new-generation biomimetic asymmetric reduction is still a long-term challenge. Herein, a series of chiral and regenerable NAD(P)H models with central, axial, and planar chiralities have been designed and applied in biomimetic asymmetric reduction using hydrogen gas as a terminal reductant. Combining chiral NAD(P)H models with achiral transfer catalysts such as Brønsted acids and Lewis acids, the substrate scope could be also expanded to imines, heteroaromatics, and electron-deficient tetrasubstituted alkenes with up to 99% yield and 99% enantiomeric excess (ee). The mechanism of chiral regenerable NAD(P)H models was investigated as well. Isotope-labeling reactions indicated that chiral NAD(P)H models were regenerated by the ruthenium complex under hydrogen gas first, and then the hydride of NAD(P)H models was transferred to unsaturated bonds in the presence of transfer catalysts. In addition, density functional theory calculations were also carried out to give further insight into the transition states for the corresponding transfer catalysts.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Zi-Biao Zhao
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yanan Zhao
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Gen Luo
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yi Luo
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China.,Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| |
Collapse
|
38
|
Jin Y, Zhang Q, Zhang Y, Duan C. Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chem Soc Rev 2020; 49:5561-5600. [DOI: 10.1039/c9cs00917e] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we overview regulatory factors and diverse applications of electron transfer in confined environments of supramolecular host–guest systems.
Collapse
Affiliation(s)
- Yunhe Jin
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Qingqing Zhang
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
39
|
Recent Progress in Asymmetric Relay Catalysis of Metal Complex with Chiral Phosphoric Acid. Top Curr Chem (Cham) 2019; 378:9. [DOI: 10.1007/s41061-019-0263-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/28/2019] [Indexed: 01/21/2023]
|
40
|
Liu J, Chen JY, Jia M, Ming B, Jia J, Liao RZ, Tung CH, Wang W. Ni–O Cooperation versus Nickel(II) Hydride in Catalytic Hydroboration of N-Heteroarenes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05136] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianguo Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, P.R. China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Mengjing Jia
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, P.R. China
| | - Bangrong Ming
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, P.R. China
| | - Jiong Jia
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, P.R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, P.R. China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, P.R. China
| |
Collapse
|
41
|
Wang J, Zhu Z, Chen M, Chen Q, Zhou Y. Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Wang
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing China
| | - Zhou‐Hao Zhu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mu‐Wang Chen
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yong‐Gui Zhou
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- State Key Laboratory of Fine ChemicalsZhang Dayu School of ChemistryDalian University of Technology Dalian China
| |
Collapse
|
42
|
Wang J, Zhu ZH, Chen MW, Chen QA, Zhou YG. Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Angew Chem Int Ed Engl 2019; 58:1813-1817. [PMID: 30556234 DOI: 10.1002/anie.201813400] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 11/10/2022]
Abstract
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar-chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench-stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme-like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qing-An Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, China
| |
Collapse
|
43
|
Liu T, He J, Zhang Y. Regioselective 1,2-hydroboration of N-heteroarenes using a potassium-based catalyst. Org Chem Front 2019. [DOI: 10.1039/c9qo00497a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1,2-Regioselective hydroboration of quinolines achieved using a potassium-based catalyst.
Collapse
Affiliation(s)
- Tianwei Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
44
|
Chen Z, Yin X, Dong XQ, Zhang X. Efficient access to chiral dihydrobenzoxazinones via Rh-catalyzed hydrogenation. RSC Adv 2019; 9:15466-15469. [PMID: 35514854 PMCID: PMC9064260 DOI: 10.1039/c9ra02694k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Rh/(S)-DTBM-SegPhos-catalyzed asymmetric hydrogenation of prochiral (Z)-2-(2-oxo-2H-benzo[b][1,4]oxazin-3(4H)-ylidene)acetate esters was successfully developed. A series of chiral dihydrobenzoxazinones were prepared through this efficient methodology with good to excellent results (up to >99% conversion, 93% yield and >99% ee), which are important motifs in the biologically active molecules. Rh/(S)-DTBM-SegPhos-catalyzed asymmetric hydrogenation of prochiral (Z)-2-(2-oxo-2H-benzo[b][1,4]oxazin-3(4H)-ylidene)acetate esters was successfully developed to prepare various chiral dihydrobenzoxazinones with good to excellent results.![]()
Collapse
Affiliation(s)
- Ziyi Chen
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Xuguang Yin
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| |
Collapse
|
45
|
Yang JD, Chen BL, Zhu XQ. New Insight into the Mechanism of NADH Model Oxidation by Metal Ions in Nonalkaline Media. J Phys Chem B 2018; 122:6888-6898. [PMID: 29886742 DOI: 10.1021/acs.jpcb.8b03453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For a long time, it has been controversial that the three-step (e-H+-e) or two-step (e-H•) mechanism was used for the oxidation of nicotinamide adenine dinucleotide coenzyme (NADH) and its models by metal ions in nonalkaline media. The latter mechanism has been accepted by the majority of researchers. In this work, 1-benzyl-1,4-dihydronicotinamide (BNAH) and 1-phenyl-l,4-dihydronicotinamide are used as NADH models and ferrocenium (Fc+) metal ion as an electron acceptor. The kinetics for oxidation of the NADH models by Fc+ in pure acetonitrile was monitored by using UV-vis absorption and a quadratic relationship between kobs and the concentrations of NADH models was found for the first time. The rate expression of the reactions developed according to the three-step mechanism is quite consistent with the quadratic curves. The rate constants, thermodynamic driving forces, and kinetic isotope effects of each elementary step for the reactions were estimated. All results supported the three-step mechanism. The intrinsic kinetic barriers of the proton transfer from BNAH+• to BNAH and the hydrogen-atom transfer from BNAH+• to BNAH+• were estimated by using Zhu equation; the results showed that the former is 11.8 kcal/mol and the latter is larger than 24.3 kcal/mol. It is the large intrinsic kinetic barrier of the hydrogen-atom transfer that makes the reactions choose the three-step rather than two-step mechanism. Further investigation of the factors affecting the intrinsic kinetic barrier of chemical reactions indicated that the large intrinsic kinetic barrier of the hydrogen-atom transfer originated from the repulsion of positive charges between BNAH+• and BNAH+•. The greatest contribution of this work is the discovery of the quadratic dependence of kobs on the concentrations of the NADH models, which is inconsistent with the conventional viewpoint of the "two-step mechanism" on the oxidation of NADH and its models by metal ions in the nonalkaline media.
Collapse
Affiliation(s)
- Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | | | | |
Collapse
|
46
|
Sun Q, Zhang YY, Sun J, Han Y, Jia X, Yan CG. Copper-Catalyzed Selective 1,2-Dialkylation of N-Heteroarenes via a Radical Addition/Reduction Process: Application for the Construction of Alkylated Dihydroazaarenes Derivatives. J Org Chem 2018; 83:6640-6649. [DOI: 10.1021/acs.joc.8b00928] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiu Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yuan-Yuan Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaodong Jia
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
47
|
Liu J, Li H, Zhao G, Caiyin Q, Qiao J. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. J Ind Microbiol Biotechnol 2018; 45:313-327. [PMID: 29582241 DOI: 10.1007/s10295-018-2031-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Huiling Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
48
|
Liu H, Khononov M, Eisen MS. Catalytic 1,2-Regioselective Dearomatization of N-Heteroaromatics via a Hydroboration. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00074] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Liu
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology. Haifa City 32000, Israel
| | - Maxim Khononov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology. Haifa City 32000, Israel
| | - Moris S. Eisen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology. Haifa City 32000, Israel
| |
Collapse
|
49
|
Bähr S, Oestreich M. A Neutral RuII
Hydride Complex for the Regio- and Chemoselective Reduction of N
-Silylpyridinium Ions. Chemistry 2018; 24:5613-5622. [DOI: 10.1002/chem.201705899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Susanne Bähr
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
50
|
Chen P, Wu Y, Zhu S, Jiang H, Ma Z. Ir-Catalyzed reactions in natural product synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo00665a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review highlights the recent applications of Ir-catalyzed reactions in the total synthesis of natural products.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Yuecheng Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|