1
|
Guo T, He B, Mu R, Li J, Sun C, Wang R, Zhang G, Sheng W, Yu B, Li B. Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by ppm of Cu II/Tris(2-pyridylmethyl)amine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2664-2671. [PMID: 38253013 DOI: 10.1021/acs.langmuir.3c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Atom transfer radical polymerization (ATRP) is one of the most widely used methods for modifying surfaces with functional polymer films and has received considerable attention in recent years. Here, we report an electrochemically mediated surface-initiated ATRP to graft polymer brushes onto solid substrates catalyzed by ppm amounts of CuII/TPMA in water/MeOH solution. We systematically investigated the type and concentrations of copper/ligand and applied potentials correlated to the polymerization kinetics and polymer brush thickness. Gradient polymer brushes and various types of polymer brushes are prepared. Block copolymerization of 2-hydroxyethyl methacrylate (HEMA) and 3-sulfopropyl methacrylate potassium salt (PSPMA) (poly(HEMA-b-SPMA)) with ultralow ppm eATRP indicates the remarkable preservation of chain end functionality and a pronounced "living" characteristic feature of ppm-level eATRP in aqueous solution for surface polymerization.
Collapse
Affiliation(s)
- Tingting Guo
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Baoluo He
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Mu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Chufeng Sun
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guorui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Advanced Materials and Green Manufacturing, Yantai, Shandong 264000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Advanced Materials and Green Manufacturing, Yantai, Shandong 264000, China
| |
Collapse
|
2
|
Li W. Molecular Dynamics Simulations of Ideal Living Polymerization: Terminal Model and Kinetic Aspects. J Phys Chem B 2023; 127:7624-7635. [PMID: 37642203 DOI: 10.1021/acs.jpcb.3c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Living polymerization is an important synthetic approach to achieving precise control of synthesized polymers, which is crucial for their applications. The molecular weight distribution (MWD) prescribes the macroscopic properties of polymers and hence is a key feature to characterize polymerization. In this work, we present a systematic molecular dynamics simulation study of ideal living polymerization in bulk and surface-initiated systems based on a terminal stochastic reaction model. The evolution of polymer dispersity and MWD along with the polymerization process is examined. We demonstrate that MWD is generally well captured by the Schulz-Zimm distribution for bulk and surface-initiated systems with low grafting densities. However, as the grafting density in the surface-initiated case increases, heterogeneity in chain growth emerges due to the kinetic trapping of reactive sites, which causes the starving of short chains and the thriving of minority long chains such that a shoulder region shows up in MWD. This effect can be enhanced by kinetic compressing induced by polymerization. In addition, the interplay of bonding reaction kinetics and other kinetic properties (e.g., mass transfer and polymer relaxation) is further explored, alongside the influences of bonding probability and reactant concentration. We expect that this investigation will aid in our understanding of typical kinetic aspects of living polymerization.
Collapse
Affiliation(s)
- Wei Li
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
3
|
A Simple Stochastic Reaction Model for Heterogeneous Polymerizations. Polymers (Basel) 2022; 14:polym14163269. [PMID: 36015526 PMCID: PMC9414839 DOI: 10.3390/polym14163269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The stochastic reaction model (SRM) treats polymerization as a pure probability‐based issue, which is widely applied to simulate various polymerization processes. However, in many studies, active centers were assumed to react with the same probability, which cannot reflect the heterogeneous reaction microenvironment in heterogeneous polymerizations. Recently, we have proposed a simple SRM, in which the reaction probability of an active center is directly determined by the local reaction microenvironment. In this paper, we compared this simple SRM with other SRMs by examining living polymerizations with randomly dispersed and spatially localized initiators. The results confirmed that the reaction microenvironment plays an important role in heterogeneous polymerizations. This simple SRM provides a good choice to simulate various polymerizations.
Collapse
|
4
|
Wang F, Liu W, Lu R, Huang JH, Zuo B, Wang X. Entropy-Enhanced Mechanochemical Activation for Thermal Degrafting of Surface-Tethered Dry Polystyrene Brushes. ACS Macro Lett 2022; 11:1041-1048. [PMID: 35920565 DOI: 10.1021/acsmacrolett.2c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dry polymer brushes have attracted great attention because of their potential utility in regulating interface properties. However, it is still unknown whether dry polymer brushes will exhibit degrafting behavior as a result of thermal annealing. Herein, a study of the conformational entropy effect on thermal degrafting of dry polystyrene (PS) brushes is presented. For PS brushes with an initial grafting density (σpini) of 0.61 nm-2, degrafting behavior was observed at 393 K, and the equilibrium σp was approximately 0.14 nm-2 at 413 K. However, for brushes with σpini ≤ 0.14 nm-2, thermal degrafting was not observed even if the temperature was increased to 453 K. Furthermore, we found that the degrafting rate was faster for PS brushes with higher σpini and higher molecular weights when σpini > 0.14 nm-2. Our findings confirmed that degrafting is a mechanochemical activation process driven by tension imposed on bonds that anchor the chains to the surface, and the process is amplified by conformational entropy.
Collapse
Affiliation(s)
- Fengliang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenqing Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rongxing Lu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian-Hua Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biao Zuo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Rolińska K, Mazurek-Budzyńska M, Parzuchowski PG, Wołosz D, Balk M, Gorący K, El Fray M, Polanowski P, Sikorski A. Synthesis of Shape-Memory Polyurethanes: Combined Experimental and Simulation Studies. Int J Mol Sci 2022; 23:7064. [PMID: 35806067 PMCID: PMC9266580 DOI: 10.3390/ijms23137064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The presented research focuses on the synthesis and structure-properties relationship of poly(carbonate-urea-urethane) (PCUU) systems including investigations on shape-memory effect capability. Furthermore, we approached the topic from a broader perspective by conducting extensive analysis of the relationship between the synthesized compounds and the results of computer simulations by means of the Monte Carlo method. For the first time, by using a unique simulation tool, the dynamic lattice liquid model (DLL), all steps of multi-step synthesis of these materials were covered by the simulations. Furthermore, broad thermal, mechanical, and thermomechanical characterization of synthesized PCUUs was performed, as well as determining the shape-memory properties. PCUUs exhibited good mechanical properties with a tensile strength above 20 MPa, elongation at break around 800%, and an exhibited shape-memory effect with shape fixity and shape recovery ratios above 94% and 99%, respectively. The dynamic lattice liquid model was employed to show the products and their molar mass distribution, as well as monomer conversion or the dispersity index for individual reaction steps. The results obtained in the following manuscript allow the planning of syntheses for the PCUUs of various structures, including crosslinked and soluble systems, which can provide a broad variety of applications of these materials, as well as a better understanding of the composition-properties relationship.
Collapse
Affiliation(s)
- Karolina Rolińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.M.-B.); (P.G.P.); (D.W.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Magdalena Mazurek-Budzyńska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.M.-B.); (P.G.P.); (D.W.)
| | - Paweł G. Parzuchowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.M.-B.); (P.G.P.); (D.W.)
| | - Dominik Wołosz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.M.-B.); (P.G.P.); (D.W.)
| | - Maria Balk
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany;
| | - Krzysztof Gorący
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Avenue 42, 71-065 Szczecin, Poland; (K.G.); (M.E.F.)
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Avenue 42, 71-065 Szczecin, Poland; (K.G.); (M.E.F.)
| | - Piotr Polanowski
- Faculty of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Andrzej Sikorski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| |
Collapse
|
6
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
8
|
Yang B, Liu S, Ma J, Yang Y, Li J, Jiang BP, Ji S, Shen XC. Monte Carlo Simulation of Surface-Initiated Polymerization: Heterogeneous Reaction Environment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bingbing Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Siwen Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiashu Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yang Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiahao Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
9
|
Wohlhauser S, Rader C, Weder C. Facile Method to Determine the Molecular Weight of Polymer Grafts Grown from Cellulose Nanocrystals. Biomacromolecules 2022; 23:699-707. [PMID: 35029986 DOI: 10.1021/acs.biomac.1c01050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the main challenges associated with the modification of cellulose nanocrystals (CNCs) with polymers by surface-initiated polymerization is the characterization of the resulting products, notably the molecular weight of the grafts. The solid nature of the (modified) CNC nanoparticles limits the possibility to apply solution-based characterization techniques, and the cleavage of the macromolecules from the surface of the CNCs to enable their characterization using solution-based techniques is intricate. Here, we report that 1H NMR spectroscopy of the supernatant of the heterogeneous reaction mixture can be used to approximate the molecular weight of poly(hexyl methacrylate) grafts grown from the surface of CNCs via surface-initiated atom transfer radical polymerization. This was achieved using 1H NMR spectra to determine the monomer conversion from the change of the relative ratio of monomer and solvent signals in the 1H NMR spectra, which in turn allowed determining the weight of PHMA produced. The number-average molecular weight of the grafted polymer was then estimated by assuming that standard atom transfer radical polymerization kinetics are at play and using the initiator concentration on the CNC surface determined by elemental analysis. The method was validated by comparing the results with the gravimetric data and the data of free polymers that were synthesized with a sacrificial initiator.
Collapse
Affiliation(s)
- Sandra Wohlhauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Chris Rader
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
10
|
Arraez FJ, Van Steenberge PHM, Sobieski J, Matyjaszewski K, D’hooge DR. Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | | | - Julian Sobieski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
11
|
Schweigerdt A, Heinen S, Stöbener DD, Weinhart M. Grafting Density-Dependent Phase Transition Mechanism of Thermoresponsive Poly(glycidyl ether) Brushes: A Comprehensive QCM-D Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7087-7096. [PMID: 34077209 DOI: 10.1021/acs.langmuir.1c00695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermoresponsive coatings that exhibit "switchable" protein- and cell-adhesive properties are frequently used for the fabrication of cell sheets. Among other architectures, polymer brush coatings have shown to be especially viable due to their distinct phase transition behavior, which can be tailored via a manifold of adjustable brush characteristics, such as the (co)monomer composition, polymer chain length, and grafting density. Brush coatings based on poly(glycidyl ether)s (PGEs) have shown to efficiently mediate cell sheet fabrication when tethered to various tissue culture substrates. Herein, we report the phase transition of self-assembled PGE brushes with respect to polymer molecular weight (M: 10 and 22 kDa) and grafting density (0.07-0.5 chains nm-2) on gold model substrates studied by quasi-static QCM-D temperature ramp measurements. The brush grafting density can be tuned via the applied grafting conditions, and all brushes investigated feature broad phase transition regimes (ΔT ∼15 °C) with volume phase transition temperatures (VPTTs) close to the cloud point temperatures (CPTs) of the PGEs in solution. We further demonstrate that brush coatings with a low grafting density (0.07-0.12 chains nm-2) exhibit a continuous brush-to-mushroom transition, whereas brushes with medium grafting densities (0.3-0.5 chains nm-2) undergo a brush-to-brush transition comprising vertical phase separation during the phase transition progress. These insights help to understand the transition behavior of thin, thermoresponsive brushes prepared via grafting-to strategies and contribute to their rational design for improved functional surfaces.
Collapse
Affiliation(s)
- Alexander Schweigerdt
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, Berlin 14195, Germany
| | - Silke Heinen
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, Berlin 14195, Germany
| | - Daniel D Stöbener
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, Berlin 14195, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3A, Hannover 30167, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, Berlin 14195, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3A, Hannover 30167, Germany
| |
Collapse
|
12
|
Li W, Sheng W, Li B, Jordan R. Surface Grafting “Band‐Aid” for “Everyone”: Filter Paper‐Assisted Surface‐Initiated Polymerization in the Presence of Air. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| | - Bin Li
- Physik Department TUM-Technische Universität München James-Franck-Straße 1 85748 Garching Germany
| | - Rainer Jordan
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| |
Collapse
|
13
|
Li W, Sheng W, Li B, Jordan R. Surface Grafting "Band-Aid" for "Everyone": Filter Paper-Assisted Surface-Initiated Polymerization in the Presence of Air. Angew Chem Int Ed Engl 2021; 60:13621-13625. [PMID: 33751767 PMCID: PMC8252564 DOI: 10.1002/anie.202103182] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/18/2022]
Abstract
We report herein a facile and generalized approach to the modification of solid surfaces with polymer brushes under ambient conditions: filter paper-assisted surface-initiated Cu0 -mediated controlled radical polymerization (PSI-CuCRP). The polymerization solution wetted filter paper is sandwiched between a copper plate and an initiator-modified substrate, which allows the creation of a surface-initiated polymerization (SIP) "band-aid" so that everyone can perform the surface grafting selectively with good control over the quality of the polymer brushes employing low concentration and microliter amounts of the monomer solution. The versatility of this method is demonstrated by grafting different homo-, block-, and multicomponent polymer brushes by using the same activation system and reaction conditions, the polymerization process can be precisely controlled to yield uniform polymers and show high chain-end functionality which is exemplified by in situ tetra-copolymerization. The combination of photolithography and paper cutting enables to prepare arbitrary three-dimensional patterned polymer brushes on the surface.
Collapse
Affiliation(s)
- Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Wenbo Sheng
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Bin Li
- Physik DepartmentTUM-Technische Universität MünchenJames-Franck-Straße 185748GarchingGermany
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| |
Collapse
|
14
|
Huang X, Mutlu H, Theato P. A CO 2-gated anodic aluminum oxide based nanocomposite membrane for de-emulsification. NANOSCALE 2020; 12:21316-21324. [PMID: 33073829 DOI: 10.1039/d0nr04248j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A carbon-dioxide-responsive organic-inorganic nanocomposite membrane based on a through-hole anodic aluminum oxide (AAO) template was constructed. The composite was prepared via a surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization strategy to achieve the grafting of poly(methyl methacrylate-co-2-(diethylamino)ethyl methacrylate) brushes on the AAO membrane. The grafted polymer chain length could be controlled based on the feed ratio between the free chain transfer agent (CTA) and reactive monomer, e.g., methyl methacrylate and 2-(diethylamino)ethyl methacrylate, resulting in a membrane that features adjustable water permeability. Importantly, the membrane pore size and surface wettability could be switched from hydrophobic to hydrophilic upon the introduction of carbon dioxide and nitrogen gases. This allowed for the nanocomposite membrane to be utilized for controlled water flux and oil/water emulsion separation. The simple fabrication methodology as well as sustainable gaseous stimulus will be useful for the construction of future smart membranes.
Collapse
Affiliation(s)
- Xia Huang
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr.18, D-76131, Karlsruhe, Germany. and Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III (IBG 3), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III (IBG 3), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr.18, D-76131, Karlsruhe, Germany. and Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III (IBG 3), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Huang Z, Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Adv Colloid Interface Sci 2020; 284:102264. [PMID: 32947152 DOI: 10.1016/j.cis.2020.102264] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023]
Abstract
Anti-biofouling materials that combat microorganism attachment have been intensively studied due to the ever-growing demand on smart and durable coatings. Although various hydrophilic polymer surfaces demonstrated superior anti-biofouling properties, their practical application was hampered by the undesired mechanical vulnerability and complicated fabrication process. In this review, we summarized the mechanically and chemically robust anti-biofouling coatings into six strategies namely (i) 3D-grafted coatings, (ii) hierarchical spheres-based coatings, (iii) inorganic nanomaterials-reinforced coatings, (iv) hydrolysis-based coating, (v) semi-interpenetrating structure-based coatings, and (vi) layer-by-layer (LbL) assembled coatings. The anti-biofouling efficacy and durability of these coatings over a series of challenges were also comprehensively presented. The purpose of this review is to inspire researchers to develop novel anti-biofouling coatings for future practical applications.
Collapse
|
16
|
Trigilio AD, Marien YW, Van Steenberge PHM, D’hooge DR. Gillespie-Driven kinetic Monte Carlo Algorithms to Model Events for Bulk or Solution (Bio)Chemical Systems Containing Elemental and Distributed Species. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03888] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro D. Trigilio
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
| | | | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70a, 9052 Gent, Belgium
| |
Collapse
|
17
|
Li M, Fromel M, Ranaweera D, Pester CW. Comparison of Long‐Term Stability of Initiating Monolayers in Surface‐Initiated Controlled Radical Polymerizations. Macromol Rapid Commun 2020; 41:e2000337. [DOI: 10.1002/marc.202000337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Michele Fromel
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Dhanesh Ranaweera
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Christian W. Pester
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Materials Science and Engineering Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
18
|
Liu H, Xue YH, Zhu YL, Gu FL, Lu ZY. Inverse Design of Molecular Weight Distribution in Controlled Polymerization via a One-Pot Reaction Strategy. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yao-Hong Xue
- Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Feng-Long Gu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
19
|
Li M, Pester CW. Mixed Polymer Brushes for "Smart" Surfaces. Polymers (Basel) 2020; 12:E1553. [PMID: 32668820 PMCID: PMC7408536 DOI: 10.3390/polym12071553] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
Mixed polymer brushes (MPBs) are composed of two or more disparate polymers covalently tethered to a substrate. The resulting phase segregated morphologies have been extensively studied as responsive "smart" materials, as they can be reversible tuned and switched by external stimuli. Both computational and experimental work has attempted to establish an understanding of the resulting nanostructures that vary as a function of many factors. This contribution highlights state-of-the-art MPBs studies, covering synthetic approaches, phase behavior, responsiveness to external stimuli as well as novel applications of MPBs. Current limitations are recognized and possible directions for future studies are identified.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
20
|
The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization. Polymers (Basel) 2020; 12:polym12061409. [PMID: 32586068 PMCID: PMC7361790 DOI: 10.3390/polym12061409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 11/16/2022] Open
Abstract
One of the challenges for brush synthesis for advanced bioinspired applications using surface-initiated reversible deactivation radical polymerization (SI-RDRP) is the understanding of the relevance of confinement on the reaction probabilities and specifically the role of termination reactions. The present work puts forward a new matrix-based kinetic Monte Carlo platform with an implicit reaction scheme capable of evaluating the growth pattern of individual free and tethered chains in three-dimensional format during SI-RDRP. For illustration purposes, emphasis is on normal SI-atom transfer radical polymerization, introducing concepts such as the apparent livingness and the molecular height distribution (MHD). The former is determined based on the combination of the disturbing impact of termination (related to conventional livingness) and shielding of deactivated species (additional correction due to hindrance), and the latter allows structure-property relationships to be identified, starting at the molecular level in view of future brush characterization. It is shown that under well-defined SI-RDRP conditions the contribution of (shorter) hindered dormant chains is relevant and more pronounced for higher average initiator coverages, despite the fraction of dead chains being less. A dominance of surface-solution termination is also put forward, considering two extreme diffusion modes, i.e., translational and segmental. With the translational mode termination is largely suppressed and the living limit is mimicked, whereas with the segmental mode termination occurs more and the termination front moves upward alongside the polymer layer growth. In any case, bimodalities are established for the tethered chains both on the level of the chain length distribution and the MHD.
Collapse
|
21
|
Arraez FJ, Van Steenberge PHM, D’hooge DR. Conformational Distributions near and on the Substrate during Surface-Initiated Living Polymerization: A Lattice-Based Kinetic Monte Carlo Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00585] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
22
|
Wohlhauser S, Kuhnt T, Meesorn W, Montero de Espinosa L, Zoppe JO, Weder C. One-Component Nanocomposites Based on Polymer-Grafted Cellulose Nanocrystals. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sandra Wohlhauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Tobias Kuhnt
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Worarin Meesorn
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Justin O. Zoppe
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
23
|
Kavand A, Blanck C, Przybilla F, Mély Y, Anton N, Vandamme T, Serra CA, Chan-Seng D. Investigating the growth of hyperbranched polymers by self-condensing vinyl RAFT copolymerization from the surface of upconversion nanoparticles. Polym Chem 2020. [DOI: 10.1039/d0py00452a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The growth of hyperbranched polymers by self-condensing vinyl polymerization under RAFT conditions from the surface of upconversion nanoparticles is hindered by steric hinderance, but also increased termination and transfer reactions.
Collapse
Affiliation(s)
- Alireza Kavand
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR 22
- F-67000 Strasbourg
- France
| | - Christian Blanck
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR 22
- F-67000 Strasbourg
- France
| | - Frédéric Przybilla
- Université de Strasbourg
- CNRS
- Laboratoire de bioimagerie et pathologies UMR 7021
- F-67000 Strasbourg
- France
| | - Yves Mély
- Université de Strasbourg
- CNRS
- Laboratoire de bioimagerie et pathologies UMR 7021
- F-67000 Strasbourg
- France
| | - Nicolas Anton
- Université de Strasbourg
- CNRS
- Laboratoire de conception et application de molécules bioactives UMR 7199
- F-67000 Strasbourg
- France
| | - Thierry Vandamme
- Université de Strasbourg
- CNRS
- Laboratoire de conception et application de molécules bioactives UMR 7199
- F-67000 Strasbourg
- France
| | - Christophe A. Serra
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR 22
- F-67000 Strasbourg
- France
| | - Delphine Chan-Seng
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR 22
- F-67000 Strasbourg
- France
| |
Collapse
|
24
|
Wang Z, Fantin M, Sobieski J, Wang Z, Yan J, Lee J, Liu T, Li S, Olszewski M, Bockstaller MR, Matyjaszewski K. Pushing the Limit: Synthesis of SiO2-g-PMMA/PS Particle Brushes via ATRP with Very Low Concentration of Functionalized SiO2–Br Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Zhenhua Wang
- Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Ko Y, Genzer J. Spontaneous Degrafting of Weak and Strong Polycationic Brushes in Aqueous Buffer Solutions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
27
|
Turgman‐Cohen S, Genzer J. Computer Simulation of Surface‐Initiated Controlled Radical Polymerization: Effect of Free‐Monomer Model on Brush Properties. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201900033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Jan Genzer
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| |
Collapse
|
28
|
Guo S, Quintana R, Cirelli M, Toa ZSD, Arjunan Vasantha V, Kooij ES, Jańczewski D, Vancso GJ. Brush Swelling and Attachment Strength of Barnacle Adhesion Protein on Zwitterionic Polymer Films as a Function of Macromolecular Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8085-8094. [PMID: 31099575 PMCID: PMC6587155 DOI: 10.1021/acs.langmuir.9b00918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The exceptional hydration of sulfobetaine polymer brushes and their resistance toward nonspecific protein absorption allows for the construction of thin films with excellent antibiofouling properties. In this work, swollen sulfobetaine brushes, prepared by surface-initiated atom transfer radical polymerization of two monomers, differentiated by the nature of the polymerizable group, are studied and compared by a liquid-cell atomic force microscopy technique and spectroscopic ellipsometry. Colloidal AFM-based force spectroscopy is employed to estimate brush grafting density and characterize nanomechanical properties in salt water. When the ionic strength-induced swelling behaviors of the two systems are compared, the differences observed on the antipolyelectrolyte response can be correlated with the stiffness variation on brush compression, likely to be promoted by solvation differences. The higher solvation of amide groups is proposed to be responsible for the lower adhesion force of the barnacle cyprid's temporary adhesive proteins. The adhesion results provide further insights into the antibiofouling activity against barnacle cyprid settlement attributed to polysulfobetaine brushes.
Collapse
Affiliation(s)
- Shifeng Guo
- Institute
of Materials Research and Engineering A*STAR (Agency for Science,
Technology and Research), Innovis, #08-03, 2 Fusionpolis Way, Singapore 138634
- CAS
Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Robert Quintana
- Institute
of Materials Research and Engineering A*STAR (Agency for Science,
Technology and Research), Innovis, #08-03, 2 Fusionpolis Way, Singapore 138634
- Materials
Research and Technology Department, Luxembourg
Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Marco Cirelli
- Materials Science and Technology of Polymers, MESA+
Institute for
Nanotechnology, Faculty Engineering Technology, Production Technology, and Physics of Interfaces
and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Zi Siang Desmond Toa
- Institute
of Materials Research and Engineering A*STAR (Agency for Science,
Technology and Research), Innovis, #08-03, 2 Fusionpolis Way, Singapore 138634
| | - Vivek Arjunan Vasantha
- Institute
of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong
Island, Singapore 627833
| | - E. Stefan Kooij
- Materials Science and Technology of Polymers, MESA+
Institute for
Nanotechnology, Faculty Engineering Technology, Production Technology, and Physics of Interfaces
and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dominik Jańczewski
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - G. Julius Vancso
- Institute
of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong
Island, Singapore 627833
- Materials Science and Technology of Polymers, MESA+
Institute for
Nanotechnology, Faculty Engineering Technology, Production Technology, and Physics of Interfaces
and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
29
|
Effect of two different RAFT reactions on grafting MMA from pre-irradiated PP film. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Xu J, Xue YH, Cui FC, Liu H, Lu ZY. Simultaneous polymer chain growth with the coexistence of bulk and surface initiators: insight from computer simulations. Phys Chem Chem Phys 2018; 20:22576-22584. [PMID: 30159566 DOI: 10.1039/c8cp03878c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By Brownian dynamics simulations we study the simultaneous polymer chain growth process with the coexistence of bulk and surface initiators. We find that when the surface initiator density is low enough, the practical experimental way to estimate the dispersity (Đ) of surface-initiated chains on the basis of the dispersity of bulk-initiated chains remains valid as long as the conformations of grafted chains remain within the mushroom regime (i.e., the grafted chains are sparsely distributed). On the other hand, although the average chain lengths of surface and bulk polymers could be equivalent when certain conditions are met, their mass distributions are still different. We also find that increasing the fraction of surface initiators leads to an enlarged disparity in Đ and average length between surface and bulk chains, which is inconsistent with previous studies. This study helps in better understanding the cooperative competition and suppressing effect of bulk chains on surface grown chains, as well as the cause of the dispersity of the surface grown chains as compared to their bulk counterparts with the coexistence of bulk and surface initiators.
Collapse
Affiliation(s)
- Jing Xu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | | | | | | | | |
Collapse
|
31
|
Murdoch TJ, Humphreys BA, Johnson EC, Webber GB, Wanless EJ. Specific ion effects on thermoresponsive polymer brushes: Comparison to other architectures. J Colloid Interface Sci 2018; 526:429-450. [DOI: 10.1016/j.jcis.2018.04.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
|
32
|
Ghaleh H, Jalili K, Maher BM, Rahbarghazi R, Mehrjoo M, Bonakdar S, Abbasi F. Biomimetic antifouling PDMS surface developed via well-defined polymer brushes for cardiovascular applications. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Wohlhauser S, Delepierre G, Labet M, Morandi G, Thielemans W, Weder C, Zoppe JO. Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00733] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sandra Wohlhauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Gwendoline Delepierre
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Marianne Labet
- Renewable Materials and Nanotechnology Research Group, Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Gaëlle Morandi
- Laboratoire Polymères, Biopolymères, Surfaces, Normandie Université, INSA de Rouen, Avenue de l’Université, 76801 Saint-Étienne-du-Rouvray Cedex, France
| | - Wim Thielemans
- Renewable Materials and Nanotechnology Research Group, Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Justin O. Zoppe
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
34
|
Shupanov R, Chertovich A, Kos P. Micellar polymerization: Computer simulations by dissipative particle dynamics. J Comput Chem 2018; 39:1275-1284. [PMID: 29464743 DOI: 10.1002/jcc.25194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Nowadays, micellar polymerization is widely used in different fields of industry and research, including modern living polymerization technique. However, this process has many variables and there is no comprehensive model to describe all features. This research presents simulation methodology which describes key properties of such reactions to take a guide through a variety of their modifications. Dissipative particle dynamics is used in addition to Monte Carlo scheme to simulate initiation, propagation, and termination events. Influence of initiation probability and different termination processes on final conversion and molecular-weight distribution are presented. We demonstrate that prolonged initiation leads to increasing in polymer average molecular weight, and surface termination events play major role in conversion limitation, in comparison with recombination. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ruslan Shupanov
- Faculty of Physics, Lomonosov MSU, Leninskie Gory 1, Moscow, 119991, Russia
| | | | - Pavel Kos
- Faculty of Physics, Lomonosov MSU, Leninskie Gory 1, Moscow, 119991, Russia
| |
Collapse
|
35
|
Xiong X, Xue L, Cui J. Phototriggered Growth and Detachment of Polymer Brushes with Wavelength Selectivity. ACS Macro Lett 2018; 7:239-243. [PMID: 35610900 DOI: 10.1021/acsmacrolett.7b00989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both phototriggered growth and removal of polymer chains from surfaces are efficient ways to finely tune interface properties. Combining these two capabilities in one system with independent control can significantly increase the feasibility of photoregulation on surface modification but has not been reported yet. Herein we describe a novel approach to control both the growth and the detachment of polymer brushes independently by light with different wavelengths. The approach is based on a nitrodopamine-based initiator (NO2-BDAM) which contains a catechol structure for surface modification, alkyl bromide group for radical polymerization, and o-nitrophenyl ethyl moiety for photolysis. When dimanganese decacarbonyl (Mn2(CO)10) was applied together with NO2-BDAM as an initiating system, visible light (460 nm) can be used to trigger the site-specific growth of polymer brushes. Resulting polymer brushes can be selectively removed by UV light (360 nm). This method is suitable for different monomers on various substrates, suggesting a facile and robust method to regulate surface properties.
Collapse
Affiliation(s)
- Xinhong Xiong
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Lulu Xue
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Jiaxi Cui
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| |
Collapse
|
36
|
Son H, Ku J, Kim Y, Li S, Char K. Amine-Reactive Poly(pentafluorophenyl acrylate) Brush Platforms for Cleaner Protein Purification. Biomacromolecules 2018; 19:951-961. [DOI: 10.1021/acs.biomac.7b01736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyunjoo Son
- The National Creative Research Initiative Center for Intelligent Hybrids, School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
| | | | | | | | - Kookheon Char
- The National Creative Research Initiative Center for Intelligent Hybrids, School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
37
|
The role of copolymer composition on the specific ion and thermo-response of ethylene glycol-based brushes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Wei W, Balamurugan A, Dwyer JH, Gopalan P. Substrate-Independent Approach to Dense Cleavable Polymer Brushes by Nitroxide-Mediated Polymerization. ACS Macro Lett 2018; 7:100-104. [PMID: 35610925 DOI: 10.1021/acsmacrolett.7b00979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High grafting density polymer brushes are grown on an inimer coating bearing nitroxide-mediated polymerization (NMP) inimers and glycidyl methacrylate (GMA). The inimer coating is cross-linked on the substrate to provide an initiator layer with needed stability during long exposure to organic solvents at moderate to high temperatures. Surface-initiated nitroxide-mediated polymerization (SI-NMP) is conducted to grow polystyrene (PS) brushes on the coating with a sacrificial layer designed to cleave the brushes. The cleaved brushes have larger molecular weights than the corresponding free polymers. The grafting density of the brushes is as high as 1.12 chains/nm2 throughout the brush growth, which is among the densest PS brushes reported so far. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) depth profiling are used to reveal the surface morphology and kinetics of the growth.
Collapse
Affiliation(s)
- Wei Wei
- Department
of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - A. Balamurugan
- Department
of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jonathan H. Dwyer
- Department
of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department
of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
Laun J, De Smet Y, Van de Reydt E, Krivcov A, Trouillet V, Welle A, Möbius H, Barner-Kowollik C, Junkers T. 2D laser lithography on silicon substrates via photoinduced copper-mediated radical polymerization. Chem Commun (Camb) 2018; 54:751-754. [DOI: 10.1039/c7cc08444g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A 2D laser lithography protocol for controlled grafting of polymer brushes in a single-step is presented.
Collapse
Affiliation(s)
- Joachim Laun
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Yana De Smet
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Emma Van de Reydt
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Alexander Krivcov
- University of Applied Sciences Kaiserslautern
- 66482 Zweibrücken
- Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM)
- Karlsruhe Institute of Technology (KIT)
- Germany
- Karlsruhe Nano Micro Facility (KNMF)
- Karlsruhe Institute of Technology (KIT)
| | - Alexander Welle
- Karlsruhe Nano Micro Facility (KNMF)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute of Functional Interfaces
| | - Hildegard Möbius
- University of Applied Sciences Kaiserslautern
- 66482 Zweibrücken
- Germany
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Tanja Junkers
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| |
Collapse
|
40
|
Chu BF, Chu JH, Zhao SQ, Liu N, Wu ZQ. Facile synthesis of optically active helical poly(phenyl isocyanide) brushes on a silicon surface and their chiral resolution ability. Polym Chem 2018. [DOI: 10.1039/c8py00097b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optically active helical poly(phenyl isocyanide) brushes grafted on a silicon surface were prepared and their chiral resolution ability was investigated.
Collapse
Affiliation(s)
- Ben-Fa Chu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Provincial Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei 230009
- China
| | - Jia-Hong Chu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Provincial Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei 230009
- China
| | - Song-Qing Zhao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Provincial Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei 230009
- China
| | - Na Liu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Provincial Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei 230009
- China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Provincial Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei 230009
- China
| |
Collapse
|
41
|
Kong SM, Liu H, Xue YH, Liu XL, Jia XX, Cui FC. Polymerization-induced polymer aggregation or polymer aggregation-enhanced polymerization? A computer simulation study. Phys Chem Chem Phys 2018; 20:24379-24388. [DOI: 10.1039/c8cp03069c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, using dissipative particle dynamics simulations coupled with the stochastic reaction model, we investigate the polymerization-induced polymer aggregation process and the polymer aggregation-enhanced polymerization process in a binary solution.
Collapse
Affiliation(s)
- Si-Min Kong
- Laboratory of Theoretical and Computational Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Hong Liu
- Laboratory of Theoretical and Computational Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry and Environment
| | - Yao-Hong Xue
- School of Computer Science and Technology, Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xiao-Li Liu
- Ophthalmic Center of the Second Hospital, Jilin University
- Changchun 130000
- China
| | - Xiao-Xi Jia
- Jilin University Academy
- Changchun 130023
- China
| | - Feng-Chao Cui
- Key Laboratory of Synthetic Rubber and Laboratory of Advance Power Sources
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
42
|
Deng B, Palermo EF, Shi Y. Comparison of chain-growth polymerization in solution versus on surface using reactive coarse-grained simulations. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Xue YH, Quan W, Liu XL, Han C, Li H, Liu H. Dependence of Grafted Polymer Property on the Initiator Site Distribution in Surface-Initiated Polymerization: A Computer Simulation Study. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yao-Hong Xue
- School of Computer
Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Wei Quan
- School of Computer
Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiao-Li Liu
- Ophthalmic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun 130000, China
| | - Cheng Han
- School of Computer
Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Hua Li
- School of Computer
Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Hong Liu
- State Key Laboratory
of Supramolecular Structure and Materials, Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
44
|
Wang WX, Liu Y, Wang YX, Chen H, Bai LJ. A novel and convenient preparation of antibacterial polyacrylonitrile nanofibers via post-modification using nitrile click chemistry and electrospinning. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0270-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Gavrilov AA, Chertovich AV. Copolymerization of Partly Incompatible Monomers: An Insight from Computer Simulations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexey A. Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation 119991
| | | |
Collapse
|
46
|
Yoshioka H, Izumi C, Shida M, Yamaguchi K, Kobayashi M. Repeatable adhesion by proton donor-acceptor interaction of polymer brushes. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Kozhunova EY, Gavrilov AA, Zaremski MY, Chertovich AV. Copolymerization on Selective Substrates: Experimental Test and Computer Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3548-3555. [PMID: 28326788 DOI: 10.1021/acs.langmuir.7b00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We explore the influence of a selective substrate on the composition and sequence statistics during the free radical copolymerization. In particular, we study the radical copolymerization of styrene and acrylic acid in bulk and in silica pores of different sizes. We show that the substrate affects both polymer composition and sequence statistics. We use dissipative particle dynamics simulations to study the polymerization process in detail, trying to pinpoint the parameters responsible for the observed differences in the polymer chain composition and sequences. The magnitude of the observed effect depends on the fraction of adsorbed monomer units, which cannot be described in the framework of the copolymerization theories based on the terminal unit model.
Collapse
Affiliation(s)
- Elena Yu Kozhunova
- Faculty of Physics, M.V. Lomonosov Moscow State University , Leninskiye Gory 1-2, Moscow, Russia 119991
| | - Alexey A Gavrilov
- Faculty of Physics, M.V. Lomonosov Moscow State University , Leninskiye Gory 1-2, Moscow, Russia 119991
| | - Mikhail Yu Zaremski
- Faculty of Chemistry, M.V. Lomonosov Moscow State University , Leninskiye Gory 1-3, Moscow, Russia 119991
| | - Alexander V Chertovich
- Faculty of Physics, M.V. Lomonosov Moscow State University , Leninskiye Gory 1-2, Moscow, Russia 119991
| |
Collapse
|
48
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Zhang ZJ, Moxey M, Alswieleh A, Armes SP, Lewis AL, Geoghegan M, Leggett GJ. Nanotribological Investigation of Polymer Brushes with Lithographically Defined and Systematically Varying Grafting Densities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:706-713. [PMID: 28042924 DOI: 10.1021/acs.langmuir.6b04022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Following controlled photodeprotection of a 2-nitrophenylpropyloxycarbonyl-protected (aminopropyl)triethoxysilane (NPPOC-APTES) film and subsequent derivatization with a bromoester-based initiator, poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC) brushes with various grafting densities were grown from planar silicon substrates using atom transfer radical polymerization (ATRP). The grafting density correlated closely with the extent of deprotection of the NPPOC-APTES. The coefficient of friction for such PMPC brushes was measured by friction force microscopy in water and found to be inversely proportional to the grafting density due to the osmotic pressure that resists deformation. Deprotection of NPPOC-APTES via near-field photolithography using a range of writing rates enabled the fabrication of neighboring nanoscopic polymeric structures with dimensions ranging from 100 to 1000 nm. Slow writing rates enable complete deprotection to occur; hence, polymer brushes are formed with comparable thicknesses to macroscopic brushes grown under the same conditions. However, the extent of deprotection is reduced at higher writing rates, resulting in the concomitant reduction of the brush thickness. The coefficient of friction for such polymer brushes varied smoothly with brush height, with lower coefficients being obtained at slower writing rate (increasing initiator density) because the solvated brush layer confers greater lubricity. However, when ultrasharp probes were used for nanotribological measurements, the coefficient of friction increased with brush thickness. Under such conditions, the radius of curvature of the tip is comparable to the mean spacing between brush chains, allowing the probe to penetrate the brush layer leading to a relatively large contact area.
Collapse
Affiliation(s)
- Zhenyu J Zhang
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| | - Mark Moxey
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| | - Abdullah Alswieleh
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| | - Steven P Armes
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| | - Andrew L Lewis
- Biocompatibles UK Ltd., Chapman House, Farnham Business Park, Weydon Lane, Farnham, Surrey GU9 8QL, U.K
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield , Sheffield S3 7RH, U.K
| | - Graham J Leggett
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
50
|
Chu CW, Higaki Y, Cheng CH, Cheng MH, Chang CW, Chen JT, Takahara A. Zwitterionic polymer brush grafting on anodic aluminum oxide membranes by surface-initiated atom transfer radical polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00045f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A feasible processing of zwitterionic polymer-grafted anodic aluminum oxide (AAO) membranes by surface-initiated atom transfer radical polymerization (SI-ATRP) and the geometric effect were investigated.
Collapse
Affiliation(s)
- Chien-Wei Chu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yuji Higaki
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
- Graduate School of Engineering
| | - Chao-Hung Cheng
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Ming-Hsiang Cheng
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Chun-Wei Chang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
- Graduate School of Engineering
| |
Collapse
|