1
|
Chen Y, Jiang C, Yin S, Zhuang J, Zhao Y, Zhang L, Jiang X, Liu Y, Gao L, Xia T. New insights into the function of plant tannase with promiscuous acyltransferase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:576-594. [PMID: 36534122 DOI: 10.1111/tpj.16069] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-β-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Changjuan Jiang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Shixin Yin
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Yue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Lingjie Zhang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| |
Collapse
|
2
|
The unusual convergence of steroid catabolic pathways in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2022; 119:e2207505119. [PMID: 36161908 DOI: 10.1073/pnas.2207505119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium abscessus, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of Mycobacterium tuberculosis and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, M. abscessus grew on both steroids. In contrast to M. tuberculosis, Rhodococcus jostii RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the M. abscessus complex lack genes encoding HsaD, the meta-cleavage product (MCP) hydrolase. However, M. abscessus ATCC 19977 harbors two hsaD homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaDMab and HsaDMtb of M. tuberculosis had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (kcat/KM = 1.9 × 104 and 5.7 × 103 mM-1s-1, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaDMab also transformed nonthioesterified substrates efficiently, and a ΔhsaD mutant of M. abscessus grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The ΔhsaD mutant of M. abscessus excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the ΔhsaD mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of M. abscessus are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.
Collapse
|
3
|
Gao H, Lu D, Xing M, Xu Q, Xue F. Excavation, expression, and functional analysis of a novel zearalenone-degrading enzyme. Folia Microbiol (Praha) 2022; 67:633-640. [DOI: 10.1007/s12223-022-00967-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/18/2022] [Indexed: 01/07/2023]
|
4
|
Jiang Z, Qu L, Song G, Liu J, Zhong G. The Potential Binding Interaction and Hydrolytic Mechanism of Carbaryl with the Novel Esterase PchA in Pseudomonas sp. PS21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2136-2145. [PMID: 35147028 DOI: 10.1021/acs.jafc.1c06465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial bioremediation is a very potent and eco-friendly approach to alleviate pesticide pollution in agricultural ecosystems, and hydrolase is an effective element for contaminant degradation. In the present study, a novel Mn2+-dependent esterase, PchA, that efficiently hydrolyzes carbamate pesticides with aromatic structures was identified from Pseudomonas sp. PS21. The hydrolytic activity was confirmed to be related closely to the core catalytic domain, which consists of six residues. The crucial residues indirectly stabilized the position of carbaryl via chelating Mn2+ according to the binding model clarified by molecular simulations, and the additional hydrophobic interactions between carbaryl with several hydrophobic residues also stabilized the binding conformation. The residue Glu398, by serving as the general base, might activate a water molecule and facilitate PchA catalysis. This work offers valuable insights into the binding interaction and hydrolytic mechanism of carbaryl with the hydrolase PchA and will be crucial to designing strategies leading to the protein variants that are capable of degrading related contaminants.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Liwen Qu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
5
|
Differential Roles of Three Different Upper Pathway meta Ring Cleavage Product Hydrolases in the Degradation of Dibenzo- p-Dioxin and Dibenzofuran by Sphingomonas wittichii Strain RW1. Appl Environ Microbiol 2021; 87:e0106721. [PMID: 34469199 DOI: 10.1128/aem.01067-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas wittichii RW1 grows on the two related compounds dibenzofuran (DBF) and dibenzo-p-dioxin (DXN) as the sole source of carbon. Previous work by others (P. V. Bunz, R. Falchetto, and A. M. Cook, Biodegradation 4:171-178, 1993, https://doi/org/10.1007/BF00695119) identified two upper pathway meta cleavage product hydrolases (DxnB1 and DxnB2) active on the DBF upper pathway metabolite 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate. We took a physiological approach to determine the role of these two enzymes in the degradation of DBF and DXN by RW1. Single knockouts of either plasmid-located dxnB1 or chromosome-located dxnB2 had no effect on RW1 growth on either DBF or DXN. However, a double-knockout strain lost the ability to grow on DBF but still grew normally on DXN, demonstrating that DxnB1 and DxnB2 are the only hydrolases involved in the DBF upper pathway. Using a transcriptomics-guided approach, we identified a constitutively expressed third hydrolase encoded by the chromosomally located SWIT0910 gene. Knockout of SWIT0910 resulted in a strain that no longer grows on DXN but still grows normally on DBF. Thus, the DxnB1 and DxnB2 hydrolases function in the DBF but not the DXN catabolic pathway, and the SWIT0190 hydrolase functions in the DXN but not the DBF catabolic pathway. IMPORTANCE S. wittichii RW1 is one of only a few strains known to grow on DXN as the sole source of carbon. Much of the work deciphering the related RW1 DXN and DBF catabolic pathways has involved genome gazing, transcriptomics, proteomics, heterologous expression, and enzyme purification and characterization. Very little research has utilized physiological techniques to precisely dissect the genes and enzymes involved in DBF and DXN degradation. Previous work by others identified and extensively characterized two RW1 upper pathway hydrolases. Our present work demonstrates that these two enzymes are involved in DBF but not DXN degradation. In addition, our work identified a third constitutively expressed hydrolase that is involved in DXN but not DBF degradation. Combined with our previous work (T. Y. Mutter and G. J. Zylstra, Appl Environ Microbiol 87:e02464-20, 2021, https://doi.org/10.1128/AEM.02464-20), this means that the RW1 DXN upper pathway involves genes from three very different locations in the genome, including an initial plasmid-encoded dioxygenase and a ring cleavage enzyme and hydrolase encoded on opposite sides of the chromosome.
Collapse
|
6
|
Zhou H, Li L, Zhan B, Wang S, Li J, Hu XJ. The Trp183 is essential in lactonohydrolase ZHD detoxifying zearalenone and zearalenols. Biochem Biophys Res Commun 2020; 522:986-989. [PMID: 31810602 DOI: 10.1016/j.bbrc.2019.11.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Lactonohydrolase ZHD can detoxify oestrogenic mycotoxin zearalenone and zearalenols through hydrolysis and decarboxylation. The detail mechanism, especially the role of Trp183, which interacts with substrate through p-π interaction and one hydrogen bond, is still unknown. The Trp183 mutants abolished activity to ZEN, α-ZOL and β-ZOL, except that W183F mutant retained about 40% activity against α-ZOL. In two W183F-reactant complex structures the reactants still bind at the active position and it suggested that this p-π interaction takes responsible for the reactants recognization and allocation. Further, the ZHD-productant complex structures showed that the resorcinol ring of hydrolysed α-ZOL and hydrolysed β-ZOL move a distance of one ring as compare to the resorcinol ring of reactant α-ZOL and β-ZOL. The same movement also found in comparison of hydrolysed ZEN and ZEN. In the structure of W183F complex with hydrolysed α-ZOL the resorcinol ring of hydrolysed α-ZOL doesn't move as compare to the resorcinol ring of reactant α-ZOL. It suggested the Trp183 coordinated hydrogen bond takes responsible for the movement of the hydrolysed product. These functional and structural results suggested that Trp183 is essential for ZHD detoxifying zearalenone and zearalenols.
Collapse
Affiliation(s)
- Hujian Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Long Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Bowen Zhan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Sen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| | - Xiao-Jian Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| |
Collapse
|
7
|
Wang J, Tang X, Zhang Y, Li Y, Zhu L, Zhang Q, Wang W. How to complete the tautomerization and substrate-assisted activation prior to C–C bond fission by meta-cleavage product hydrolase LigY? Catal Sci Technol 2020. [DOI: 10.1039/d0cy01102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two feasible binding modes could complete the C–C bond fission of the substrate. One is the bidentate mode and five-coordination, and the other is the monodentate mode and five-coordination.
Collapse
Affiliation(s)
- Junjie Wang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Yixin Zhang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Yanwei Li
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Ledong Zhu
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Qingzhu Zhang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Wenxing Wang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| |
Collapse
|
8
|
Jia Y, Wang J, Ren C, Nahurira R, Khokhar I, Wang J, Fan S, Yan Y. Identification and characterization of a meta-cleavage product hydrolase involved in biphenyl degradation from Arthrobacter sp. YC-RL1. Appl Microbiol Biotechnol 2019; 103:6825-6836. [PMID: 31240368 DOI: 10.1007/s00253-019-09956-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants (POPs) widely existing in the environment. Arthrobacter sp. YC-RL1 is a biphenyl-degrading bacterium that shows metabolic versatility towards aromatic compounds. A 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoate (HOPDA) hydrolase (BphD) gene involved in the biodegradation of biphenyl was cloned from strain YC-RL1 and heterologously expressed in Escherichia coli BL21 (DE3). The recombinant BphDYC-RL1 was purified and characterized. BphDYC-RL1 showed the highest activity at 45 °C and pH 7. It was stable under a wide range of temperature (20-50 °C). The enzyme had a Km value of 0.14 mM, Kcat of 11.61 s-1, and Vmax of 0.027 U/mg. Temperature dependence catalysis exhibited a biphasic Arrhenius Plot with a transition at 20 °C. BphDYC-RL1 was inactivated by SDS, Tween 20, Tween 80, Trition X-100, DTT, CHAPS, NBS, PMSF, and DEPC, but insensitive to EDTA. Site-directed mutagenesis of the active-site residues revealed that the catalytic triad residues (Ser115, His275, and Asp247) of BphDYC-RL1 were necessary for its activity. The investigation of BphDYC-RL1 not only provides new potential enzyme resource for the biodegradation of biphenyl but also helps deepen our understanding on the catalytic process and mechanism.
Collapse
Affiliation(s)
- Yang Jia
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junhuan Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ren
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruth Nahurira
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ibatsam Khokhar
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayi Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghu Fan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
“Bridge regions” regulate catalysis and protein stability of acylpeptide hydrolase. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Kuatsjah E, Chan ACK, Hurst TE, Snieckus V, Murphy MEP, Eltis LD. Metal- and Serine-Dependent Meta-Cleavage Product Hydrolases Utilize Similar Nucleophile-Activation Strategies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Timothy E. Hurst
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Victor Snieckus
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
11
|
Nerdinger S, Kuatsjah E, Hurst TE, Schlapp-Hackl I, Kahlenberg V, Wurst K, Eltis LD, Snieckus V. Bacterial Catabolism of Biphenyls: Synthesis and Evaluation of Analogues. Chembiochem 2018; 19:1771-1778. [PMID: 29905982 DOI: 10.1002/cbic.201800231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/31/2022]
Abstract
A series of alkylated 2,3-dihydroxybiphenyls has been prepared on the gram scale by using an effective Directed ortho Metalation-Suzuki-Miyaura cross-coupling strategy. These compounds have been used to investigate the substrate specificity of the meta-cleavage dioxygenase BphC, a key enzyme in the microbial catabolism of biphenyl. Isolation and characterization of the meta-cleavage products will allow further study of related processes, including the catabolism of lignin-derived biphenyls.
Collapse
Affiliation(s)
- Sven Nerdinger
- Global Commercial Operations, Sandoz GmbH, Biochemiestrasse 10, 6250, Kundl, Austria
| | - Eugene Kuatsjah
- Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy E Hurst
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada
| | - Inge Schlapp-Hackl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - Klaus Wurst
- Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Lindsay D Eltis
- Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Snieckus
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
12
|
Kuatsjah E, Chan ACK, Kobylarz MJ, Murphy MEP, Eltis LD. The bacterial meta-cleavage hydrolase LigY belongs to the amidohydrolase superfamily, not to the α/β-hydrolase superfamily. J Biol Chem 2017; 292:18290-18302. [PMID: 28935670 DOI: 10.1074/jbc.m117.797696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/15/2017] [Indexed: 01/27/2023] Open
Abstract
Strain SYK-6 of the bacterium Sphingobium sp. catabolizes lignin-derived biphenyl via a meta-cleavage pathway. In this pathway, LigY is proposed to catalyze the hydrolysis of the meta-cleavage product (MCP) 4,11-dicarboxy-8-hydroxy-9-methoxy-2-hydroxy-6-oxo-6-phenyl-hexa-2,4-dienoate. Here, we validated this reaction by identifying 5-carboxyvanillate and 4-carboxy-2-hydroxypenta-2,4-dienoate as the products and determined the kcat and kcat/Km values as 9.3 ± 0.6 s-1 and 2.5 ± 0.2 × 107 m-1 s-1, respectively. Sequence analyses and a 1.9 Å resolution crystal structure established that LigY belongs to the amidohydrolase superfamily, unlike previously characterized MCP hydrolases, which are serine-dependent enzymes of the α/β-hydrolase superfamily. The active-site architecture of LigY resembled that of α-amino-β-carboxymuconic-ϵ-semialdehyde decarboxylase, a class III amidohydrolase, with a single zinc ion coordinated by His-6, His-8, His-179, and Glu-282. Interestingly, we found that LigY lacks the acidic residue proposed to activate water for hydrolysis in other class III amidohydrolases. Moreover, substitution of His-223, a conserved residue proposed to activate water in other amidohydrolases, reduced the kcat to a much lesser extent than what has been reported for other amidohydrolases, suggesting that His-223 has a different role in LigY. Substitution of Arg-72, Tyr-190, Arg-234, or Glu-282 reduced LigY activity over 100-fold. On the basis of these results, we propose a catalytic mechanism involving substrate tautomerization, substrate-assisted activation of water for hydrolysis, and formation of a gem-diol intermediate. This last step diverges from what occurs in serine-dependent MCP hydrolases. This study provides insight into C-C-hydrolyzing enzymes and expands the known range of reactions catalyzed by the amidohydrolase superfamily.
Collapse
Affiliation(s)
| | - Anson C K Chan
- the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marek J Kobylarz
- the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E P Murphy
- the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lindsay D Eltis
- From the Genome Science and Technology Program and .,the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
13
|
A water-assisted nucleophilic mechanism utilized by BphD, the meta-cleavage product hydrolase in biphenyl degradation. J Mol Graph Model 2017; 76:448-455. [DOI: 10.1016/j.jmgm.2017.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 11/22/2022]
|
14
|
Qi Q, Yang WJ, Zhou HJ, Ming DM, Sun KL, Xu TY, Hu XJ, Lv H. The structure of a complex of the lactonohydrolase zearalenone hydrolase with the hydrolysis product of zearalenone at 1.60 Å resolution. Acta Crystallogr F Struct Biol Commun 2017; 73:376-381. [PMID: 28695844 PMCID: PMC5505240 DOI: 10.1107/s2053230x17007713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/24/2017] [Indexed: 11/24/2022] Open
Abstract
Zearalenone hydrolase (ZHD) is an α/β-hydrolase that detoxifies and degrades the lactone zearalenone (ZEN), a naturally occurring oestrogenic mycotoxin that contaminates crops. Several apoenzyme and enzyme-substrate complex structures have been reported in the resolution range 2.4-2.6 Å. However, the properties and mechanism of this enzyme are not yet fully understood. Here, a 1.60 Å resolution structure of a ZHD-product complex is reported which was determined from a C-terminally His6-tagged ZHD crystal soaked with 2 mM ZEN for 30 min. It shows that after the lactone-bond cleavage, the phenol-ring region moves closer to residues Leu132, Tyr187 and Pro188, while the lactone-ring region barely moves. Comparisons of the ZHD-substrate and ZHD-product structures show that the hydrophilic interactions change, especially Trp183 Nℇ1, which shifts from contacting O2 to O12', suggesting that Trp183 is responsible for the unidirectional translational movement of the phenol ring. This structure provides information on the final stage of the catalytic mechanism of zearalenone hydrolysis.
Collapse
Affiliation(s)
- Qi Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
| | - Wen-Jing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
| | - Hu-Jian Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
| | - Deng-Ming Ming
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
| | - Kai-Lei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
| | - Tian-Yu Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, People’s Republic of China
| | - Xiao-Jian Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, People’s Republic of China
| | - Hong Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
15
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
16
|
Rauwerdink A, Kazlauskas RJ. How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β-Hydrolase Fold Enzymes. ACS Catal 2015; 5:6153-6176. [PMID: 28580193 DOI: 10.1021/acscatal.5b01539] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes within a family often catalyze different reactions. In some cases, this variety stems from different catalytic machinery, but in other cases the machinery is identical; nevertheless, the enzymes catalyze different reactions. In this review, we examine the subset of α/β-hydrolase fold enzymes that contain the serine-histidine-aspartate catalytic triad. In spite of having the same protein fold and the same core catalytic machinery, these enzymes catalyze seventeen different reaction mechanisms. The most common reactions are hydrolysis of C-O, C-N and C-C bonds (Enzyme Classification (EC) group 3), but other enzymes are oxidoreductases (EC group 1), acyl transferases (EC group 2), lyases (EC group 4) or isomerases (EC group 5). Hydrolysis reactions often follow the canonical esterase mechanism, but eight variations occur where either the formation or cleavage of the acyl enzyme intermediate differs. The remaining eight mechanisms are lyase-type elimination reactions, which do not have an acyl enzyme intermediate and, in four cases, do not even require the catalytic serine. This diversity of mechanisms from the same catalytic triad stems from the ability of the enzymes to bind different substrates, from the requirements for different chemical steps imposed by these new substrates and, only in about half of the cases, from additional hydrogen bond partners or additional general acids/bases in the active site. This detailed analysis shows that binding differences and non-catalytic residues create new mechanisms and are essential for understanding and designing efficient enzymes.
Collapse
Affiliation(s)
- Alissa Rauwerdink
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
17
|
Li Y, Zhang R, Du L, Zhang Q, Wang W. Insight into the catalytic mechanism of meta-cleavage product hydrolase BphD: a quantum mechanics/molecular mechanics study. RSC Adv 2015. [DOI: 10.1039/c5ra09939k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The catalytic mechanism of BphD (the fourth enzyme of the biphenyl catabolic pathway) toward its natural substrate 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) was investigated in atomistic detail by QM/MM approach.
Collapse
Affiliation(s)
- Yanwei Li
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Ruiming Zhang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Likai Du
- Key Laboratory of Bio-based Materials
- Qingdao Institute of Bio-energy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| | - Qingzhu Zhang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Wenxing Wang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
18
|
Lebedev AS, Orlov VY. Analysis of functionalized arenes degradation pathways in model water-organic media. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814040073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Sun Y, Yin S, Feng Y, Li J, Zhou J, Liu C, Zhu G, Guo Z. Molecular basis of the general base catalysis of an α/β-hydrolase catalytic triad. J Biol Chem 2014; 289:15867-79. [PMID: 24737327 DOI: 10.1074/jbc.m113.535641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-histidine-aspartate triad is well known for its covalent, nucleophilic catalysis in a diverse array of enzymatic transformations. Here we show that its nucleophilicity is shielded and its catalytic role is limited to being a specific general base by an open-closed conformational change in the catalysis of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (or MenH), a typical α/β-hydrolase fold enzyme in the vitamin K biosynthetic pathway. This enzyme is found to adopt an open conformation without a functional triad in its ligand-free form and a closed conformation with a fully functional catalytic triad in the presence of its reaction product. The open-to-closed conformational transition involves movement of half of the α-helical cap domain, which causes extensive structural changes in the α/β-domain and forces the side chain of the triad histidine to adopt an energetically disfavored gauche conformation to form the functional triad. NMR analysis shows that the inactive open conformation without a triad prevails in ligand-free solution and is converted to the closed conformation with a properly formed triad by the reaction product. Mutation of the residues crucial to this open-closed transition either greatly decreases or completely eliminates the enzyme activity, supporting an important catalytic role for the structural change. These findings suggest that the open-closed conformational change tightly couples formation of the catalytic triad to substrate binding to enhance the substrate specificities and simultaneously shield the nucleophilicity of the triad, thus allowing it to expand its catalytic power beyond the nucleophilic catalysis.
Collapse
Affiliation(s)
- Yueru Sun
- From the Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and
| | - Shuhui Yin
- From the Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and
| | - Yitao Feng
- From the Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and
| | - Jie Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Changdong Liu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and Division of Life Sciences, and
| | - Guang Zhu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and Division of Life Sciences, and
| | - Zhihong Guo
- From the Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and
| |
Collapse
|
20
|
Zhao Y, Chen N, Wu R, Cao Z. A QM/MM MD study of the pH-dependent ring-opening catalysis and lid motif flexibility in glucosamine 6-phosphate deaminase. Phys Chem Chem Phys 2014; 16:18406-17. [DOI: 10.1039/c4cp01609b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM MD and MM MD simulations reveal pH-dependent proton-shuttle ring-opening mechanisms of GlcN6P and dynamical behavior of the lid motif inSmuNagB.
Collapse
Affiliation(s)
- Yuan Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, P. R. China
| | - Nanhao Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, P. R. China
| |
Collapse
|
21
|
Mutational Analysis of the C–C Bond Cleaving Enzyme Phloretin Hydrolase from Eubacterium ramulus. Top Catal 2013. [DOI: 10.1007/s11244-013-0196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Ryan A, Keany S, Eleftheriadou O, Ballet R, Cheng HY, Sim E. Mechanism-based inhibition of HsaD: a C-C bond hydrolase essential for survival of Mycobacterium tuberculosis in macrophage. FEMS Microbiol Lett 2013; 350:42-7. [PMID: 24164668 DOI: 10.1111/1574-6968.12302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium tuberculosis remains the leading cause of death by a bacterial pathogen worldwide. Increasing prevalence of multidrug-resistant organisms means prioritizing identification of targets for antituberculars. 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (HsaD), part of the cholesterol metabolism operon, is vital for survival within macrophage. The C-C bond hydrolase, HsaD, has a serine protease-like catalytic triad. We tested a range of serine protease and esterase inhibitors for their effects on HsaD activity. As well as providing a potential starting point for drug development, the data provides evidence for the mechanism of C-C bond hydrolysis. This screen also provides a route to initiate development of fragment-based inhibitors.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science Engineering and Computing, Kingston University, Kingston, UK; Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
23
|
Single residues dictate the co-evolution of dual esterases: MCP hydrolases from the α/β hydrolase family. Biochem J 2013; 454:157-66. [PMID: 23750508 DOI: 10.1042/bj20130552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several members of the C-C MCP (meta-cleavage product) hydrolase family demonstrate an unusual ability to hydrolyse esters as well as the MCPs (including those from mono- and bi-cyclic aromatics). Although the molecular mechanisms responsible for such substrate promiscuity are starting to emerge, the full understanding of these complex enzymes is far from complete. In the present paper, we describe six distinct α/β hydrolases identified through genomic approaches, four of which demonstrate the unprecedented characteristic of activity towards a broad spectrum of substrates, including p-nitrophenyl, halogenated, fatty acyl, aryl, glycerol, cinnamoyl and carbohydrate esters, lactones, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate and 2-hydroxy-6-oxohepta-2,4-dienoate. Using structural analysis and site-directed mutagenesis we have identified the three residues (Ser32, Val130 and Trp144) that determine the unusual substrate specificity of one of these proteins, CCSP0084. The results may open up new research avenues into comparative catalytic models, structural and mechanistic studies, and biotechnological applications of MCP hydrolases.
Collapse
|
24
|
Ruzzini AC, Bhowmik S, Ghosh S, Yam KC, Bolin JT, Eltis LD. A substrate-assisted mechanism of nucleophile activation in a Ser-His-Asp containing C-C bond hydrolase. Biochemistry 2013; 52:7428-38. [PMID: 24067021 DOI: 10.1021/bi401156a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The meta-cleavage product (MCP) hydrolases utilize a Ser-His-Asp triad to hydrolyze a carbon-carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ES(red), which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ES(red) decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2 (βnuc ∼ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His-Asp pair does not play an essential role. The data further suggest that ES(red) represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.
Collapse
Affiliation(s)
- Antonio C Ruzzini
- Departments of †Biochemistry & Molecular Biology and ‡Microbiology & Immunology, The University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Zhou H, Qu Y, Kong C, Shen E, Wang J, Zhang X, Ma Q, Zhou J. The key role of a non-active-site residue Met148 on the catalytic efficiency of meta-cleavage product hydrolase BphD. Appl Microbiol Biotechnol 2013; 97:10399-411. [PMID: 23494625 DOI: 10.1007/s00253-013-4814-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
meta-Cleavage product (MCP) hydrolases (EC 3.7.1.9) can catalyze a specific C-C bond fission during the microbial aerobic degradation of aromatics. The previous studies on structure-function relationship of MCP hydrolases mainly focus on the active site residues by site-directed mutagenesis. However, the information about the role of the non-active-site residues is still unclear. In this study, a non-active-site residue Met148 of MCP hydrolase BphD was selected as the mutagenesis site according to the sequence alignments, structure superimpose and the tunnel analysis, which underwent the saturation mutagenesis resulting 19 mutants. The catalytic efficiencies of the mutants on 6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) were all decreased compared with the wild-type one except for the M148D mutant. Especially, the M148P mutant exhibited 290-fold lower k cat/K m than that of the wild-type BphD. Transient kinetic analyses of M148P showed the reciprocal relaxation time corresponded to C-C bond cleavage and product release steps (9.6 s(-1)) was 4.08-fold lower than BphD WT (39.2 s(-1)). Tunnel cluster analysis of BphD WT, M148P and M148W demonstrated that only the bulky Trp148 could block tunnel T2 in the BphD WT, but it exhibited slight effects on the catalytic efficiency (0.94-fold of BphD WT). Therefore, product release was not the main reason for the efficiency decrease of M148P. On the other hand, molecular dynamics simulations on the BphD WT and BphD M148P in complex with HOPDA indicated that the dramatic decrease of the catalytic efficiencies of BphD M148P should be due to the unproductive binding of HOPDA. The study demonstrated the catalytic efficiency of MCP hydrolase can be engineered by modification of non-active site residue.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Newman AG, Vagstad AL, Belecki K, Scheerer JR, Townsend CA. Analysis of the cercosporin polyketide synthase CTB1 reveals a new fungal thioesterase function. Chem Commun (Camb) 2012; 48:11772-4. [PMID: 23108075 DOI: 10.1039/c2cc36010a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The polyketide synthase CTB1 is demonstrated to catalyze pyrone formation thereby expanding the known biosynthetic repertoire of thioesterase domains in iterative, non-reducing polyketide synthases.
Collapse
Affiliation(s)
- Adam G Newman
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
28
|
Sylvestre M. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls. Environ Microbiol 2012; 15:907-15. [PMID: 23106850 DOI: 10.1111/1462-2920.12007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 01/17/2023]
Abstract
The fate of polychlorinated biphenyls (PCBs) in soil is driven by a combination of interacting biological processes. Several investigations have brought evidence that the rhizosphere provides a remarkable ecological niche to enhance the PCB degradation process by rhizobacteria. The bacterial oxidative enzymes involved in PCB degradation have been investigated extensively and novel engineered enzymes exhibiting enhanced catalytic activities toward more persistent PCBs have been described. Furthermore, recent studies suggest that approaches involving processes based on plant-microbe associations are very promising to remediate PCB-contaminated sites. In this review emphasis will be placed on the current state of knowledge regarding the strategies that are proposed to engineer the enzymes of the PCB-degrading bacterial oxidative pathway and to design PCB-degrading plant-microbe systems to remediate PCB-contaminated soil.
Collapse
Affiliation(s)
- Michel Sylvestre
- Institut National de la Recherche Scientifique, INRS-Instittut Armand-Frappier, Laval, Quebec, Canada, H7V1B7.
| |
Collapse
|
29
|
Ruzzini AC, Horsman GP, Eltis LD. The Catalytic Serine of meta-Cleavage Product Hydrolases Is Activated Differently for C–O Bond Cleavage Than for C–C Bond Cleavage. Biochemistry 2012; 51:5831-40. [DOI: 10.1021/bi300663r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio C. Ruzzini
- Department of Biochemistry
and Molecular Biology and
Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver,
British Columbia V6T 1Z3, Canada
| | - Geoff P. Horsman
- Department of Biochemistry
and Molecular Biology and
Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver,
British Columbia V6T 1Z3, Canada
| | - Lindsay D. Eltis
- Department of Biochemistry
and Molecular Biology and
Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver,
British Columbia V6T 1Z3, Canada
| |
Collapse
|