1
|
He W, Kirmizialtin S. Mechanism of Cationic Lipid Induced DNA Condensation: Lipid-DNA Coordination and Divalent Cation Charge Fluctuations. Biomacromolecules 2024; 25:4819-4830. [PMID: 39011747 PMCID: PMC11323003 DOI: 10.1021/acs.biomac.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
The condensation of nucleic acids by lipids is a widespread phenomenon in biology with crucial implications for drug delivery. However, the mechanisms of DNA assembly in lipid bilayers remain insufficiently understood due to challenges in measuring and assessing each component's contribution in the lipid-DNA-cation system. This study uses all-atom molecular dynamics simulations to investigate DNA condensation in cationic lipid bilayers. Our exhaustive exploration of the thermodynamic factors reveals unique roles for phospholipid head groups and cations. We observed that bridging cations between lipid and DNA drastically reduce charges, while mobile magnesium cations "ping-ponging" between double strands create charge fluctuations. While the first factor stabilizes the DNA-lipid complex, the latter creates attractive forces to induce the spontaneous condensation of DNAs. This novel mechanism not only sheds light on the current data regarding cationic lipid-induced DNA condensation but also provides potential design strategies for creating efficient gene delivery vectors for drug delivery.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Serdal Kirmizialtin
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Skeens A, Markle JM, Petipas G, Frey SL, Legleiter J. Divalent cations promote huntingtin fibril formation on endoplasmic reticulum derived and model membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184339. [PMID: 38763270 DOI: 10.1016/j.bbamem.2024.184339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Huntington's Disease (HD) is caused by an abnormal expansion of the polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). This expansion promotes disease-related htt aggregation into amyloid fibrils and the formation of proteinaceous inclusion bodies within neurons. Fibril formation is a complex heterogenous process involving an array of aggregate species such as oligomers, protofibrils, and fibrils. In HD, structural abnormalities of membranes of several organelles develop. In particular, the accumulation of htt fibrils near the endoplasmic reticulum (ER) impinges upon the membrane, resulting in ER damage, altered dynamics, and leakage of Ca2+. Here, the aggregation of htt at a bilayer interface assembled from ER-derived liposomes was investigated, and fibril formation directly on these membranes was enhanced. Based on these observations, simplified model systems were used to investigate mechanisms associated with htt aggregation on ER membranes. As the ER-derived liposome fractions contained residual Ca2+, the role of divalent cations was also investigated. In the absence of lipids, divalent cations had minimal impact on htt structure and aggregation. However, the presence of Ca2+ or Mg2+ played a key role in promoting fibril formation on lipid membranes despite reduced htt insertion into and association with lipid interfaces, suggesting that the ability of divalent cations to promote fibril formation on membranes is mediated by induced changes to the lipid membrane physicochemical properties. With enhanced concentrations of intracellular calcium being a hallmark of HD, the ability of divalent cations to influence htt aggregation at lipid membranes may play a role in aggregation events that lead to organelle abnormalities associated with disease.
Collapse
Affiliation(s)
- Adam Skeens
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, USA
| | - Jordyn M Markle
- The Department of Chemistry, Gettysburg College, 300 N. Washington Street, Gettysburg, PA 17325, USA
| | - Gabriella Petipas
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, USA
| | - Shelli L Frey
- The Department of Chemistry, Gettysburg College, 300 N. Washington Street, Gettysburg, PA 17325, USA.
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, USA; Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, USA; Department of Neuroscience, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, USA.
| |
Collapse
|
3
|
Parikh A, Krogman W, Walker J. The impact of volatile anesthetics and propofol on phosphatidylinositol 4,5-bisphosphate signaling. Arch Biochem Biophys 2024; 757:110045. [PMID: 38801966 DOI: 10.1016/j.abb.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2), as well as other anionic phospholipids, play a pivotal role in various cellular processes, including ion channel regulation, receptor trafficking, and intracellular signaling pathways. The binding of volatile anesthetics and propofol to PIP2 leads to alterations in PIP2-mediated signaling causing modulation of ion channels such as ɣ-aminobutyric acid type A (GABAA) receptors, voltage-gated calcium channels, and potassium channels through various mechanisms. Additionally, the interaction between anionic phospholipids and G protein-coupled receptors plays a critical role in various anesthetic pathways, with these anesthetic-induced changes impacting PIP2 levels which cause cascading effects on receptor trafficking, including GABAA receptor internalization. This comprehensive review of various mechanisms of interaction provides insights into the intricate interplay between PIP2 signaling and anesthetic-induced changes, shedding light on the molecular mechanisms underlying anesthesia.
Collapse
Affiliation(s)
- Ayaan Parikh
- Wichita Collegiate School, Wichita, KS. 9115 E 13th St N, Wichita, KS, 67206, USA.
| | - William Krogman
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA; Department of Anesthesiology, 929 N St Francis, Room 8079, Wichita, KS, 67214, USA
| | - James Walker
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA; Department of Anesthesiology, 929 N St Francis, Room 8079, Wichita, KS, 67214, USA
| |
Collapse
|
4
|
Weakly HMJ, Keller SL. Coupling liquid phases in 3D condensates and 2D membranes: Successes, challenges, and tools. Biophys J 2024; 123:1329-1341. [PMID: 38160256 PMCID: PMC11163299 DOI: 10.1016/j.bpj.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
This review describes the major experimental challenges researchers meet when attempting to couple phase separation between membranes and condensates. Although it is well known that phase separation in a 2D membrane could affect molecules capable of forming a 3D condensate (and vice versa), few researchers have quantified the effects to date. The scarcity of these measurements is not due to a lack of intense interest or effort in the field. Rather, it reflects significant experimental challenges in manipulating coupled membranes and condensates to yield quantitative values. These challenges transcend many molecular details, which means they impact a wide range of systems. This review highlights recent exciting successes in the field, and it lays out a comprehensive list of tools that address potential pitfalls for researchers who are considering coupling membranes with condensates.
Collapse
Affiliation(s)
- Heidi M J Weakly
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington
| | - Sarah L Keller
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington.
| |
Collapse
|
5
|
Lolicato F, Nickel W, Haucke V, Ebner M. Phosphoinositide switches in cell physiology - From molecular mechanisms to disease. J Biol Chem 2024; 300:105757. [PMID: 38364889 PMCID: PMC10944118 DOI: 10.1016/j.jbc.2024.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
6
|
Chaudhury A, Debnath K, Jana NR, Basu JK. Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding. NANOSCALE 2024; 16:856-867. [PMID: 38099655 DOI: 10.1039/d3nr05378d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cellular membranes are constantly bombarded with biomolecules and nanoscale particles, and cell functionality depends on the fraction of the bound/internalized entities. Understanding the biophysical parameters underlying this complex process is very difficult in live cells. Model membranes provide an ideal platform to obtain insight into the minimal and essential parameters involved in determining cell membrane-nanoparticle (NP) interaction. Here we report spontaneous binding and unbinding of semiconductor NPs, carrying different net charges and interacting with model biomembranes, using in situ neutron reflectivity (NR) and fluorescence microscopy studies. We observe a critical concentration of NPs above which they spontaneously unbind along with lipids from lipid monolayer membranes, leaving behind fewer bound NPs. This critical concentration varies depending on whether the NPs carry a net charge or are neutral, and is also governed by the extent of NP crowding for a fixed NP charge. The observations suggest a subtle interplay between electrostatics, membrane fluidity, and NP crowding effects, which eventually determines the adsorbed concentration for unbinding transition. Our study provides valuable microscopic insight into the parameters that could determine the biophysical process underlying NP uptake and ejection by cells which, in turn, can be utilized for their potential applications in bioimaging and drug delivery.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Pereira D, Santamaria A, Pawar N, Carrascosa-Tejedor J, Sardo M, Mafra L, Guzmán E, Owen DJ, Zaccai NR, Maestro A, Marín-Montesinos I. Engineering phosphatidylinositol-4,5-bisphosphate model membranes enriched in endocytic cargo: A neutron reflectometry, AFM and QCM-D structural study. Colloids Surf B Biointerfaces 2023; 227:113341. [PMID: 37210796 DOI: 10.1016/j.colsurfb.2023.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The combination of in vitro models of biological membranes based on solid-supported lipid bilayers (SLBs) and of surface sensitive techniques, such as neutron reflectometry (NR), atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D), is well suited to provide quantitative information about molecular level interactions and lipid spatial distributions. In this work, cellular plasma membranes have been mimicked by designing complex SLB, containing phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) lipids as well as incorporating synthetic lipo-peptides that simulate the cytoplasmic tails of transmembrane proteins. The QCM-D results revealed that the adsorption and fusion kinetics of PtdIns4,5P2 are highly dependent of Mg2+. Additionally, it was shown that increasing concentrations of PtdIns4,5P2 leads to the formation of SLBs with higher homogeneity. The presence of PtdIns4,5P2 clusters was visualized by AFM. NR provided important insights about the structural organization of the various components within the SLB, highlighting that the leaflet symmetry of these SLBs is broken by the presence of CD4-derived cargo peptides. Finally, we foresee our study to be a starting point for more sophisticated in vitro models of biological membranes with the incorporation of inositol phospholipids and synthetic endocytic motifs.
Collapse
Affiliation(s)
- Daniel Pereira
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal; Large Scale Structures Group, Institut Laue-Langevin, 38042 Cedex 9, Grenoble, France
| | - Andreas Santamaria
- Large Scale Structures Group, Institut Laue-Langevin, 38042 Cedex 9, Grenoble, France; Departamento de Química Física, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Nisha Pawar
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Javier Carrascosa-Tejedor
- Large Scale Structures Group, Institut Laue-Langevin, 38042 Cedex 9, Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, M13 9PT Manchester, UK
| | - Mariana Sardo
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, 28040, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, CB22 7QQ Cambridge, UK
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, CB22 7QQ Cambridge, UK
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| | | |
Collapse
|
8
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Santamaria A, Carrascosa-Tejedor J, Guzmán E, Zaccai NR, Maestro A. Unravelling the orientation of the inositol-biphosphate ring and its dependence on phosphatidylinositol 4,5-bisphosphate cluster formation in model membranes. J Colloid Interface Sci 2023; 629:785-795. [PMID: 36195018 DOI: 10.1016/j.jcis.2022.09.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
HYPOTHESIS Inositol phospholipids are well known to form clusters in the cytoplasmic leaflet of the plasma membrane that are responsible for the interaction and recruitment of proteins involved in key biological processes like endocytosis, ion channel activation and secondary messenger production. Although their phosphorylated inositol ring headgroup plays an important role in protein binding, its orientation with respect to the plane of the membrane and its lateral packing density has not been previously described experimentally. EXPERIMENTS Here, we study phosphatidylinositol 4,5-bisphosphate (PIP2) planar model membranes in the form of Langmuir monolayers by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry to elucidate the relation between lateral (in-plane) and perpendicular (out-of-plane) molecular organization of PIP2. FINDINGS Different surface areas were explored through monolayer compression, allowing us to correlate the formation of transient PIP2 clusters with the change in orientation of the inositol-biphosphate headgroup, which was experimentally determined by neutron reflectometry.
Collapse
Affiliation(s)
- Andreas Santamaria
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Carrascosa-Tejedor
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom.
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
10
|
Somberg NH, Wu WW, Medeiros-Silva J, Dregni AJ, Jo H, DeGrado WF, Hong M. SARS-CoV-2 Envelope Protein Forms Clustered Pentamers in Lipid Bilayers. Biochemistry 2022; 61:2280-2294. [PMID: 36219675 PMCID: PMC9583936 DOI: 10.1021/acs.biochem.2c00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Indexed: 11/30/2022]
Abstract
The SARS-CoV-2 envelope (E) protein is a viroporin associated with the acute respiratory symptoms of COVID-19. E forms cation-selective ion channels that assemble in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment. The channel activity of E is linked to the inflammatory response of the host cell to the virus. Like many viroporins, E is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the E stoichiometry have led to inconclusive results and suggested mixtures of oligomers whose exact nature might vary with the detergent used. Here, we employ 19F solid-state nuclear magnetic resonance and the centerband-only detection of exchange (CODEX) technique to determine the oligomeric number of E's transmembrane domain (ETM) in lipid bilayers. The CODEX equilibrium value, which corresponds to the inverse of the oligomeric number, indicates that ETM assembles into pentamers in lipid bilayers, without any detectable fraction of low-molecular-weight oligomers. Unexpectedly, at high peptide concentrations and in the presence of the lipid phosphatidylinositol, the CODEX data indicate that more than five 19F spins are within a detectable distance of about 2 nm, suggesting that the ETM pentamers cluster in the lipid bilayer. Monte Carlo simulations that take into account peptide-peptide and peptide-lipid interactions yielded pentamer clusters that reproduced the CODEX data. This supramolecular organization is likely important for E-mediated virus assembly and budding and for the channel function of the protein.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Westley W Wu
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Blvd. South, San Francisco, California94158, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Blvd. South, San Francisco, California94158, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| |
Collapse
|
11
|
Borges-Araújo L, Monteiro ME, Mil-Homens D, Bernardes N, Sarmento MJ, Coutinho A, Prieto M, Fernandes F. Impact of Ca 2+-Induced PI(4,5)P 2 Clusters on PH-YFP Organization and Protein-Protein Interactions. Biomolecules 2022; 12:912. [PMID: 35883468 PMCID: PMC9312469 DOI: 10.3390/biom12070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Despite its low abundance, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a key modulator of membrane-associated signaling events in eukaryotic cells. Temporal and spatial regulation of PI(4,5)P2 concentration can achieve localized increases in the levels of this lipid, which are crucial for the activation or recruitment of peripheral proteins to the plasma membrane. The recent observation of the dramatic impact of physiological divalent cation concentrations on PI(4,5)P2 clustering, suggests that protein anchoring to the plasma membrane through PI(4,5)P2 is likely not defined solely by a simple (monomeric PI(4,5)P2)/(protein bound PI(4,5)P2) equilibrium, but instead depends on complex protein interactions with PI(4,5)P2 clusters. The insertion of PI(4,5)P2-binding proteins within these clusters can putatively modulate protein-protein interactions in the membrane, but the relevance of such effects is largely unknown. In this work, we characterized the impact of Ca2+ on the organization and protein-protein interactions of PI(4,5)P2-binding proteins. We show that, in giant unilamellar vesicles presenting PI(4,5)P2, the membrane diffusion properties of pleckstrin homology (PH) domains tagged with a yellow fluorescent protein (YFP) are affected by the presence of Ca2+, suggesting direct interactions between the protein and PI(4,5)P2 clusters. Importantly, PH-YFP is found to dimerize in the membrane in the absence of Ca2+. This oligomerization is inhibited in the presence of physiological concentrations of the divalent cation. These results confirm that cation-dependent PI(4,5)P2 clustering promotes interactions between PI(4,5)P2-binding proteins and has the potential to dramatically influence the organization and downstream interactions of PI(4,5)P2-binding proteins in the plasma membrane.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Marina E. Monteiro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.E.M.); (M.J.S.)
| | - Dalila Mil-Homens
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Nuno Bernardes
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Maria J. Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.E.M.); (M.J.S.)
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Avenida Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana Coutinho
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Manuel Prieto
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Fábio Fernandes
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
12
|
Li X, Zhou S, Lin X. Molecular View on the Impact of DHA Molecules on the Physical Properties of a Model Cell Membrane. J Chem Inf Model 2022; 62:2421-2431. [PMID: 35513897 DOI: 10.1021/acs.jcim.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Docosahexaenoic acid (DHA) is a ω-3 polyunsaturated fatty acid, which can be uptaken by cells and is essential for proper neuronal and retinal function. However, the detailed physical impact of DHA molecules on the plasma membrane is still unclear. Hence, in this work, we carried out μs-scale coarse-grained molecular dynamics (MD) simulations to reveal the interactions between DHA molecules and a model cell membrane. As is known, the cell membrane can segregate into liquid-ordered (Lo) and liquid-disordered (Ld) membrane domains due to the differential interactions between lipids and proteins. In order to capture this feature, we adopted the three-component phase-separated lipid membranes and considered both anionic and neutral DHA molecules in the current work. Our results showed that DHA molecules can spontaneously self-assemble into nanoclusters, fuse with lipid membranes, and localize preferably in Ld membrane domains. During the membrane fusion process, DHA molecules can change the intrinsic transmembrane potential of the lipid membrane, and the effects of anionic DHA molecules are much more significant. Besides, the presence of DHA molecules mainly in the Ld membrane domains could regulate the differences in the lipid chain order, membrane thickness, cholesterol preference, and cholesterol flip-flop basically in a concentration-dependent manner, which further promote the stability of the intraleaflet dynamics and inhibit the interleaflet dynamics (or promote membrane domain registration) of the membrane domains. In short, the impact of DHA molecules on the physical properties of a model cell membrane on the molecular level revealed in our work will provide useful insights for understanding the biological functions of DHA molecules.
Collapse
Affiliation(s)
- Xiu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shiying Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
13
|
The Electrostatic Basis of Diacylglycerol Pyrophosphate—Protein Interaction. Cells 2022; 11:cells11020290. [PMID: 35053406 PMCID: PMC8774204 DOI: 10.3390/cells11020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
Diacylglycerol pyrophosphate (DGPP) is an anionic phospholipid formed in plants, yeast, and parasites under multiple stress stimuli. It is synthesized by the phosphorylation action of phosphatidic acid (PA) kinase on phosphatidic acid, a signaling lipid with multifunctional properties. PA functions in the membrane through the interaction of its negatively charged phosphomonoester headgroup with positively charged proteins and ions. DGPP, like PA, can interact electrostatically via the electrostatic-hydrogen bond switch mechanism but differs from PA in its overall charge and shape. The formation of DGPP from PA alters the physicochemical properties as well as the structural dynamics of the membrane. This potentially impacts the molecular and ionic binding of cationic proteins and ions with the DGPP enriched membrane. However, the results of these important interactions in the stress response and in DGPP’s overall intracellular function is unknown. Here, using 31P MAS NMR, we analyze the effect of the interaction of low DGPP concentrations in model membranes with the peptides KALP23 and WALP23, which are flanked by positively charged Lysine and neutral Tryptophan residues, respectively. Our results show a significant effect of KALP23 on the charge of DGPP as compared to WALP23. There was, however, no significant effect on the charge of the phosphomonoester of DGPP due to the interaction with positively charged lipids, dioleoyl trimethylammonium propane (DOTAP) and dioleoyl ethyl-phosphatidylcholine (EtPC). Divalent calcium and magnesium cations induce deprotonation of the DGPP headgroup but showed no noticeable differences on DGPP’s charge. Our results lead to a novel model for DGPP—protein interaction.
Collapse
|
14
|
Activity of TREK-2-like Channels in the Pyramidal Neurons of Rat Medial Prefrontal Cortex Depends on Cytoplasmic Calcium. BIOLOGY 2021; 10:biology10111119. [PMID: 34827112 PMCID: PMC8614805 DOI: 10.3390/biology10111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The pyramidal neurons of rat prefrontal cortex express potassium channels identified as a non-canonical splice variant of the TREK-2 channel. The main function of TREK channels is to regulate the resting membrane potential. We showed that cytoplasmic Ca2+ upregulates the activity of TREK-2-like channels. Previous studies have indicated that the activation of TREK-2 channels is mediated by PI(4,5)P2, a polyanionic lipid in the inner leaflet of the plasma membrane. While TREK channels are believed to not be regulated by calcium, our work shows otherwise. We propose a model in which calcium ions enable the formation of PI(4,5)P2 nanoclusters, which stabilize active conformation of the channel. Abstract TREK-2-like channels in the pyramidal neurons of rat prefrontal cortex are characterized by a wide range of spontaneous activity—from very low to very high—independent of the membrane potential and the stimuli that are known to activate TREK-2 channels, such as temperature or membrane stretching. The aim of this study was to discover what factors are involved in high levels of TREK-2-like channel activity in these cells. Our research focused on the PI(4,5)P2-dependent mechanism of channel activity. Single-channel patch clamp recordings were performed on freshly dissociated pyramidal neurons of rat prefrontal cortexes in both the cell-attached and inside-out configurations. To evaluate the role of endogenous stimulants, the activity of the channels was recorded in the presence of a PI(4,5)P2 analogue (PI(4,5)P2DiC8) and Ca2+. Our research revealed that calcium ions are an important factor affecting TREK-2-like channel activity and kinetics. The observation that calcium participates in the activation of TREK-2-like channels is a new finding. We showed that PI(4,5)P2-dependent TREK-2 activity occurs when the conditions for PI(4,5)P2/Ca2+ nanocluster formation are met. We present a possible model explaining the mechanism of calcium action.
Collapse
|
15
|
Sarmento MJ, Borges-Araújo L, Pinto SN, Bernardes N, Ricardo JC, Coutinho A, Prieto M, Fernandes F. Quantitative FRET Microscopy Reveals a Crucial Role of Cytoskeleton in Promoting PI(4,5)P 2 Confinement. Int J Mol Sci 2021; 22:11727. [PMID: 34769158 PMCID: PMC8583820 DOI: 10.3390/ijms222111727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/30/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential plasma membrane component involved in several cellular functions, including membrane trafficking and cytoskeleton organization. This function multiplicity is partially achieved through a dynamic spatiotemporal organization of PI(4,5)P2 within the membrane. Here, we use a Förster resonance energy transfer (FRET) approach to quantitatively assess the extent of PI(4,5)P2 confinement within the plasma membrane. This methodology relies on the rigorous evaluation of the dependence of absolute FRET efficiencies between pleckstrin homology domains (PHPLCδ) fused with fluorescent proteins and their average fluorescence intensity at the membrane. PI(4,5)P2 is found to be significantly compartmentalized at the plasma membrane of HeLa cells, and these clusters are not cholesterol-dependent, suggesting that membrane rafts are not involved in the formation of these nanodomains. On the other hand, upon inhibition of actin polymerization, compartmentalization of PI(4,5)P2 is almost entirely eliminated, showing that the cytoskeleton network is the critical component responsible for the formation of nanoscale PI(4,5)P2 domains in HeLa cells.
Collapse
Affiliation(s)
- Maria J. Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Luís Borges-Araújo
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Sandra N. Pinto
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno Bernardes
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joana C. Ricardo
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
| | - Ana Coutinho
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Manuel Prieto
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Fábio Fernandes
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
16
|
Abstract
The evolution of lipids in nanoscience exemplifies the powerful coupling of advances in science and technology. Here, we describe two waves of discovery and innovation in lipid materials: one historical and one still building. The first wave leveraged the relatively simple capability for lipids to orient at interfaces, building layers of functional groups. This simple form of building with atoms yielded a stunning range of technologies: lubricant additives that dramatically extended machine lifetimes, molecules that enabled selective ore extraction in mining, and soaps that improved human health. It also set the stage for many areas of modern nanoscience. The second wave of lipid materials, still growing, uses the more complex toolkits lipids offer for building with atoms, including controlling atomic environment to control function (e.g., pKa tuning) and the generation of more arbitrary two-dimensional and three-dimensional structures, including lipid nanoparticles for COVID-19 mRNA vaccines.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Shimizu Y, Sato K, Kinbara K. Calcium-induced reversible assembly of phosphorylated amphiphile within lipid bilayer membranes. Chem Commun (Camb) 2021; 57:4106-4109. [PMID: 33908497 DOI: 10.1039/d1cc01111a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inspired by calcium-induced reversible assembly and disassembly of membrane proteins found in nature, here we developed a phosphorylated amphiphile (PA) that contains an oligo(phenylene-ethynylene) unit as a hydrophobic unit and a phosphate ester group as a hydrophilic calcium-binding unit. We demonstrated that PA can assemble and disassemble in a reversible manner in response to the sequential addition of calcium chloride and ethylene-diaminetetraacetic acid within the lipid bilayer membranes for the first time as a synthetic molecule.
Collapse
Affiliation(s)
- Yusuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan. and World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
18
|
Yu Y, Krämer A, Venable RM, Simmonett AC, MacKerell AD, Klauda JB, Pastor RW, Brooks BR. Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. J Chem Theory Comput 2021; 17:1562-1580. [PMID: 33620214 PMCID: PMC8059446 DOI: 10.1021/acs.jctc.0c01326] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of the CHARMM lipid force field (FF) can be traced back to the early 1990s with its current version denoted CHARMM36 (C36). The parametrization of C36 utilized high-level quantum mechanical data and free energy calculations of model compounds before parameters were manually adjusted to yield agreement with experimental properties of lipid bilayers. While such manual fine-tuning of FF parameters is based on intuition and trial-and-error, automated methods can identify beneficial modifications of the parameters via their sensitivities and thereby guide the optimization process. This work introduces a semi-automated approach to reparametrize the CHARMM lipid FF with consistent inclusion of long-range dispersion through the Lennard-Jones particle-mesh Ewald (LJ-PME) approach. The optimization method is based on thermodynamic reweighting with regularization with respect to the C36 set. Two independent optimizations with different topology restrictions are presented. Targets of the optimizations are primarily liquid crystalline phase properties of lipid bilayers and the compression isotherm of monolayers. Pair correlation functions between water and lipid functional groups in aqueous solution are also included to address headgroup hydration. While the physics of the reweighting strategy itself is well-understood, applying it to heterogeneous, complex anisotropic systems poses additional challenges. These were overcome through careful selection of target properties and reweighting settings allowing for the successful incorporation of the explicit treatment of long-range dispersion, and we denote the newly optimized lipid force field as C36/LJ-PME. The current implementation of the optimization protocol will facilitate the future development of the CHARMM and related lipid force fields.
Collapse
Affiliation(s)
- Yalun Yu
- Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Andreas Krämer
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Andrew C Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jeffery B Klauda
- Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
19
|
Wen Y, Vogt VM, Feigenson GW. PI(4,5)P 2 Clustering and Its Impact on Biological Functions. Annu Rev Biochem 2021; 90:681-707. [PMID: 33441034 DOI: 10.1146/annurev-biochem-070920-094827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Located at the inner leaflet of the plasma membrane (PM), phosphatidyl-inositol 4,5-bisphosphate [PI(4,5)P2] composes only 1-2 mol% of total PM lipids. With its synthesis and turnover both spatially and temporally regulated, PI(4,5)P2 recruits and interacts with hundreds of cellular proteins to support a broad spectrum of cellular functions. Several factors contribute to the versatile and dynamic distribution of PI(4,5)P2 in membranes. Physiological multivalent cations such as Ca2+ and Mg2+ can bridge between PI(4,5)P2 headgroups, forming nanoscopic PI(4,5)P2-cation clusters. The distinct lipid environment surrounding PI(4,5)P2 affects the degree of PI(4,5)P2 clustering. In addition, diverse cellular proteins interacting with PI(4,5)P2 can further regulate PI(4,5)P2 lateral distribution and accessibility. This review summarizes the current understanding of PI(4,5)P2 behavior in both cells and model membranes, with emphasis on both multivalent cation- and protein-induced PI(4,5)P2 clustering. Understanding the nature of spatially separated pools of PI(4,5)P2 is fundamental to cell biology.
Collapse
Affiliation(s)
- Yi Wen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| | - Volker M Vogt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| |
Collapse
|
20
|
Daear W, Mundle R, Sule K, Prenner EJ. The degree and position of phosphorylation determine the impact of toxic and trace metals on phosphoinositide containing model membranes. BBA ADVANCES 2021; 1:100021. [PMID: 37082006 PMCID: PMC10074965 DOI: 10.1016/j.bbadva.2021.100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This work assessed effects of metal binding on membrane fluidity, liposome size, and lateral organization in biomimetic membranes composed of 1 mol% of selected phosphorylated phosphoinositides in each system. Representative examples of phosphoinositide phosphate, bisphosphate and triphosphate were investigated. These include phosphatidylinositol-(4,5)-bisphosphate, an important signaling lipid constituting a minor component in plasma membranes whereas phosphatidylinositol-(4,5)-bisphosphate clusters support the propagation of secondary messengers in numerous signaling pathways. The high negative charge of phosphoinositides facilitates electrostatic interactions with metals. Lipids are increasingly identified as toxicological targets for divalent metals, which potentially alter lipid packing and domain formation. Exposure to heavy metals, such as lead and cadmium or elevated levels of essential metals, like cobalt, nickel, and manganese, implicated with various toxic effects were investigated. Phosphatidylinositol-(4)-phosphate and phosphatidylinositol-(3,4,5)-triphosphate containing membranes are rigidified by lead, cobalt, and manganese whilst cadmium and nickel enhanced fluidity of membranes containing phosphatidylinositol-(4,5)-bisphosphate. Only cobalt induced liposome aggregation. All metals enhanced lipid clustering in phosphatidylinositol-(3,4,5)-triphosphate systems, cobalt in phosphatidylinositol-(4,5)-bisphosphate systems, while all metals showed limited changes in lateral film organization in phosphatidylinositol-(4)-phosphate matrices. These observed changes are relevant from the biophysical perspective as interference with the spatiotemporal formation of intricate domains composed of important signaling lipids may contribute to metal toxicity.
Collapse
|
21
|
Li TN, Chen YJ, Lu TY, Wang YT, Lin HC, Yao CK. A positive feedback loop between Flower and PI(4,5)P 2 at periactive zones controls bulk endocytosis in Drosophila. eLife 2020; 9:60125. [PMID: 33300871 PMCID: PMC7748424 DOI: 10.7554/elife.60125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic vesicle (SV) endocytosis is coupled to exocytosis to maintain SV pool size and thus neurotransmitter release. Intense stimulation induces activity-dependent bulk endocytosis (ADBE) to recapture large quantities of SV constituents in large endosomes from which SVs reform. How these consecutive processes are spatiotemporally coordinated remains unknown. Here, we show that Flower Ca2+ channel-dependent phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) compartmentalization governs control of these processes in Drosophila. Strong stimuli trigger PI(4,5)P2 microdomain formation at periactive zones. Upon exocytosis, Flower translocates from SVs to periactive zones, where it increases PI(4,5)P2 levels via Ca2+ influxes. Remarkably, PI(4,5)P2 directly enhances Flower channel activity, thereby establishing a positive feedback loop for PI(4,5)P2 microdomain compartmentalization. PI(4,5)P2 microdomains drive ADBE and SV reformation from bulk endosomes. PI(4,5)P2 further retrieves Flower to bulk endosomes, terminating endocytosis. We propose that the interplay between Flower and PI(4,5)P2 is the crucial spatiotemporal cue that couples exocytosis to ADBE and subsequent SV reformation.
Collapse
Affiliation(s)
- Tsai-Ning Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ting-Yi Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - You-Tung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsin-Chieh Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Review of PIP2 in Cellular Signaling, Functions and Diseases. Int J Mol Sci 2020; 21:ijms21218342. [PMID: 33172190 PMCID: PMC7664428 DOI: 10.3390/ijms21218342] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Phosphoinositides play a crucial role in regulating many cellular functions, such as actin dynamics, signaling, intracellular trafficking, membrane dynamics, and cell-matrix adhesion. Central to this process is phosphatidylinositol bisphosphate (PIP2). The levels of PIP2 in the membrane are rapidly altered by the activity of phosphoinositide-directed kinases and phosphatases, and it binds to dozens of different intracellular proteins. Despite the vast literature dedicated to understanding the regulation of PIP2 in cells over past 30 years, much remains to be learned about its cellular functions. In this review, we focus on past and recent exciting results on different molecular mechanisms that regulate cellular functions by binding of specific proteins to PIP2 or by stabilizing phosphoinositide pools in different cellular compartments. Moreover, this review summarizes recent findings that implicate dysregulation of PIP2 in many diseases.
Collapse
|
23
|
Modulation and dynamics of cell membrane heterogeneities. Chem Phys Lipids 2020; 233:105006. [PMID: 33144069 DOI: 10.1016/j.chemphyslip.2020.105006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Numerous studies provide evidence that the lipid bilayer of the plasma membrane contains lateral nanodomains, and that these are functionally important regulators of transmembrane cell signaling. Depending on their chemical composition and the biophysical mechanism bringing the lipids together, multiple types of nanodomains exist in the inner and the outer leaflet of the plasma membrane bilayer. In intact cells, these domains are smaller than the optical resolution limit of light microscopy and also highly dynamic. Recently, advanced fluorescence methods have provided data to characterize many biophysical and thermodynamic aspects of these nanodomains. In this review, we summarize the physicochemical determinants of nanodomain formation, stability and extent. Then, we detail how these nanodomains play a structural role by anchoring nucleation sites for the membrane cytoskeleton on the lipid bilayer. Further, we review the existing literature on mechanisms that modulate the nanodomain size and stability, both acute and chronic events. We conclude that regulation of the nanodomains distribution in the lipid bilayer of the plasma membrane is important for modulation of transmembrane signaling. However, only very few modulators of nanodomain stability and size have been quantified in cells, suggesting interesting directions for future studies.
Collapse
|
24
|
Sahoo A, Matysiak S. Microscopic Picture of Calcium-Assisted Lipid Demixing and Membrane Remodeling Using Multiscale Simulations. J Phys Chem B 2020; 124:7327-7335. [PMID: 32786720 DOI: 10.1021/acs.jpcb.0c03067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The specificity of anionic phospholipids-calcium ion interaction and lipid demixing has been established as a key regulatory mechanism in several cellular signaling processes. The mechanism and implications of this calcium-assisted demixing have not been elucidated from a microscopic point of view. Here, we present an overview of atomic interactions between calcium and phospholipids that can drive nonideal mixing of lipid molecules in a model lipid bilayer composed of zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) and anionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) lipids with computer simulations at multiple resolutions. Lipid nanodomain formation and growth were driven by calcium-enabled lipid bridging of the charged phosphatidylserine (PS) headgroups, which were favored against inter-POPS dipole interactions. Consistent with several experimental studies of calcium-associated membrane sculpting, our analyses also suggest modifications in local membrane curvature and cross-leaflet couplings as a response to such induced lateral heterogeneity. In addition, reverse mapping to a complementary atomistic description revealed structural insights in the presence of anionic nanodomains, at timescales not accessed by previous computational studies. This work bridges information across multiple scales to reveal a mechanistic picture of calcium ion's impact on membrane biophysics.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Borges-Araújo L, Fernandes F. Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate. Molecules 2020; 25:molecules25173885. [PMID: 32858905 PMCID: PMC7503891 DOI: 10.3390/molecules25173885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Correspondence:
| | - Fabio Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
26
|
Sun S, Liu C, Rodriguez Melendez D, Yang T, Cremer PS. Immobilization of Phosphatidylinositides Revealed by Bilayer Leaflet Decoupling. J Am Chem Soc 2020; 142:13003-13010. [DOI: 10.1021/jacs.0c03800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Simou Sun
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Chang Liu
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Danixa Rodriguez Melendez
- Department of Chemistry, University of Puerto Rico at Cayey, Cayey, Puerto Rico 00737, United States
| | - Tinglu Yang
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Paul S. Cremer
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
27
|
Fatunmbi O, Bradley RP, Kandy SK, Bucki R, Janmey PA, Radhakrishnan R. A multiscale biophysical model for the recruitment of actin nucleating proteins at the membrane interface. SOFT MATTER 2020; 16:4941-4954. [PMID: 32436537 PMCID: PMC7373224 DOI: 10.1039/d0sm00267d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics and organization of the actin cytoskeleton are crucial to many cellular events such as motility, polarization, cell shaping, and cell division. The intracellular and extracellular signaling associated with this cytoskeletal network is communicated through cell membranes. Hence the organization of membrane macromolecules and actin filament assembly are highly interdependent. Although the actin-membrane linkage is known to happen through many routes, the major class of interactions is through the direct interaction of actin-binding proteins with the lipid class containing poly-phosphatidylinositols (PPIs). Among the PPIs, phosphatidylinositol bisphosphate (PI(4,5)P2) acts as a significant factor controlling actin polymerization in the proximity of the membrane by binding to actin-associated proteins. The molecular interactions between these actin-binding proteins and the membrane lipids remain elusive. Here, using molecular modeling, analytical theory, and experimental methods, we investigate the binding of three different actin-binding proteins, mDia2, NWASP, and gelsolin, to membranes containing PI(4,5)P2 lipids. We perform molecular dynamics simulations on the protein-bilayer system and analyze the membrane binding in the form of hydrogen bonds and salt bridges at various PI(4,5)P2 and cholesterol concentrations. Our experimental study with PI(4,5)P2-containing large unilamellar vesicles mimics the computational experiments. Using the multivalencies of the proteins obtained in molecular simulations and the cooperative binding mechanisms of the proteins, we also propose a multivalent binding model that predicts the actin filament distributions at various PI(4,5)P2 and protein concentrations.
Collapse
Affiliation(s)
- Ololade Fatunmbi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Bradley RP, Slochower DR, Janmey PA, Radhakrishnan R. Divalent cations bind to phosphoinositides to induce ion and isomer specific propensities for nano-cluster initiation in bilayer membranes. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192208. [PMID: 32537210 PMCID: PMC7277276 DOI: 10.1098/rsos.192208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 05/22/2023]
Abstract
We report all-atom molecular dynamics simulations of asymmetric bilayers containing phosphoinositides in the presence of monovalent and divalent cations. We have characterized the molecular mechanism by which these divalent cations interact with phosphoinositides. Ca2+ desolvates more readily, consistent with single-molecule calculations, and forms a network of ionic-like bonds that serve as a 'molecular glue' that allows a single ion to coordinate with up to three phosphatidylinositol-(4,5)-bisphosphate (PI(4, 5)P2) lipids. The phosphatidylinositol-(3,5)-bisphosphate isomer shows no such effect and neither does PI(4, 5)P2 in the presence of Mg2+. The resulting network of Ca2+-mediated lipid-lipid bonds grows to span the entire simulation space and therefore has implications for the lateral distribution of phosophoinositides in the bilayer. We observe context-specific differences in lipid diffusion rates, lipid surface densities and bilayer structure. The molecular-scale delineation of ion-lipid arrangements reported here provides insight into similar nanocluster formation induced by peripheral proteins to regulate the formation of functional signalling complexes on the membrane.
Collapse
Affiliation(s)
- Ryan P. Bradley
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R. Slochower
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A. Janmey
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Author for correspondence: Ravi Radhakrishnan e-mail:
| |
Collapse
|
29
|
Han K, Gericke A, Pastor RW. Characterization of Specific Ion Effects on PI(4,5)P 2 Clustering: Molecular Dynamics Simulations and Graph-Theoretic Analysis. J Phys Chem B 2020; 124:1183-1196. [PMID: 31994887 PMCID: PMC7461730 DOI: 10.1021/acs.jpcb.9b10951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Numerous cellular functions mediated by phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2; PIP2) involve clustering of the lipid as well as colocalization with other lipids. Although the cation-mediated electrostatic interaction is regarded as the primary clustering mechanism, the ion-specific nature of the intermolecular network formation makes it challenging to characterize the clusters. Here we use all-atom molecular dynamics (MD) simulations of PIP2 monolayers and graph-theoretic analysis to gain insight into the phenomenon. MD simulations reveal that the intermolecular interactions preferentially occur between specific cations and phosphate groups (P1, P4, and P5) of the inositol headgroup with better-matched kosmotropic/chaotropic characters consistent with the law of matching water affinities (LMWA). Ca2+ is strongly attracted to P4/P5, while K+ preferentially binds to P1; Na+ interacts with both P4/P5 and P1. These specific interactions lead to the characteristic clustering patterns. Specificially, the size distributions and structures of PIP2 clusters generated by kosmotropic cations Ca2+ and Na+ are bimodal, with a combination of small and large clusters, while there is little clustering in the presence of only chaotropic K+; the largest clusters are obtained in systems with all three cations. The small-world network (a model with both local and long-range connections) best characterizes the clusters, followed by the random and the scale-free networks. More generally, the present results interpreted within the LMWA are consistent with the relative eukaryotic intracellular concentrations Ca2+ ≪ Na+ < Mg2+ < K+; that is, concentrations of Ca2+ and Na+ must be low to prevent damaging aggregation of lipids, DNA, RNA and phosphate-containing proteins.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
30
|
Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations. Commun Chem 2020; 3:17. [PMID: 36703372 PMCID: PMC9814626 DOI: 10.1038/s42004-020-0263-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
Cell membranes are composed of a hydrated lipid bilayer that is molecularly complex and diverse, and the link between molecular hydration structure and membrane macroscopic properties is not well understood, due to a lack of technology that can probe and relate molecular level hydration information to micro- and macroscopic properties. Here, we demonstrate a direct link between lipid hydration structure and macroscopic dynamic curvature fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we observe the formation of transient domains of ordered water at the interface of freestanding lipid membranes. These domains are induced by the binding of divalent ions and their structure is ion specific. Using nonlinear optical theory, we convert the spatiotemporal SH intensity into maps of membrane potential, surface charge density, and binding free energy. Using an electromechanical theory of membrane bending, we show that transient electric field gradients across the membrane induce spatiotemporal membrane curvature fluctuations.
Collapse
|
31
|
Peppino Margutti M, Wilke N, Villasuso AL. Influence of Ca 2+ on the surface behavior of phosphatidic acid and its mixture with diacylglycerol pyrophosphate at different pHs. Chem Phys Lipids 2020; 228:104887. [PMID: 32027867 DOI: 10.1016/j.chemphyslip.2020.104887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 01/13/2023]
Abstract
The signaling lipids phosphatidic acid (PA) and diacylglycerol pyrophosphate (DGPP) are involved in regulating the stress response in plants. PA and DGPP are anionic lipids consisting of a negatively charged phosphomonoester or pyrophosphate group attached to diacylglycerol, respectively. Changes in the pH modulate the protonation of their head groups modifying the interaction with other effectors. Here, we examine in a controlled system how the presence of Ca2+ modulates the surface organization of dioleyl diacylglycerol pyrophosphate (DGPP) and its interaction with dioleoyl phosphatidic acid (DOPA) at different pHs. Both lipids formed expanded monolayers at pH 5 and 8. At acid and basic pHs, monolayers formed by DOPA or DGPP became denser when Ca2+ was added to the subphase. At pH 5, Ca2+ also induced an increase of surface potential of both lipids. Conversely, at pH 8 the effects induced by the presence of Ca2+ on the surface potential were reversed. Mixed monolayers of DOPA and DGPP showed a non-ideal behavior. The addition of even tiny amounts of DGPP to DOPA films caused a reduction of the mean molecular area. This effect was more evident at pH 8 compared to pH 5. Our finding suggests that low amounts of DGPP in an film enriched in DOPA could lead to a local increase in film packing with a concomitant change in the local polarization, further regulated by local pH. This fact may have implications for the assigned role of PA as a pH-sensing phospholipid or during its interaction with proteins.
Collapse
Affiliation(s)
- Micaela Peppino Margutti
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Ana Laura Villasuso
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnologia Ambiental y Salud, (INBIAS), Río Cuarto, Argentina.
| |
Collapse
|
32
|
Petersen EN, Pavel MA, Wang H, Hansen SB. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183091. [PMID: 31672538 PMCID: PMC6907892 DOI: 10.1016/j.bbamem.2019.183091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
TWIK related K+ channel (TREK-1) is a mechano- and anesthetic sensitive channel that when activated attenuates pain and causes anesthesia. Recently the enzyme phospholipase D2 (PLD2) was shown to bind to the channel and generate a local high concentration of phosphatidic acid (PA), an anionic signaling lipid that gates TREK-1. In a biological membrane, the cell harnesses lipid heterogeneity (lipid compartments) to control gating of TREK-1 using palmitate-mediated localization of PLD2. Here we discuss the ability of mechanical force and anesthetics to disrupt palmitate-mediated localization of PLD2 giving rise to TREK-1's mechano- and anesthetic-sensitive properties. The likely consequences of this indirect lipid-based mechanism of activation are discussed in terms of a putative model for excitatory and inhibitory mechano-effectors and anesthetic sensitive ion channels in a biological context. Lastly, we discuss the ability of locally generated PA to reach mM concentrations near TREK-1 and the biophysics of localized signaling. Palmitate-mediated localization of PLD2 emerges as a central control mechanism of TREK-1 responding to mechanical force and anesthetic action. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
33
|
Hudson BN, Jessup RE, Prahalad KK, Lyon AM. Gα q and the Phospholipase Cβ3 X-Y Linker Regulate Adsorption and Activity on Compressed Lipid Monolayers. Biochemistry 2019; 58:3454-3467. [PMID: 31322863 DOI: 10.1021/acs.biochem.9b00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phospholipase Cβ (PLCβ) enzymes are peripheral membrane proteins required for normal cardiovascular function. PLCβ hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers that increase intracellular Ca2+ level and activate protein kinase C. Under basal conditions, PLCβ is autoinhibited by its C-terminal domains and by the X-Y linker, which contains a stretch of conserved acidic residues required for interfacial activation. Following stimulation of G protein-coupled receptors, the heterotrimeric G protein subunit Gαq allosterically activates PLCβ and helps orient the activated complex at the membrane for efficient lipid hydrolysis. However, the molecular basis for how the PLCβ X-Y linker, its C-terminal domains, Gαq, and the membrane coordinately regulate activity is not well understood. Using compressed lipid monolayers and atomic force microscopy, we found that a highly conserved acidic region of the X-Y linker is sufficient to regulate adsorption. Regulation of adsorption and activity by the X-Y linker also occurs independently of the C-terminal domains. We next investigated whether Gαq-dependent activation of PLCβ altered interactions with the model membrane. Gαq increased PLCβ adsorption in a manner that was independent of the PLCβ regulatory elements and targeted adsorption to specific regions of the monolayer in the absence of the C-terminal domains. Thus, the mechanism of Gαq-dependent activation likely includes a spatial component.
Collapse
|
34
|
Graber ZT, Thomas J, Johnson E, Gericke A, Kooijman EE. Effect of H-Bond Donor Lipids on Phosphatidylinositol-3,4,5-Trisphosphate Ionization and Clustering. Biophys J 2019; 114:126-136. [PMID: 29320679 DOI: 10.1016/j.bpj.2017.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
The phosphoinositide, phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), is a key signaling lipid in the inner leaflet of the cell plasma membrane, regulating diverse signaling pathways including cell growth and migration. In this study we investigate the impact of the hydrogen-bond donor lipids phosphatidylethanolamine (PE) and phosphatidylinositol (PI) on the charge and phase behavior of PI(3,4,5)P3. PE and PI can interact with PI(3,4,5)P3 through hydrogen-bond formation, leading to altered ionization behavior and charge distribution within the PI(3,4,5)P3 headgroup. We quantify the altered PI(3,4,5)P3 ionization behavior using a multistate ionization model to obtain micro-pKa values for the ionization of each phosphate group. The presence of PE leads to a decrease in the pKa values for the initial deprotonation of PI(3,4,5)P3, which describes the removal of the first proton of the three protons remaining at the phosphomonoester groups at pH 4.0. The decrease in these micro-pKa values thus leads to a higher charge at low pH. Additionally, the charge distribution changes lead to increased charge on the 3- and 5-phosphates. In the presence of PI, the final deprotonation of PI(3,4,5)P3 is delayed, leading to a lower charge at high pH. This is due to a combination of hydrogen-bond formation between PI and PI(3,4,5)P3, and increased surface charge due to the addition of the negatively charged PI. The interaction between PI and PI(3,4,5)P3 leads to the formation of PI and PI(3,4,5)P3-enriched domains within the membrane. These domains may have a critical impact on PI(3,4,5)P3-signaling. We also reevaluate results for all phosphatidylinositol bisphosphates as well as for PI(4,5)P2 in complex lipid mixtures with the multistate ionization model.
Collapse
Affiliation(s)
| | - Joseph Thomas
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Emily Johnson
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts.
| | - Edgar E Kooijman
- Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
35
|
Multivalent Cation-Bridged PI(4,5)P 2 Clusters Form at Very Low Concentrations. Biophys J 2019; 114:2630-2639. [PMID: 29874613 DOI: 10.1016/j.bpj.2018.04.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2), is a key component of the inner leaflet of the plasma membrane in eukaryotic cells. In model membranes, PIP2 has been reported to form clusters, but whether these locally different conditions could give rise to distinct pools of unclustered and clustered PIP2 is unclear. By use of both fluorescence self-quenching and Förster resonance energy transfer assays, we have discovered that PIP2 self-associates at remarkably low concentrations starting below 0.05 mol% of total lipids. Formation of these clusters was dependent on physiological divalent metal ions, such as Ca2+, Mg2+, Zn2+, or trivalent ions Fe3+ and Al3+. Formation of PIP2 clusters was also headgroup-specific, being largely independent of the type of acyl chain. The similarly labeled phospholipids phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol exhibited no such clustering. However, six phosphoinositide species coclustered with PIP2. The degree of PIP2 cation clustering was significantly influenced by the composition of the surrounding lipids, with cholesterol and phosphatidylinositol enhancing this behavior. We propose that PIP2 cation-bridged cluster formation, which might be similar to micelle formation, can be used as a physical model for what could be distinct pools of PIP2 in biological membranes. To our knowledge, this study provides the first evidence of PIP2 forming clusters at such low concentrations. The property of PIP2 to form such clusters at such extremely low concentrations in model membranes reveals, to our knowledge, a new behavior of PIP2 proposed to occur in cells, in which local multivalent metal ions, lipid compositions, and various binding proteins could greatly influence PIP2 properties. In turn, these different pools of PIP2 could further regulate cellular events.
Collapse
|
36
|
Cao S, Chung S, Kim S, Li Z, Manor D, Buck M. K-Ras G-domain binding with signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2): membrane association, protein orientation, and function. J Biol Chem 2019; 294:7068-7084. [PMID: 30792310 DOI: 10.1074/jbc.ra118.004021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Ras genes potently drive human cancers, with mutated proto-oncogene GTPase KRAS4B (K-Ras4B) being the most abundant isoform. Targeted inhibition of oncogenic gene products is considered the "holy grail" of present-day cancer therapy, and recent discoveries of small-molecule KRas4B inhibitors were made thanks to a deeper understanding of the structure and dynamics of this GTPase. Because interactions with biological membranes are key for Ras function, Ras-lipid interactions have become a major focus, especially because such interactions evidently involve both the Ras C terminus for lipid anchoring and its G-protein domain. Here, using NMR spectroscopy and molecular dynamics simulations complemented by biophysical- and cell-biology assays, we investigated the interaction between K-Ras4B with the signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2). We discovered that the β2 and β3 strands as well as helices 4 and 5 of the GTPase G-domain bind to PIP2 and identified the specific residues in these structural elements employed in these interactions, likely occurring in two K-Ras4B orientation states relative to the membrane. Importantly, we found that some of these residues known to be oncogenic when mutated (D47K, D92N, K104M, and D126N) are critical for K-Ras-mediated transformation of fibroblast cells, but do not substantially affect basal and assisted nucleotide hydrolysis and exchange. Moreover, the K104M substitution abolished localization of K-Ras to the plasma membrane. The findings suggest that specific G-domain residues can critically regulate Ras function by mediating interactions with membrane-associated PIP2 lipids; these insights that may inform the future design of therapeutic reagents targeting Ras activity.
Collapse
Affiliation(s)
- Shufen Cao
- From the Departments of Physiology and Biophysics
| | | | | | - Zhenlu Li
- From the Departments of Physiology and Biophysics
| | - Danny Manor
- Nutrition, .,Pharmacology, and.,the Case Comprehensive Cancer Center and
| | - Matthias Buck
- From the Departments of Physiology and Biophysics, .,the Case Comprehensive Cancer Center and.,Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106 and.,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
37
|
Bucki R, Wang YH, Yang C, Kandy SK, Fatunmbi O, Bradley R, Pogoda K, Svitkina T, Radhakrishnan R, Janmey PA. Lateral distribution of phosphatidylinositol 4,5-bisphosphate in membranes regulates formin- and ARP2/3-mediated actin nucleation. J Biol Chem 2019; 294:4704-4722. [PMID: 30692198 DOI: 10.1074/jbc.ra118.005552] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/13/2019] [Indexed: 11/06/2022] Open
Abstract
Spatial and temporal control of actin polymerization is fundamental for many cellular processes, including cell migration, division, vesicle trafficking, and response to agonists. Many actin-regulatory proteins interact with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and are either activated or inactivated by local PI(4,5)P2 concentrations that form transiently at the cytoplasmic face of cell membranes. The molecular mechanisms of these interactions and how the dozens of PI(4,5)P2-sensitive actin-binding proteins are selectively recruited to membrane PI(4,5)P2 pools remains undefined. Using a combination of biochemical, imaging, and cell biologic studies, combined with molecular dynamics and analytical theory, we test the hypothesis that the lateral distribution of PI(4,5)P2 within lipid membranes and native plasma membranes alters the capacity of PI(4,5)P2 to nucleate actin assembly in brain and neutrophil extracts and show that activities of formins and the Arp2/3 complex respond to PI(4,5)P2 lateral distribution. Simulations and analytical theory show that cholesterol promotes the cooperative interaction of formins with multiple PI(4,5)P2 headgroups in the membrane to initiate actin nucleation. Masking PI(4,5)P2 with neomycin or disrupting PI(4,5)P2 domains in the plasma membrane by removing cholesterol decreases the ability of these membranes to nucleate actin assembly in cytoplasmic extracts.
Collapse
Affiliation(s)
- Robert Bucki
- From the Departments of Physiology, .,the Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, 15-089 Białystok, Poland
| | - Yu-Hsiu Wang
- Chemistry.,the Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Sreeja Kutti Kandy
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ololade Fatunmbi
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ryan Bradley
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Katarzyna Pogoda
- From the Departments of Physiology.,the Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland, and
| | | | - Ravi Radhakrishnan
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul A Janmey
- From the Departments of Physiology.,the Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
38
|
Hallock MJ, Greenwood AI, Wang Y, Morrissey JH, Tajkhorshid E, Rienstra CM, Pogorelov TV. Calcium-Induced Lipid Nanocluster Structures: Sculpturing of the Plasma Membrane. Biochemistry 2018; 57:6897-6905. [PMID: 30456950 DOI: 10.1021/acs.biochem.8b01069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plasma membrane of the cell is a complex, tightly regulated, heterogeneous environment shaped by proteins, lipids, and small molecules. Ca2+ ions are important cellular messengers, spatially separated from anionic lipids. After cell injury, disease, or apoptotic events, anionic lipids are externalized to the outer leaflet of the plasma membrane and encounter Ca2+, resulting in dramatic changes in the plasma membrane structure and initiation of signaling cascades. Despite the high chemical and biological significance, the structures of lipid-Ca2+ nanoclusters are still not known. Previously, we demonstrated by solid-state nuclear magnetic resonance (NMR) spectroscopy that upon binding to Ca2+, individual phosphatidylserine lipids populate two distinct yet-to-be-characterized structural environments. Here, we concurrently employ extensive all-atom molecular dynamics (MD) simulations with our accelerated membrane mimetic and detailed NMR measurements to identify lipid-Ca2+ nanocluster conformations. We find that major structural characteristics of these nanoclusters, including interlipid pair distances and chemical shifts, agree with observable NMR parameters. Simulations reveal that lipid-ion nanoclusters are shaped by two characteristic, long-lived lipid structures induced by divalent Ca2+. Using ab initio quantum mechanical calculations of chemical shifts on MD-captured lipid-ion complexes, we show that computationally observed conformations are validated by experimental NMR data. Both NMR measurements of diluted specifically labeled lipids and MD simulations reveal that the basic structural unit that reshapes the membrane is a Ca2+-coordinated phosphatidylserine tetramer. Our combined computational and experimental approach presented here can be applied to other complex systems in which charged membrane-active molecular agents leave structural signatures on lipids.
Collapse
Affiliation(s)
- Michael J Hallock
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Alexander I Greenwood
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yan Wang
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - James H Morrissey
- Department of Biological Chemistry , University of Michigan Medical School , Ann Arbor , Michigan 48103 , United States
| | - Emad Tajkhorshid
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chad M Rienstra
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Taras V Pogorelov
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,National Center for Supercomputing Applications , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
39
|
Intramembrane ionic protein-lipid interaction regulates integrin structure and function. PLoS Biol 2018; 16:e2006525. [PMID: 30427828 PMCID: PMC6261646 DOI: 10.1371/journal.pbio.2006525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/28/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022] Open
Abstract
Protein transmembrane domains (TMDs) are generally hydrophobic, but our bioinformatics analysis shows that many TMDs contain basic residues at terminal regions. Physiological functions of these membrane-snorkeling basic residues are largely unclear. Here, we show that a membrane-snorkeling Lys residue in integrin αLβ2 (also known as lymphocyte function-associated antigen 1 [LFA-1]) regulates transmembrane heterodimer formation and integrin adhesion through ionic interplay with acidic phospholipids and calcium ions (Ca2+) in T cells. The amino group of the conserved Lys ionically interacts with the phosphate group of acidic phospholipids to stabilize αLβ2 transmembrane association, thus keeping the integrin at low-affinity conformation. Intracellular Ca2+ uses its charge to directly disrupt this ionic interaction, leading to the transmembrane separation and the subsequent extracellular domain extension to increase adhesion activity. This Ca2+-mediated regulation is independent on the canonical Ca2+ signaling or integrin inside-out signaling. Our work therefore showcases the importance of intramembrane ionic protein–lipid interaction and provides a new mechanism of integrin activation. Integrin αLβ2 is the major integrin in T cells and plays a vital role in regulating T-cell activation, adhesion, and migration. The transmembrane association of αL and β2 is crucial for maintaining the integrin at low-affinity conformation. Here, we find that the conserved basic residue (K702) in the transmembrane domain of β2 contributes to transmembrane association through ternary ionic interaction with acidic phospholipid and αL cytoplasmic residue. Upon T-cell activation, influxed calcium ions (Ca2+) can directly disrupt the ionic K702–lipid interaction through its positive charges, which leads to transmembrane separation and subsequent extracellular domain extension to switch αLβ2 to high-affinity conformation. This Ca2+-mediated regulation is through the modulation of the ionic Lys–lipid interaction but not through the canonical Ca2+ signaling or integrin inside-out signaling. Our study thus reports a new regulatory mechanism of integrin activation and showcases the importance of intramembrane ionic protein–lipid interaction. This finding might have general relevance, as bioinformatics analysis shows the presence of membrane-snorkeling basic residue is a common feature of transmembrane proteins.
Collapse
|
40
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
41
|
Kimble-Hill AC, Petrache HI, Seifert S, Firestone MA. Reorganization of Ternary Lipid Mixtures of Nonphosphorylated Phosphatidylinositol Interacting with Angiomotin. J Phys Chem B 2018; 122:8404-8415. [PMID: 29877706 PMCID: PMC6351316 DOI: 10.1021/acs.jpcb.7b12641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol (PI) lipids are necessary for many cellular signaling pathways of membrane associated proteins, such as angiomotin (Amot). The Amot family regulates cellular polarity, growth, and migration. Given the low concentration of PI lipids in these membranes, it is likely that such protein-membrane interactions are stabilized by lipid domains or small lipid clusters. By small-angle X-ray scattering, we show that nonphosphorylated PI lipids induce lipid demixing in ternary mixtures of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), likely because of preferential interactions between the head groups of PE and PI. These results were obtained in the presence of buffer containing tris(hydroxymethyl)aminomethane, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, NaCl, ethylenediaminetetraacetic acid, dithiothreitol, and benzamidine at pH 8.0 that in previous work showed an ability to cause PC to phase separate but are necessary to stabilize Amot for in vitro experimentation. Collectively, this provided a framework for determining the effect of Amot on lipid organization. Using fluorescence spectroscopy, we were able to show that the association of Amot with this lipid platform causes significant reorganization of the lipid into a more homogenous structure. This reorganization mechanism could be the basis for Amot membrane association and fusogenic activity previously described in the literature and should be taken into consideration in future protein-membrane interaction studies.
Collapse
Affiliation(s)
- Ann C. Kimble-Hill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, MS 4053, 635 Barnhill Dr., Indianapolis, Indiana 46202, United States
| | - Horia I. Petrache
- Department of Physics, Indiana University Purdue University Indianapolis, LD 154, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Soenke Seifert
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Millicent A. Firestone
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, MPA-CINT, MS K771, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
42
|
Beber A, Alqabandi M, Prévost C, Viars F, Lévy D, Bassereau P, Bertin A, Mangenot S. Septin‐based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles. Cytoskeleton (Hoboken) 2018; 76:92-103. [DOI: 10.1002/cm.21480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Alexandre Beber
- Laboratoire Physico Chimie CurieInstitut Curie, PSL Research University Paris France
- Sorbonne Université Paris France
| | - Maryam Alqabandi
- Laboratoire Physico Chimie CurieInstitut Curie, PSL Research University Paris France
- Sorbonne Université Paris France
| | - Coline Prévost
- Laboratoire Physico Chimie CurieInstitut Curie, PSL Research University Paris France
- Sorbonne Université Paris France
| | - Fanny Viars
- Institut des maladies métaboliques et cardiovasculairesUMR1048, Inserm/Université Paul Sabatier Toulouse France
| | - Daniel Lévy
- Laboratoire Physico Chimie CurieInstitut Curie, PSL Research University Paris France
- Sorbonne Université Paris France
| | - Patricia Bassereau
- Laboratoire Physico Chimie CurieInstitut Curie, PSL Research University Paris France
- Sorbonne Université Paris France
| | - Aurélie Bertin
- Laboratoire Physico Chimie CurieInstitut Curie, PSL Research University Paris France
- Sorbonne Université Paris France
| | - Stéphanie Mangenot
- Laboratoire Physico Chimie CurieInstitut Curie, PSL Research University Paris France
- Sorbonne Université Paris France
| |
Collapse
|
43
|
Janmey PA, Bucki R, Radhakrishnan R. Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms. Biochem Biophys Res Commun 2018; 506:307-314. [PMID: 30139519 DOI: 10.1016/j.bbrc.2018.07.155] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/21/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023]
Abstract
Actin cytoskeleton dynamics depend on a tight regulation of actin filament formation from an intracellular pool of monomers, followed by their linkage to each other or to cell membranes, followed by their depolymerization into a fresh pool of actin monomers. The ubiquitous requirement for continuous actin remodeling that is necessary for many cellular functions is orchestrated in large part by actin binding proteins whose affinity for actin is altered by inositol phospholipids, most prominently PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate). The kinetics of PI(4,5)P2 synthesis and hydrolysis, its lateral distribution within the lipid bilayer, and coincident detection of PI(4,5)P2 and another signal, all play a role in determining when and where a particular PI(4,5)P2-regulated protein is inactivated or activated to exert its effect on the actin cytoskeleton. This review summarizes a range of models that have been developed to explain how PI(4,5)P2 might function in the complex chemical and structural environment of the cell based on a combination of experiment and computational studies.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert Bucki
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Tsutsui Y, Hays FA. A Link Between Alzheimer's and Type II Diabetes Mellitus? Ca +2 -Mediated Signal Control and Protein Localization. Bioessays 2018; 40:e1700219. [PMID: 29694668 PMCID: PMC6166406 DOI: 10.1002/bies.201700219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/16/2018] [Indexed: 01/28/2023]
Abstract
We propose protein localization dependent signal activation (PLDSA) as a model to describe pre-existing protein partitioning between the cytosol, and membrane surface, as a means to modulate signal activation, specificity, and robustness. We apply PLDSA to explain possible molecular links between type II diabetes mellitus (T2DM) and Alzheimer's disease (AD) by describing Ca+2 -mediated interactions between the Src non-receptor tyrosine kinase and p52Shc adaptor protein. We suggest that these interactions may serve as a contributing factor to disease development and progression. In particular, we propose that signaling response is regulated, in part, by Ca+2 -mediated partitioning of lipid-bound and soluble forms of Src and p52shc. Thus, protein-protein interactions that drive signaling in response to extracellular ligand binding are also mediated by partitioning of signaling proteins between membrane-bound and soluble populations. We propose that PLDSA effects may explain, in part, the evolutionary basis of promiscuous protein interaction domains and their importance in cellular function.
Collapse
Affiliation(s)
- Yuko Tsutsui
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Franklin A. Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States
| |
Collapse
|
45
|
Inorganic mercury and cadmium induce rigidity in eukaryotic lipid extracts while mercury also ruptures red blood cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:710-717. [DOI: 10.1016/j.bbamem.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023]
|
46
|
Agasid MT, Wang X, Huang Y, Janczak CM, Bränström R, Saavedra SS, Aspinwall CA. Expression, purification, and electrophysiological characterization of a recombinant, fluorescent Kir6.2 in mammalian cells. Protein Expr Purif 2018; 146:61-68. [PMID: 29409958 DOI: 10.1016/j.pep.2018.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 11/27/2022]
Abstract
The inwardly rectifying K+ (Kir) channel, Kir6.2, plays critical roles in physiological processes in the brain, heart, and pancreas. Although Kir6.2 has been extensively studied in numerous expression systems, a comprehensive description of an expression and purification protocol has not been reported. We expressed and characterized a recombinant Kir6.2, with an N-terminal decahistidine tag, enhanced green fluorescent protein (eGFP) and deletion of C-terminal 26 amino acids, in succession, denoted eGFP-Kir6.2Δ26. eGFP-Kir6.2Δ26 was expressed in HEK293 cells and a purification protocol developed. Electrophysiological characterization showed that eGFP-Kir6.2Δ26 retains native single channel conductance (64 ± 3.3 pS), mean open times (τ1 = 0.72 ms, τ2 = 15.3 ms) and ATP affinity (IC50 = 115 ± 25 μM) when expressed in HEK293 cells. Detergent screening using size exclusion chromatography (SEC) identified Fos-choline-14 (FC-14) as the most suitable surfactant for protein solubilization, as evidenced by maintenance of the native tetrameric structure in SDS-PAGE and western blot analysis. A two-step scheme using Co2+-metal affinity chromatography and SEC was implemented for purification. Purified protein activity was assessed by reconstituting eGFP-Kir6.2Δ26 in black lipid membranes (BLMs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), l-α-phosphatidylinositol-4,5-bisphosphate (PIP2) in a 89.5:10:0.5 mol ratio. Reconstituted eGFP-Kir6.2Δ26 displayed similar single channel conductance (61.8 ± 0.54 pS) compared to eGFP-Kir6.2Δ26 expressed in HEK293 membranes; however, channel mean open times increased (τ1 = 7.9 ms, τ2 = 61.9 ms) and ATP inhibition was significantly reduced for eGFP-Kir6.2Δ26 reconstituted into BLMs (IC50 = 3.14 ± 0.4 mM). Overall, this protocol should be foundational for the production of purified Kir6.2 for future structural and biochemical studies.
Collapse
Affiliation(s)
- Mark T Agasid
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Xuemin Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Yiding Huang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Colleen M Janczak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Robert Bränström
- Department of Molecular Medicine and Surgery, Karolinksa Institutet, Stockholm, Sweden
| | - S Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States; BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States; BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
47
|
Han K, Venable RM, Bryant AM, Legacy CJ, Shen R, Li H, Roux B, Gericke A, Pastor RW. Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions. J Phys Chem B 2018; 122:1484-1494. [PMID: 29293344 DOI: 10.1021/acs.jpcb.7b10730] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All-atom molecular dynamics simulations combined with graph-theoretic analysis reveal that clustering of monomethyl phosphate dianion (MMP2-) is strongly influenced by the types and combinations of cations in the aqueous solution. Although Ca2+ promotes the formation of stable and large MMP2- clusters, K+ alone does not. Nonetheless, clusters are larger and their link lifetimes are longer in mixtures of K+ and Ca2+. This "synergistic" effect depends sensitively on the Lennard-Jones interaction parameters between Ca2+ and the phosphorus oxygen and correlates with the hydration of the clusters. The pronounced MMP2- clustering effect of Ca2+ in the presence of K+ is confirmed by Fourier transform infrared spectroscopy. The characterization of the cation-dependent clustering of MMP2- provides a starting point for understanding cation-dependent clustering of phosphoinositides in cell membranes.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Anne-Marie Bryant
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Christopher J Legacy
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Hui Li
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
48
|
Lubart Q, Vitet H, Dalonneau F, Le Roy A, Kowalski M, Lourdin M, Ebel C, Weidenhaupt M, Picart C. Role of Phosphorylation in Moesin Interactions with PIP 2-Containing Biomimetic Membranes. Biophys J 2018; 114:98-112. [PMID: 29320700 PMCID: PMC5912500 DOI: 10.1016/j.bpj.2017.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
Moesin, a protein of the ezrin, radixin, and moesin family, which links the plasma membrane to the cytoskeleton, is involved in multiple physiological and pathological processes, including viral budding and infection. Its interaction with the plasma membrane occurs via a key phosphoinositide, the phosphatidyl(4,5)inositol-bisphosphate (PIP2), and phosphorylation of residue T558, which has been shown to contribute, in cellulo, to a conformationally open protein. We study the impact of a double phosphomimetic mutation of moesin (T235D, T558D), which mimics the phosphorylation state of the protein, on protein/PIP2/microtubule interactions. Analytical ultracentrifugation in the micromolar range showed moesin in the monomer and dimer forms, with wild-type (WT) moesin containing a slightly larger fraction (∼30%) of dimers than DD moesin (10-20%). Only DD moesin was responsive to PIP2 in its micellar form. Quantitative cosedimentation assays using large unilamellar vesicles and quartz crystal microbalance on supported lipid bilayers containing PIP2 reveal a specific cooperative interaction for DD moesin with an ability to bind two PIP2 molecules simultaneously, whereas WT moesin was able to bind only one. In addition, DD moesin could subsequently interact with microtubules, whereas WT moesin was unable to do so. Altogether, our results point to an important role of these two phosphorylation sites in the opening of moesin: since DD moesin is intrinsically in a more open conformation than WT moesin, this intermolecular interaction is reinforced by its binding to PIP2. We also highlight important differences between moesin and ezrin, which appear to be finely regulated and to exhibit distinct molecular behaviors.
Collapse
Affiliation(s)
- Quentin Lubart
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Helene Vitet
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Fabien Dalonneau
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Aline Le Roy
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Mathieu Kowalski
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Morgane Lourdin
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Christine Ebel
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Marianne Weidenhaupt
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
49
|
Ma Y, Poole K, Goyette J, Gaus K. Introducing Membrane Charge and Membrane Potential to T Cell Signaling. Front Immunol 2017; 8:1513. [PMID: 29170669 PMCID: PMC5684113 DOI: 10.3389/fimmu.2017.01513] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/25/2017] [Indexed: 01/12/2023] Open
Abstract
While membrane models now include the heterogeneous distribution of lipids, the impact of membrane charges on regulating the association of proteins with the plasma membrane is often overlooked. Charged lipids are asymmetrically distributed between the two leaflets of the plasma membrane, resulting in the inner leaflet being negatively charged and a surface potential that attracts and binds positively charged ions, proteins, and peptide motifs. These interactions not only create a transmembrane potential but they can also facilitate the formation of charged membrane domains. Here, we reference fields outside of immunology in which consequences of membrane charge are better characterized to highlight important mechanisms. We then focus on T cell receptor (TCR) signaling, reviewing the evidence that membrane charges and membrane-associated calcium regulate phosphorylation of the TCR–CD3 complex and discuss how the immunological synapse exhibits distinct patterns of membrane charge distribution. We propose that charged lipids, ions in solution, and transient protein interactions form a dynamic equilibrium during T cell activation.
Collapse
Affiliation(s)
- Yuanqing Ma
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
50
|
Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P 2 and PI(4,5)P 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12463-12477. [PMID: 28961003 DOI: 10.1021/acs.langmuir.7b00666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P2 and PI(3,5)P2. Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size. Ca2+-induced PI(4,5)P2 clusters are shown to be significantly larger than the ones observed for PI(3,5)P2. Clustering of PI(4,5)P2 is also detected at physiological concentrations of Mg2+, suggesting that in cellular membranes, these molecules are constitutively driven to clustering by the high intracellular concentration of divalent cations. Importantly, it is shown that lipid membrane order is a key factor in the regulation of clustering for both PIP isoforms, with a major impact on cluster sizes. Clustered PI(4,5)P2 and PI(3,5)P2 are observed to present considerably higher affinity for more ordered lipid phases than the monomeric species or than PI(4)P, possibly reflecting a more general tendency of clustered lipids for insertion into ordered domains. These results support a model for the description of the lateral organization of PIPs in cellular membranes, where both divalent cation interaction and membrane order are key modulators defining the lateral organization of these lipids.
Collapse
Affiliation(s)
- Maria J Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- J. Heyrovský Inst. Physical Chemistry of the A.S.C.R. v.v.i. , 182 23 Prague, Czech Republic
| | - Ana Coutinho
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- Departamento de Química e Bioquímica, FCUL, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Aleksander Fedorov
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|