1
|
Chen J, Hnath B, Sha CM, Beidler L, Schell TD, Dokholyan NV. Optogenetically engineered Septin-7 enhances immune cell infiltration of tumor spheroids. Proc Natl Acad Sci U S A 2024; 121:e2405717121. [PMID: 39441641 DOI: 10.1073/pnas.2405717121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor T cell therapies have achieved great success in eradicating some liquid tumors, whereas the preclinical results in treating solid tumors have proven less decisive. One of the principal challenges in solid tumor treatment is the physical barrier composed of a dense extracellular matrix, which prevents immune cells from penetrating the tissue to attack intratumoral cancer cells. Here, we improve immune cell infiltration into solid tumors by manipulating septin-7 functions in cells. Using protein allosteric design, we reprogram the three-dimensional structure of septin-7 and insert a blue light-responsive light-oxygen-voltage-sensing domain 2 (LOV2), creating a light-controllable septin-7-LOV2 hybrid protein. Blue light inhibits septin-7 function in live cells, inducing extended cell protrusions and cell polarization, enhancing cell transmigration efficiency through confining spaces. We genetically edited human natural killer cell line (NK92) and mouse primary CD8+ T-cells expressing the engineered protein, and we demonstrated improved penetration and cytotoxicity against various tumor spheroid models. Our proposed strategy to enhance immune cell infiltration is compatible with other methodologies and therefore, could be used in combination to further improve cell-based immunotherapies against solid tumors.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Congzhou M Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802
| | - Lynne Beidler
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033
| | - Todd D Schell
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
2
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598678. [PMID: 38915483 PMCID: PMC11195163 DOI: 10.1101/2024.06.12.598678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Matthew J. Crotteau
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia A. Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Scott A. Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Onishi N, Mazzaferro N, Kunstelj Š, Alvarado DA, Muller AM, Vázquez FX. Flanking Domains Modulate α-Synuclein Monomer Structure: A Molecular Dynamics Domain Deletion Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586267. [PMID: 38586052 PMCID: PMC10996548 DOI: 10.1101/2024.03.23.586267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aggregates of misfolded α-synuclein proteins (asyn) are key markers of Parkinson's disease. Asyn proteins have three domains: an N-terminal domain, a hydrophobic NAC core implicated in aggregation, and a proline-rich C-terminal domain. Proteins with truncated C-terminal domains are known to be prone to aggregation and suggest that studying domain-domain interactions in asyn monomers could help elucidate the role of the flanking domains in modulating protein structure. To this end, we used Gaussian accelerated molecular dynamics (GAMD) to simulate wild-type (WT), N-terminal truncated (DN), C-terminal truncated (ΔC), and isolated NAC domain variants (isoNAC). Using clustering and contact analysis, we found that N- and C-terminal domains interact via electrostatic interactions, while the NAC and N-terminal domains interact through hydrophobic contacts. Our work also suggests that the C-terminal domain does not interact directly with the NAC domain but instead interacts with the N-terminal domain. Removal of the N-terminal domain led to increased contacts between NAC and C-terminal domains and the formation of interdomain β-sheets. Removal of either flanking domain also resulted in increased compactness of every domain. We also found that the contacts between flanking domains results in an electrostatic potential (ESP) that could possibly lead to favorable interactions with anionic lipid membranes. Removal of the C-terminal domain disrupts the ESP in a way that is likely to over-stabilize protein-membrane interactions. All of this suggests that one of the roles of the flanking domains may be to modulate the protein structure in a way that helps maintain elongation, hide hydrophobic residue from the solvent, and maintain an ESP that aids favorable interactions with the membrane.
Collapse
Affiliation(s)
- Noriyo Onishi
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| | | | - Špela Kunstelj
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| | - Daisy A. Alvarado
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| | - Anna M. Muller
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| | - Frank X. Vázquez
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| |
Collapse
|
4
|
Perez-Villalba A, Sirerol-Piquer MS, Soriano-Cantón R, Folgado V, Pérez-Cañamás A, Kirstein M, Fariñas I, Pérez-Sánchez F. Dopaminergic neuron loss in mice due to increased levels of wild-type human α-Synuclein only takes place under conditions of accelerated aging. Sci Rep 2024; 14:2490. [PMID: 38291230 PMCID: PMC10828501 DOI: 10.1038/s41598-024-53093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Animal Behavior Phenotype (L.A.B.P.), Department of Neuropsychology, Faculty of Psychology, Catholic University of Valencia, Valencia, Spain
| | - María Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Soriano-Cantón
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Virginia Folgado
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martina Kirstein
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Francisco Pérez-Sánchez
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
6
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Sargolzaei M, Nikoofard H. Design of prodrug for stereoisomers of omapatrilat to cross the blood-brain barrier using docking, homology modeling, MD, and QM/MM methods. J Biomol Struct Dyn 2023:1-13. [PMID: 37728537 DOI: 10.1080/07391102.2023.2259488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
In this study, we designed a suitable ester prodrug for omapatrilat to penetrate the blood-brain barrier and treat CNS diseases. Based on the ADMET properties, the methyl carboxylate ester of omapatrilat was chosen from among several prodrug structures. Sixteen methyl carboxylate esters were constructed for omapatrilat. The structure of brain carboxylesterase was derived via homology modeling, and molecular docking was used to determine the most potent stereoisomers against brain carboxylesterase. The top three stereoisomer complexes, and the apo form of the protein, were then considered using molecular dynamics simulation and MM/GBSA analysis. Following the simulation, structural analysis was performed using RMSD, RMSF, Rg, and hydrogen bond analysis tools. Our data demonstrated that the prodrug of RSSR is a suitable structure for crossing the blood-brain barrier and binding to brain carboxylesterase. In addition, we found via QM/MM calculation that the catalytic reaction of the prodrug of RSSR against brain carboxylesterase occurs via two steps, including acylation and diacylation steps. Based on our findings, we propose a clinical trial of a methyl carboxylate ester prodrug of omapatrilat's RSSR for the treatment of brain diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohsen Sargolzaei
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Hossein Nikoofard
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
8
|
Chen J, Vishweshwaraiah YL, Mailman RB, Tabdanov ED, Dokholyan NV. A noncommutative combinatorial protein logic circuit controls cell orientation in nanoenvironments. SCIENCE ADVANCES 2023; 9:eadg1062. [PMID: 37235645 PMCID: PMC10219599 DOI: 10.1126/sciadv.adg1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Single-protein-based devices that integrate signal sensing with logical operations to generate functional outputs offer exceptional promise for monitoring and modulating biological systems. Engineering such intelligent nanoscale computing agents is challenging, as it requires the integration of sensor domains into a functional protein via intricate allosteric networks. We incorporate a rapamycin-sensitive sensor (uniRapR) and a blue light-responsive LOV2 domain into human Src kinase, creating a protein device that functions as a noncommutative combinatorial logic circuit. In our design, rapamycin activates Src kinase, causing protein localization to focal adhesions, whereas blue light exerts the reverse effect that inactivates Src translocation. Focal adhesion maturation induced by Src activation reduces cell migration dynamics and shifts cell orientation to align along collagen nanolane fibers. Using this protein device, we reversibly control cell orientation by applying the appropriate input signals, a framework that may be useful in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | | | - Richard B. Mailman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Menon S, Mondal J. Conformational Plasticity in α-Synuclein and How Crowded Environment Modulates It. J Phys Chem B 2023; 127:4032-4049. [PMID: 37114769 DOI: 10.1021/acs.jpcb.3c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A 140-residue intrinsically disordered protein (IDP), α-synuclein (αS), is known to adopt conformations that are vastly plastic and susceptible to environmental cues and crowders. However, the inherently heterogeneous nature of αS has precluded a clear demarcation of its monomeric precursor between aggregation-prone and functionally relevant aggregation-resistant states and how a crowded environment could modulate their mutual dynamic equilibrium. Here, we identify an optimal set of distinct metastable states of αS in aqueous media by dissecting a 73 μs-long molecular dynamics ensemble via building a comprehensive Markov state model (MSM). Notably, the most populated metastable state corroborates with the dimension obtained from PRE-NMR studies of αS monomer, and it undergoes kinetic transition at diverse time scales with a weakly populated random-coil-like ensemble and a globular protein-like state. However, subjecting αS to a crowded environment results in a nonmonotonic compaction of these metastable conformations, thereby skewing the ensemble by either introducing new tertiary contacts or by reinforcing the innate contacts. The early stage of dimerization process is found to be considerably expedited in the presence of crowders, albeit promoting nonspecific interactions. Together with this, using an extensively sampled ensemble of αS, this exposition demonstrates that crowded environments can potentially modulate the conformational preferences of IDP that can either promote or inhibit aggregation events.
Collapse
Affiliation(s)
- Sneha Menon
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| |
Collapse
|
11
|
Zamel J, Chen J, Zaer S, Harris PD, Drori P, Lebendiker M, Kalisman N, Dokholyan NV, Lerner E. Structural and dynamic insights into α-synuclein dimer conformations. Structure 2023; 31:411-423.e6. [PMID: 36809765 PMCID: PMC10081966 DOI: 10.1016/j.str.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
Parkinson disease is associated with the aggregation of the protein α-synuclein. While α-synuclein can exist in multiple oligomeric states, the dimer has been a subject of extensive debates. Here, using an array of biophysical approaches, we demonstrate that α-synuclein in vitro exhibits primarily a monomer-dimer equilibrium in nanomolar concentrations and up to a few micromolars. We then use spatial information from hetero-isotopic cross-linking mass spectrometry experiments as restrains in discrete molecular dynamics simulations to obtain the ensemble structure of dimeric species. Out of eight structural sub-populations of dimers, we identify one that is compact, stable, abundant, and exhibits partially exposed β-sheet structures. This compact dimer is the only one where the hydroxyls of tyrosine 39 are in proximity that may promote dityrosine covalent linkage upon hydroxyl radicalization, which is implicated in α-synuclein amyloid fibrils. We propose that this α-synuclein dimer features etiological relevance to Parkinson disease.
Collapse
Affiliation(s)
- Joanna Zamel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sofia Zaer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
12
|
Saurabh A, Prabhu NP. Concerted enhanced-sampling simulations to elucidate the helix-fibril transition pathway of intrinsically disordered α-Synuclein. Int J Biol Macromol 2022; 223:1024-1041. [PMID: 36379279 DOI: 10.1016/j.ijbiomac.2022.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Fibril formation of α-synuclein is linked with Parkinson's disease. The intrinsically disordered nature of α-syn provides extensive conformational plasticity and becomes difficult to characterize its transition pathway from native monomeric to disease-associated fibril form. We implemented different simulation methods such as steered dynamics-umbrella sampling, and replica-exchange and conventional MD simulations to access various conformational states of α-syn. Nineteen distinct intermediate structures were identified by free energy landscape and cluster analysis. They were then sorted based on secondary structure and solvent exposure of fibril-core residues to illustrate the fibril dissociation pathway. The analysis showed that following the initial dissociation of the polypeptide chain from the fibril, α-syn might form either compact-conformations by long-range interactions or extended-conformations stabilized by local interactions. This leads α-syn to adapt two different pathways. The secondary structure, solvation, contact distance, interaction energies and backbone dihedrals of thirty-two selected residues were analyzed for all the 19 intermediates. The results suggested that formation of β-turns, reorganization of salt bridges, and dihedral changes in the hydrophobic regions are the major driving forces for helix-fibril transition. Structural features of the intermediates also correlated with the earlier experimental and computational studies. The study provides critical information on the fibrillation pathway of α-syn.
Collapse
Affiliation(s)
- Archi Saurabh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
13
|
Iyer A, Sidhu A, Subramaniam V. How important is the N-terminal acetylation of alpha-synuclein for its function and aggregation into amyloids? Front Neurosci 2022; 16:1003997. [PMID: 36466161 PMCID: PMC9709446 DOI: 10.3389/fnins.2022.1003997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
N-α-acetylation is a frequently occurring post-translational modification in eukaryotic proteins. It has manifold physiological consequences on the regulation and function of several proteins, with emerging studies suggesting that it is a global regulator of stress responses. For decades, in vitro biochemical investigations into the precise role of the intrinsically disordered protein alpha-synuclein (αS) in the etiology of Parkinson's disease (PD) were performed using non-acetylated αS. The N-terminus of α-synuclein is now unequivocally known to be acetylated in vivo, however, there are many aspects of this post-translational modifications that are not understood well. Is N-α-acetylation of αS a constitutive modification akin to most cellular proteins, or is it spatio-temporally regulated? Is N-α-acetylation of αS relevant to the as yet elusive function of αS? How does the N-α-acetylation of αS influence the aggregation of αS into amyloids? Here, we provide an overview of the current knowledge and discuss prevailing hypotheses on the impact of N-α-acetylation of αS on its conformational, oligomeric, and fibrillar states. The extent to which N-α-acetylation of αS is vital for its function, membrane binding, and aggregation into amyloids is also explored here. We further discuss the overall significance of N-α-acetylation of αS for its functional and pathogenic implications in Lewy body formation and synucleinopathies.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arshdeep Sidhu
- Nitte University Centre for Science Education and Research, Nitte University (DU), Mangalore, India
| | | |
Collapse
|
14
|
Korneev A, Begun A, Liubimov S, Kachlishvili K, Molochkov A, Niemi AJ, Maisuradze GG. Exploring Structural Flexibility and Stability of α-Synuclein by the Landau-Ginzburg-Wilson Approach. J Phys Chem B 2022; 126:6878-6890. [PMID: 36053833 PMCID: PMC9482328 DOI: 10.1021/acs.jpcb.2c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Synuclein (αS) is the principal protein component of the Lewy body and Lewy neurite deposits that are found in the brains of the victims of one of the most prevalent neurodegenerative disorders, Parkinson's disease. αS can be qualified as a chameleon protein because of the large number of different conformations that it is able to adopt: it is disordered under physiological conditions in solution, in equilibrium with a minor α-helical tetrameric form in the cytoplasm, and is α-helical when bound to a cell membrane. Also, in vitro, αS forms polymorphic amyloid fibrils with unique arrangements of cross-β-sheet motifs. Therefore, it is of interest to elucidate the origins of the structural flexibility of αS and what makes αS stable in different conformations. We address these questions here by analyzing the experimental structures of the micelle-bound, tetrameric, and fibrillar αS in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger equation. It is illustrated that without molecular dynamics simulations the kinks are capable of identifying the key residues causing structural flexibility of αS. Also, the stability of the experimental structures of αS is investigated by simulating heating/cooling trajectories using the Glauber algorithm. The findings are consistent with experiments.
Collapse
Affiliation(s)
- Anatolii Korneev
- Pacific Quantum Center, Far Eastern Federal University, 690922, Vladivostok, Russia
| | - Alexander Begun
- Pacific Quantum Center, Far Eastern Federal University, 690922, Vladivostok, Russia
| | - Sergei Liubimov
- Pacific Quantum Center, Far Eastern Federal University, 690922, Vladivostok, Russia
| | - Khatuna Kachlishvili
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, U. S. A
| | - Alexander Molochkov
- Pacific Quantum Center, Far Eastern Federal University, 690922, Vladivostok, Russia
| | - Antti J. Niemi
- Pacific Quantum Center, Far Eastern Federal University, 690922, Vladivostok, Russia
- Nordita, Stockholm University and Uppsala University, SE-106 91 Stockholm, Sweden
- Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, F37200, Tours, France
- School of Physics, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Gia G. Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, U. S. A
| |
Collapse
|
15
|
Srivastava A, Alam P, Caughey B. RT-QuIC and Related Assays for Detecting and Quantifying Prion-like Pathological Seeds of α-Synuclein. Biomolecules 2022; 12:biom12040576. [PMID: 35454165 PMCID: PMC9030929 DOI: 10.3390/biom12040576] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Various disease-associated forms or strains of α-synuclein (αSynD) can spread and accumulate in a prion-like fashion during synucleinopathies such as Parkinson’s disease (PD), Lewy body dementia (DLB), and multiple system atrophy (MSA). This capacity for self-propagation has enabled the development of seed amplification assays (SAAs) that can detect αSynD in clinical samples. Notably, α-synuclein real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays have evolved as ultrasensitive, specific, and relatively practical methods for detecting αSynD in a variety of biospecimens including brain tissue, CSF, skin, and olfactory mucosa from synucleinopathy patients. However, αSyn SAAs still lack concordance in detecting MSA and familial forms of PD/DLB, and the assay parameters show poor correlations with various clinical measures. End-point dilution analysis in αSyn RT-QuIC assays allows for the quantitation of relative amounts of αSynD seeding activity that may correlate moderately with clinical measures and levels of other biomarkers. Herein, we review recent advancements in α-synuclein SAAs for detecting αSynD and describe in detail the modified Spearman–Karber quantification algorithm used with end-point dilutions.
Collapse
|
16
|
Kachappilly N, Srivastava J, Swain BP, Thakur P. Interaction of alpha-synuclein with lipids. Methods Cell Biol 2022; 169:43-66. [DOI: 10.1016/bs.mcb.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Xu L, Bhattacharya S, Thompson D. Predictive Modeling of Neurotoxic α-Synuclein Polymorphs. Methods Mol Biol 2022; 2340:379-399. [PMID: 35167083 DOI: 10.1007/978-1-0716-1546-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Assembly of monomeric α-synuclein (αS) into aggregation-resistant helically folded tetramers and related multimers is a key target for Parkinson's disease (PD). Protein dynamics hampers experimental characterization of the polymorphism of these structures and so computational modeling and simulation is providing a complementary approach to obtain high-resolution structural information on the assembly of αS and interactions with biological surfaces. These computational techniques are particularly valuable for intrinsically disordered proteins (IDPs) and short-lived peptide and protein assemblies with as yet undetermined 3D structures. Experimental observables such as NMR J-coupling constants and chemical shifts can be predicted directly from simulation data, and compared with available experimental data to generate the most physically realistic atomic-resolution structure. For appropriately validated and benchmarked computational models, macroscopic aggregation properties can be related to the calculated thermodynamic properties at an atomic level. In this chapter, we describe a useful protocol for designing helical αS multimers, especially tetramers, and scanning the peptide-membrane interface for cell-bound αS tetramers. These computationally modeled structures are validated by comparison with the range of available known experimental parameters at time of writing in early 2020, and used to generate predictive design rules to motivate and guide experiments.
Collapse
Affiliation(s)
- Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
18
|
Guzzo A, Delarue P, Rojas A, Nicolaï A, Maisuradze GG, Senet P. Missense Mutations Modify the Conformational Ensemble of the α-Synuclein Monomer Which Exhibits a Two-Phase Characteristic. Front Mol Biosci 2021; 8:786123. [PMID: 34912851 PMCID: PMC8667727 DOI: 10.3389/fmolb.2021.786123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein is an intrinsically disordered protein occurring in different conformations and prone to aggregate in β-sheet structures, which are the hallmark of the Parkinson disease. Missense mutations are associated with familial forms of this neuropathy. How these single amino-acid substitutions modify the conformations of wild-type α-synuclein is unclear. Here, using coarse-grained molecular dynamics simulations, we sampled the conformational space of the wild type and mutants (A30P, A53P, and E46K) of α-synuclein monomers for an effective time scale of 29.7 ms. To characterize the structures, we developed an algorithm, CUTABI (CUrvature and Torsion based of Alpha-helix and Beta-sheet Identification), to identify residues in the α-helix and β-sheet from Cα-coordinates. CUTABI was built from the results of the analysis of 14,652 selected protein structures using the Dictionary of Secondary Structure of Proteins (DSSP) algorithm. DSSP results are reproduced with 93% of success for 10 times lower computational cost. A two-dimensional probability density map of α-synuclein as a function of the number of residues in the α-helix and β-sheet is computed for wild-type and mutated proteins from molecular dynamics trajectories. The density of conformational states reveals a two-phase characteristic with a homogeneous phase (state B, β-sheets) and a heterogeneous phase (state HB, mixture of α-helices and β-sheets). The B state represents 40% of the conformations for the wild-type, A30P, and E46K and only 25% for A53T. The density of conformational states of the B state for A53T and A30P mutants differs from the wild-type one. In addition, the mutant A53T has a larger propensity to form helices than the others. These findings indicate that the equilibrium between the different conformations of the α-synuclein monomer is modified by the missense mutations in a subtle way. The α-helix and β-sheet contents are promising order parameters for intrinsically disordered proteins, whereas other structural properties such as average gyration radius, Rg, or probability distribution of Rg cannot discriminate significantly the conformational ensembles of the wild type and mutants. When separated in states B and HB, the distributions of Rg are more significantly different, indicating that global structural parameters alone are insufficient to characterize the conformational ensembles of the α-synuclein monomer.
Collapse
Affiliation(s)
- Adrien Guzzo
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, Dijon, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, Dijon, France
| | - Ana Rojas
- Schrödinger, Inc., New York, NY, United States
| | - Adrien Nicolaï
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, Dijon, France
| | - Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, Dijon, France.,Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
19
|
Mondal S, Mondal S, Bandyopadhyay S. Importance of Solvent in Guiding the Conformational Properties of an Intrinsically Disordered Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14429-14442. [PMID: 34817184 DOI: 10.1021/acs.langmuir.1c02401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aggregated form of α-synuclein in the brain has been found to be the major component of Lewy bodies that are hallmarks of Parkinson's disease (PD), the second most devastating neurodegenerative disorder. We have carried out room-temperature all-atom molecular dynamics (MD) simulations of an ensemble of widely different α-synuclein1-95 peptide monomer conformations in aqueous solution. Attempts have been made to obtain a generic understanding of the local conformational motions of different repeat unit segments, namely R1-R7, of the peptide and the correlated properties of the solvent at the interface. The analyses revealed relatively greater rigidity of the hydrophobic R6 unit as compared to the other repeat units of the peptide. Besides, water molecules around R6 have been found to be less structured and weakly interacting with the peptide. These are important observations as the R6 unit with reduced conformational motions can act as the nucleation site for the aggregation process, while less structured weakly interacting water around it can become displaced easily, thereby facilitating the hydrophobic collapse of the peptide monomers and their association during the nucleation phase at higher concentrations. In addition, we demonstrated presence of doubly coordinated highly ordered as well as triply coordinated relatively disordered water molecules at the interface. We believe that while the ordered water molecules can favor water-mediated interactions between different peptide monomers, the randomly ordered ones on the other hand are likely to be expelled easily from the interface, thereby facilitating direct peptide-peptide interactions during the aggregation process.
Collapse
Affiliation(s)
- Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
20
|
Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 2021; 59:620-642. [PMID: 34750787 DOI: 10.1007/s12035-021-02596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Elizabeth Hernández-Pérez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Carolina Campos
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, SSA, 14269, Mexico City, Mexico.
| |
Collapse
|
21
|
Saffari B, Amininasab M. Crocin Inhibits the Fibrillation of Human α-synuclein and Disassembles Mature Fibrils: Experimental Findings and Mechanistic Insights from Molecular Dynamics Simulation. ACS Chem Neurosci 2021; 12:4037-4057. [PMID: 34636232 DOI: 10.1021/acschemneuro.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aggregation of human alpha-synuclein (hαS) is pivotally implicated in the development of most types of synucleinopathies. Molecules that can inhibit or reverse the aggregation process of amyloidogenic proteins have potential therapeutic value. The anti-aggregating activity of multiple carotenoid compounds has been reported over the past decades against a growing list of amyloidogenic polypeptides. Here, we aimed to determine whether crocin, the main carotenoid glycoside component of saffron, would inhibit hαS aggregation or could disassemble its preformed fibrils. By employing a series of biochemical and biophysical techniques, crocin was exhibited to inhibit hαS fibrillation in a dose-dependent fashion by stabilizing very early aggregation intermediates in off-pathway non-toxic conformations with little β-sheet content. We also observed that crocin at high concentrations could efficiently destabilize mature fibrils and disassemble them into seeding-incompetent intermediates by altering their β-sheet conformation and reshaping their structure. Our atomistic molecular dynamics (MD) simulations demonstrated that crocin molecules bind to both the non amyloid-β component (NAC) region and C-terminal domain of hαS. These interactions could thereby stabilize the autoinhibitory conformation of the protein and prevent it from adopting aggregation-prone structures. MD simulations further suggested that ligand molecules prefer to reside longitudinally along the fibril axis onto the edges of the inter-protofilament interface where they establish hydrogen and hydrophobic bonds with steric zipper stabilizing residues. These interactions turned out to destabilize hαS fibrils by altering the interstrand twist angles, increasing the rigidity of the fibril core, and elevating its radius of gyration. Our findings suggest the potential pharmaceutical implication of crocin in synucleinopathies.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
22
|
Chen J, Zaer S, Drori P, Zamel J, Joron K, Kalisman N, Lerner E, Dokholyan NV. The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds. Structure 2021; 29:1048-1064.e6. [PMID: 34015255 PMCID: PMC8419013 DOI: 10.1016/j.str.2021.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
α-Synuclein plays an important role in synaptic functions by interacting with synaptic vesicle membrane, while its oligomers and fibrils are associated with several neurodegenerative diseases. The specific monomer structures that promote its membrane binding and self-association remain elusive due to its transient nature as an intrinsically disordered protein. Here, we use inter-dye distance distributions from bulk time-resolved Förster resonance energy transfer as restraints in discrete molecular dynamics simulations to map the conformational space of the α-synuclein monomer. We further confirm the generated conformational ensemble in orthogonal experiments utilizing far-UV circular dichroism and cross-linking mass spectrometry. Single-molecule protein-induced fluorescence enhancement measurements show that within this conformational ensemble, some of the conformations of α-synuclein are surprisingly stable, exhibiting conformational transitions slower than milliseconds. Our comprehensive analysis of the conformational ensemble reveals essential structural properties and potential conformations that promote its various functions in membrane interaction or oligomer and fibril formation.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sofia Zaer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Joanna Zamel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
23
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
24
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Biswas S, Bhadra A, Lakhera S, Soni M, Panuganti V, Jain S, Roy I. Molecular crowding accelerates aggregation of α-synuclein by altering its folding pathway. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:59-67. [PMID: 33386904 DOI: 10.1007/s00249-020-01486-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/30/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Intracellular macromolecular crowding can lead to increased aggregation of proteins, especially those that lack a natively folded conformation. Crowding may also be mimicked by the addition of polymers like polyethylene glycol (PEG) in vitro. α-Synuclein is an intrinsically disordered protein that exhibits increased aggregation and amyloid fibril formation in a crowded environment. Two hypotheses have been proposed to explain this observation. One is the excluded volume effect positing that reduced water activity in a crowded environment leads to increased effective protein concentration, promoting aggregation. An alternate explanation is that increased crowding facilitates conversion to a non-native form increasing the rate of aggregation. In this work, we have segregated these two hypotheses to investigate which one is operating. We show that mere increase in concentration of α-synuclein is not enough to induce aggregation and consequent fibrillation. In vitro, we find a complex relationship between PEG concentrations and aggregation, in which smaller PEGs delay fibrillation; while, larger ones promote fibril nucleation. In turn, while PEG600 did not increase the rate of aggregation, PEG1000 did and PEG4000 and PEG12000 slowed it but led to a higher overall fibril burden in the latter to cases. In cells, PEG4000 reduces the aggregation of α-synuclein but in a way specific to the cellular environment/due to cellular factors. The aggregation of the similarly sized, globular lysozyme does not increase in vitro when at the same concentrations with either PEG8000 or PEG12000. Thus, natively disordered α-synuclein undergoes a conformational transition in specific types of crowded environment, forming an aggregation-prone conformer.
Collapse
Affiliation(s)
- Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Punjab, 160062, India
| | - Antara Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Punjab, 160062, India
| | - Sunidhi Lakhera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Punjab, 160062, India
| | - Monika Soni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Punjab, 160062, India
| | - Venkataharsha Panuganti
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Punjab, 160062, India
| | - Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Punjab, 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Punjab, 160062, India.
| |
Collapse
|
26
|
Bhak G, Méndez-Ardoy A, Escobedo A, Salvatella X, Montenegro J. An Adhesive Peptide from the C-Terminal Domain of α-Synuclein for Single-Layer Adsorption of Nanoparticles onto Substrates. Bioconjug Chem 2020; 31:2759-2766. [PMID: 33170662 DOI: 10.1021/acs.bioconjchem.0c00544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two-dimensional (2D) homogeneous assembly of nanoparticle monolayer arrays onto a broad range of substrates constitutes an important challenge for chemistry, nanotechnology, and material science. α-Synuclein (αS) is an intrinsically disordered protein associated with neuronal protein complexes and has a high degree of structural plasticity and chaperone activity. The C-terminal domain of αS has been linked to the noncovalent interactions of this protein with biological targets and the activity of αS in presynaptic connections. Herein, we have systematically studied peptide fragments of the chaperone-active C-terminal sequence of αS and identified a 17-residue peptide that preserves the versatile binding nature of αS. Attachment of this short peptide to gold nanoparticles afforded colloidally stable nanoparticle suspensions that allowed the homogeneous 2D adhesion of the conjugates onto a wide variety of surfaces, including the formation of crystalline nanoparticle superlattices. The peptide sequence and the strategy reported here describe a new adhesive molecule for the controlled monolayer adhesion of metal nanoparticles and sets a stepping-stone toward the potential application of the adhesive properties of αS.
Collapse
Affiliation(s)
- Ghibom Bhak
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028 Barcelona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
27
|
D’Onofrio M, Munari F, Assfalg M. Alpha-Synuclein-Nanoparticle Interactions: Understanding, Controlling and Exploiting Conformational Plasticity. Molecules 2020; 25:E5625. [PMID: 33260436 PMCID: PMC7731430 DOI: 10.3390/molecules25235625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Alpha-synuclein (αS) is an extensively studied protein due to its involvement in a group of neurodegenerative disorders, including Parkinson's disease, and its documented ability to undergo aberrant self-aggregation resulting in the formation of amyloid-like fibrils. In dilute solution, the protein is intrinsically disordered but can adopt multiple alternative conformations under given conditions, such as upon adsorption to nanoscale surfaces. The study of αS-nanoparticle interactions allows us to better understand the behavior of the protein and provides the basis for developing systems capable of mitigating the formation of toxic aggregates as well as for designing hybrid nanomaterials with novel functionalities for applications in various research areas. In this review, we summarize current progress on αS-nanoparticle interactions with an emphasis on the conformational plasticity of the biomolecule.
Collapse
Affiliation(s)
| | | | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.D.); (F.M.)
| |
Collapse
|
28
|
Moretti P, Mariani P, Ortore MG, Plotegher N, Bubacco L, Beltramini M, Spinozzi F. Comprehensive Structural and Thermodynamic Analysis of Prefibrillar WT α-Synuclein and Its G51D, E46K, and A53T Mutants by a Combination of Small-Angle X-ray Scattering and Variational Bayesian Weighting. J Chem Inf Model 2020; 60:5265-5281. [PMID: 32866007 PMCID: PMC8154249 DOI: 10.1021/acs.jcim.0c00807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/13/2022]
Abstract
The in solution synchrotron small-angle X-ray scattering SAXS technique has been used to investigate an intrinsically disordered protein (IDP) related to Parkinson's disease, the α-synuclein (α-syn), in prefibrillar diluted conditions. SAXS experiments have been performed as a function of temperature and concentration on the wild type (WT) and on the three pathogenic mutants G51D, E46K, and A53T. To identify the conformers that populate WT α-syn and the pathogenic mutants in prefibrillar conditions, scattering data have been analyzed by a new variational bayesian weighting method (VBWSAS) based on an ensemble of conformers, which includes unfolded monomers, trimers, and tetramers, both in helical-rich and strand-rich forms. The developed VBWSAS method uses a thermodynamic scheme to account for temperature and concentration effects and considers long-range protein-protein interactions in the framework of the random phase approximation. The global analysis of the whole set of data indicates that WT α-syn is mostly present as unfolded monomers and trimers (helical-rich trimers at low T and strand-rich trimers at high T), but not tetramers, as previously derived by several studies. On the contrary, different conformer combinations characterize mutants. In the α-syn G51D mutant, the most abundant aggregates at all the temperatures are strand-rich tetramers. Strand-rich tetramers are also the predominant forms in the A53T mutant, but their weight decreases with temperature. Only monomeric conformers, with a preference for the ones with the smallest sizes, are present in the E46K mutant. The derived conformational behavior then suggests a different availability of species prone to aggregate, depending on mutation, temperature, and concentration and accounting for the different neurotoxicity of α-syn variants. Indeed, this approach may be of pivotal importance to describe conformational and aggregational properties of other IDPs.
Collapse
Affiliation(s)
- Paolo Moretti
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Marche, Italy
| | - Paolo Mariani
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Marche, Italy
| | - Maria Grazia Ortore
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Marche, Italy
| | | | - Luigi Bubacco
- Department
of Biology, University of Padova, 35121 Padova, Veneto, Italy
| | - Mariano Beltramini
- Department
of Biology, University of Padova, 35121 Padova, Veneto, Italy
| | - Francesco Spinozzi
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Marche, Italy
| |
Collapse
|
29
|
The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21165724. [PMID: 32785033 PMCID: PMC7460874 DOI: 10.3390/ijms21165724] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.
Collapse
|
30
|
Tira R, De Cecco E, Rigamonti V, Santambrogio C, Barracchia CG, Munari F, Romeo A, Legname G, Prosperi D, Grandori R, Assfalg M. Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. Int J Biol Macromol 2020; 154:206-216. [DOI: 10.1016/j.ijbiomac.2020.03.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|
31
|
Cholak E, Bugge K, Khondker A, Gauger K, Pedraz-Cuesta E, Pedersen ME, Bucciarelli S, Vestergaard B, Pedersen SF, Rheinstädter MC, Langkilde AE, Kragelund BB. Avidity within the N-terminal anchor drives α-synuclein membrane interaction and insertion. FASEB J 2020; 34:7462-7482. [PMID: 32277854 DOI: 10.1096/fj.202000107r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
In the brain, α-synuclein (aSN) partitions between free unbound cytosolic and membrane bound forms modulating both its physiological and pathological role and complicating its study due to structural heterogeneity. Here, we use an interdisciplinary, synergistic approach to characterize the properties of aSN:lipid mixtures, isolated aSN:lipid co-structures, and aSN in mammalian cells. Enabled by the isolation of the membrane-bound state, we show that within the previously described N-terminal membrane anchor, membrane interaction relies both on an N-terminal tail (NTT) head group layer insertion of 14 residues and a folded-upon-binding helix at the membrane surface. Both binding events must be present; if, for example, the NTT insertion is lost, the membrane affinity of aSN is severely compromised and formation of aSN:lipid co-structures hampered. In mammalian cells, compromised cooperativity results in lowered membrane association. Thus, avidity within the N-terminal anchor couples N-terminal insertion and helical surface binding, which is crucial for aSN membrane interaction and cellular localization, and may affect membrane fusion.
Collapse
Affiliation(s)
- Ersoy Cholak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Kimmie Gauger
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Gallardo J, Escalona-Noguero C, Sot B. Role of α-Synuclein Regions in Nucleation and Elongation of Amyloid Fiber Assembly. ACS Chem Neurosci 2020; 11:872-879. [PMID: 32078298 DOI: 10.1021/acschemneuro.9b00527] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
α-Synuclein is an intrinsically disordered protein whose aggregation in the form of amyloid fibers is directly implicated in Parkinson's disease and other neurological disorders. α-Synuclein is composed of three different regions. The central region (61-95), called NAC, is responsible for protein fibrillation. The N-terminal region (1-61) has some helical propensity and can be divided into H1 (1-31) and H2 (32-61), while the highly acidic C-terminal region (96-140) is completely disordered. It has been postulated that the acidic character of the C-terminus, as well as the interaction between the soluble N- and C- terminal parts, protects the NAC region from fibrillation. In consequence, N- and C-terminal deletions increase α-synuclein fibrillation. Both N- and C-terminal truncations are common in synucleinopathies, but despite their clinical relevance, to date, there are no systematic and exhaustive studies that quantify the effect of these truncations in fiber nucleation and elongation. In this work, we measured both nucleation and fibrillation elongation kinetics in order to study the influence of N- and C-terminal deletions, including the simultaneous deletion of several regions, in α-synuclein fibrillation. We also tested whether the fibrillation prone mutation A53T had an additional effect when combined with truncations. Furthermore, our cross-seeding experiments showed that the deletions studied induce changes in fiber morphology. Our results unravel then the role of the different α-synuclein regions and the A53T mutation in the nucleation and elongation of amyloid fibers.
Collapse
Affiliation(s)
- José Gallardo
- Fundación IMDEA-Nanociencia, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - Begoña Sot
- Fundación IMDEA-Nanociencia, Campus de Cantoblanco, 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnologı́a (CNB-CSIC e IMDEA Nanociencia), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
33
|
Näsström T, Ådén J, Shibata F, Andersson PO, Karlsson BC. A Capped Peptide of the Aggregation Prone NAC 71-82 Amino Acid Stretch of α-Synuclein Folds into Soluble β-Sheet Oligomers at Low and Elevated Peptide Concentrations. Int J Mol Sci 2020; 21:ijms21051629. [PMID: 32120928 PMCID: PMC7084662 DOI: 10.3390/ijms21051629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Although Lewy bodies and Lewy neurites are hallmarks of Parkinson's disease (PD) and dementia with Lewy bodies (DLB), misfolded α-synuclein oligomers are nowadays believed to be key for the development of these diseases. Attempts to target soluble misfolded species of the full-length protein have been limited so far, probably due to the fast aggregation kinetics and burial of aggregation prone segments in final cross-β-sheet fibrils. A previous characterisation study of fibrils prepared from a capped peptide of the non-amyloid β-component (NAC) 71-82 amino acid stretch of α-synuclein demonstrated an increased aggregation propensity resulting in a cross-β-structure that is also found in prion proteins. From this, it was suggested that capped NAC 71-82 peptide oligomers would provide interesting motifs with a capacity to regulate disease development. Here, we demonstrated, from a series of circular dichroism spectroscopic measurements and molecular dynamics simulations, the molecular-environment-sensitive behaviour of the capped NAC 71-82 peptide in a solution phase and the formation of β-sheet oligomeric structures in the supernatant of a fibrillisation mixture. These results highlighted the use of the capped NAC 71-82 peptide as a motif in the preparation of oligomeric β-sheet structures that potentially could be used in therapeutic strategies in the fight against progressive neurodegenerative disorders, such as PD and DLB.
Collapse
Affiliation(s)
- Thomas Näsström
- Physical Pharmacy Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University, SE-392 31 Kalmar, Sweden;
- Correspondence: (T.N.); (B.C.G.K.); Tel.: +46-480-446329 (T.N.); +46-480-446740 (B.C.G.K.)
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, SE-901 87 Umeå, Sweden;
| | - Fumina Shibata
- Physical Pharmacy Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University, SE-392 31 Kalmar, Sweden;
| | - Per Ola Andersson
- Department of Engineering Sciences: Applied Material Science, Uppsala University, SE-751 21 Uppsala, Sweden;
| | - Björn C.G. Karlsson
- Physical Pharmacy Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University, SE-392 31 Kalmar, Sweden;
- Correspondence: (T.N.); (B.C.G.K.); Tel.: +46-480-446329 (T.N.); +46-480-446740 (B.C.G.K.)
| |
Collapse
|
34
|
Bhasne K, Jain N, Karnawat R, Arya S, Majumdar A, Singh A, Mukhopadhyay S. Discerning Dynamic Signatures of Membrane-Bound α-Synuclein Using Site-Specific Fluorescence Depolarization Kinetics. J Phys Chem B 2020; 124:708-717. [PMID: 31917569 DOI: 10.1021/acs.jpcb.9b09118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Synuclein is an intrinsically disordered protein that adopts an α-helical structure upon binding to the negatively charged lipid membrane. Binding-induced conformational change of α-synuclein plays a crucial role in the regulation of synaptic plasticity. In this work, we utilized the fluorescence depolarization kinetics methodology to gain the site-specific dynamical insights into the membrane-bound α-synuclein. We took advantage of the nonoccurrence of Cys in α-synuclein and created single-Cys variants at different sites for us to be able to label it with a thiol-active fluorophore. Our fluorescence depolarization results reveal the presence of three dynamically distinct types of motions of α-synuclein on POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) small unilamellar vesicles (SUVs): (i) the (local) wobbling-in-cone motion of the fluorophore on the subnanosecond timescale, (ii) the backbone segmental mobility on the nanosecond timescale, and (iii) a slow depolarization component with a characteristic long rotational correlation time (∼60 ns) that is independent of the residue position. This characteristic timescale could potentially arise due to global tumbling of the protein-membrane complex, the global reorientation of only the protein within the membrane, and/or the translation diffusion of the protein on the curved membrane surface that could result in fluorescence depolarization due to the angular displacement of the transition dipole. In order to discern the molecular origin of the characteristic long rotational correlation time, we then carried our depolarization experiments varying the curvature of the membrane and varying the binding affinity by changing the lipid headgroup. These experiments revealed that the long rotational correlation time primarily arises due to the translational diffusion of α-synuclein on the curved membrane surface with a diffusion coefficient of ∼8.7 × 10-10 m2/s. The site-specific fluorescence depolarization methodology will find broad application in quantifying diffusion of a wide range of membrane-associated proteins involved in functions and diseases.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Neha Jain
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Rishabh Karnawat
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Shruti Arya
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Anupa Majumdar
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Anubhuti Singh
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| |
Collapse
|
35
|
Pietrek LM, Stelzl LS, Hummer G. Hierarchical Ensembles of Intrinsically Disordered Proteins at Atomic Resolution in Molecular Dynamics Simulations. J Chem Theory Comput 2019; 16:725-737. [PMID: 31809054 DOI: 10.1021/acs.jctc.9b00809] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrinsically disordered proteins (IDPs) constitute a large fraction of the human proteome and are critical in the regulation of cellular processes. A detailed understanding of the conformational dynamics of IDPs could help to elucidate their roles in health and disease. However, the inherent flexibility of IDPs makes structural studies and their interpretation challenging. Molecular dynamics (MD) simulations could address this challenge in principle, but inaccuracies in the simulation models and the need for long simulations have stymied progress. To overcome these limitations, we adopt a hierarchical approach that builds on the "flexible-meccano" model reported by Bernadó et al. (J. Am. Chem. Soc. 2005, 127, 17968-17969). First, we exhaustively sample small IDP fragments in all-atom simulations to capture their local structures. Then, we assemble the fragments into full-length IDPs to explore the stereochemically possible global structures of IDPs. The resulting ensembles of three-dimensional structures of full-length IDPs are highly diverse, much more so than in standard MD simulation. For the paradigmatic IDP α-synuclein, our ensemble captures both the local structure, as probed by nuclear magnetic resonance spectroscopy, and its overall dimension, as obtained from small-angle X-ray scattering in solution. By generating representative and meaningful starting ensembles, we can begin to exploit the massive parallelism afforded by current and future high-performance computing resources for atomic-resolution characterization of IDPs.
Collapse
Affiliation(s)
- Lisa M Pietrek
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Straße 3 , 60438 Frankfurt am Main , Germany
| | - Lukas S Stelzl
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Straße 3 , 60438 Frankfurt am Main , Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Straße 3 , 60438 Frankfurt am Main , Germany.,Institute for Biophysics , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| |
Collapse
|
36
|
Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting Alpha-Synuclein as a Therapy for Parkinson's Disease. Front Mol Neurosci 2019; 12:299. [PMID: 31866823 PMCID: PMC6906193 DOI: 10.3389/fnmol.2019.00299] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 01/23/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders with a global burden of approximately 6.1 million patients. Alpha-synuclein has been linked to both the sporadic and familial forms of the disease. Moreover, alpha-synuclein is present in Lewy-bodies, the neuropathological hallmark of PD, and the protein and its aggregation have been widely linked to neurotoxic pathways that ultimately lead to neurodegeneration. Such pathways include autophagy/lysosomal dysregulation, synaptic dysfunction, mitochondrial disruption, and endoplasmic reticulum (ER) and oxidative stress. Alpha-synuclein has not only been shown to alter cellular pathways but also to spread between cells, causing aggregation in host cells. Therapeutic approaches will need to address several, if not all, of these angles of alpha-synuclein toxicity. Here we review the current advances in therapeutic efforts for PD that aim to produce a disease-modifying therapy by targeting the spread, production, aggregation, and degradation of alpha-synuclein. These include: receptor blocking strategies whereby putative alpha-synuclein receptors could be blocked inhibiting alpha-synuclein spread, an alpha-synuclein reduction which will decrease the amount alpha-synuclein available for aggregation and pathway disruption, the use of small molecules in order to target alpha-synuclein aggregation, immunotherapy and the increase of alpha-synuclein degradation by increasing autophagy/lysosomal flux. The research discussed here may lead to a disease-modifying therapy that tackles disease onset and progression in the future.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Department of Physiology, Oxford Parkinson's Disease Center, Anatomy and Genetics, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Oxford Parkinson's Disease Center, Anatomy and Genetics, Oxford, United Kingdom
| |
Collapse
|
37
|
Baul U, Chakraborty D, Mugnai ML, Straub JE, Thirumalai D. Sequence Effects on Size, Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins. J Phys Chem B 2019; 123:3462-3474. [PMID: 30913885 PMCID: PMC6920032 DOI: 10.1021/acs.jpcb.9b02575] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack well-defined three-dimensional structures, thus challenging the archetypal notion of structure-function relationships. Determining the ensemble of conformations that IDPs explore under physiological conditions is the first step toward understanding their diverse cellular functions. Here, we quantitatively characterize the structural features of IDPs as a function of sequence and length using coarse-grained simulations. For diverse IDP sequences, with the number of residues ( NT) ranging from 20 to 441, our simulations not only reproduce the radii of gyration ( Rg) obtained from experiments, but also predict the full scattering intensity profiles in excellent agreement with small-angle X-ray scattering experiments. The Rg values are well-described by the standard Flory scaling law, Rg = Rg0 NTν, with ν ≈ 0.588, making it tempting to assert that IDPs behave as polymers in a good solvent. However, clustering analysis reveals that the menagerie of structures explored by IDPs is diverse, with the extent of heterogeneity being highly sequence-dependent, even though ensemble-averaged properties, such as the dependence of Rg on chain length, may suggest synthetic polymer-like behavior in a good solvent. For example, we show that for the highly charged Prothymosin-α, a substantial fraction of conformations is highly compact. Even if the sequence compositions are similar, as is the case for α-Synuclein and a truncated construct from the Tau protein, there are substantial differences in the conformational heterogeneity. Taken together, these observations imply that metrics based on net charge or related quantities alone cannot be used to anticipate the phases of IDPs, either in isolation or in complex with partner IDPs or RNA. Our work sets the stage for probing the interactions of IDPs with each other, with folded protein domains, or with partner RNAs, which are critical for describing the structures of stress granules and biomolecular condensates with important cellular functions.
Collapse
Affiliation(s)
- Upayan Baul
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mauro L. Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
38
|
Xu L, Bhattacharya S, Thompson D. On the ubiquity of helical α-synuclein tetramers. Phys Chem Chem Phys 2019; 21:12036-12043. [DOI: 10.1039/c9cp02464f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stability of oligomers linearly increases from dimers to octamers, but assembly of oligomers larger than tetramers requires high activation energies.
Collapse
Affiliation(s)
- Liang Xu
- Department of Physics
- Bernal Institute
- University of Limerick
- V94 T9PX
- Ireland
| | | | - Damien Thompson
- Department of Physics
- Bernal Institute
- University of Limerick
- V94 T9PX
- Ireland
| |
Collapse
|
39
|
Milles S, Salvi N, Blackledge M, Jensen MR. Characterization of intrinsically disordered proteins and their dynamic complexes: From in vitro to cell-like environments. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:79-100. [PMID: 30527137 DOI: 10.1016/j.pnmrs.2018.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
Over the last two decades, it has become increasingly clear that a large fraction of the human proteome is intrinsically disordered or contains disordered segments of significant length. These intrinsically disordered proteins (IDPs) play important regulatory roles throughout biology, underlining the importance of understanding their conformational behavior and interaction mechanisms at the molecular level. Here we review recent progress in the NMR characterization of the structure and dynamics of IDPs in various functional states and environments. We describe the complementarity of different NMR parameters for quantifying the conformational propensities of IDPs in their isolated and phosphorylated states, and we discuss the challenges associated with obtaining structural models of dynamic protein-protein complexes involving IDPs. In addition, we review recent progress in understanding the conformational behavior of IDPs in cell-like environments such as in the presence of crowding agents, in membrane-less organelles and in the complex environment of the human cell.
Collapse
Affiliation(s)
- Sigrid Milles
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
40
|
Lokale und globale Dynamik im ungeordneten Synuklein‐Protein. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Rezaei-Ghaleh N, Parigi G, Soranno A, Holla A, Becker S, Schuler B, Luchinat C, Zweckstetter M. Local and Global Dynamics in Intrinsically Disordered Synuclein. Angew Chem Int Ed Engl 2018; 57:15262-15266. [PMID: 30184304 DOI: 10.1002/anie.201808172] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 01/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) experience a diverse spectrum of motions that are difficult to characterize with a single experimental technique. Herein we combine high- and low-field nuclear spin relaxation, nanosecond fluorescence correlation spectroscopy (nsFCS), and long molecular dynamics simulations of alpha-synuclein, an IDP involved in Parkinson disease, to obtain a comprehensive picture of its conformational dynamics. The combined analysis shows that fast motions below 2 ns caused by local dihedral angle fluctuations and conformational sampling within and between Ramachandran substates decorrelate most of the backbone N-H orientational memory. However, slow motions with correlation times of up to ca. 13 ns from segmental dynamics are present throughout the alpha-synuclein chain, in particular in its C-terminal domain, and global chain reconfiguration occurs on a timescale of ca. 60 ns. Our study demonstrates a powerful strategy to determine residue-specific protein dynamics in IDPs at different time and length scales.
Collapse
Affiliation(s)
- Nasrollah Rezaei-Ghaleh
- University Medical Center Göttingen &, German Center for Neurodegenerative Diseases (DZNE) &, MPI for Biophysical Chemistry, Von-Siebold-Strasse 3a, 37075, Göttingen, Germany
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) &, Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50121, Sesto Fiorentino, Italy
| | - Andrea Soranno
- Washington University in St. Louis, St. Louis, MO, 63110, USA.,University of Zurich, 8057, Zurich, Switzerland
| | | | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | | | - Claudio Luchinat
- Magnetic Resonance Center (CERM) &, Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50121, Sesto Fiorentino, Italy
| | - Markus Zweckstetter
- University Medical Center Göttingen &, German Center for Neurodegenerative Diseases (DZNE) &, MPI for Biophysical Chemistry, Von-Siebold-Strasse 3a, 37075, Göttingen, Germany
| |
Collapse
|
42
|
Okazaki H, Matsuo N, Tenno T, Goda N, Shigemitsu Y, Ota M, Hiroaki H. Using 1 H N amide temperature coefficients to define intrinsically disordered regions: An alternative NMR method. Protein Sci 2018; 27:1821-1830. [PMID: 30098073 DOI: 10.1002/pro.3485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 02/02/2023]
Abstract
This report describes a cost-effective experimental method for determining an intrinsically disordered protein (IDP) region in a given protein sample. In this area, the most popular (and conventional) means is using the amide (1 HN ) NMR signal chemical shift distributed in the range of 7.5-8.5 ppm. For this study, we applied an additional step: analysis of 1 HN chemical shift temperature coefficients (1 HN -CSTCs) of the signals. We measured 1 H-15 N two-dimensional NMR spectra of model IDP samples and ordered samples at four temperatures (288, 293, 298, and 303 K). We derived the 1 HN -CSTC threshold deviation, which gives the best correlation of ordered and disordered regions among the proteins examined (below -3.6 ppb/K). By combining these criteria with the newly optimized chemical shift range (7.8-8.5 ppm), the ratios of both true positive and true negative were improved by approximately 19% (62-81%) compared with the conventional "chemical shift-only" method.
Collapse
Affiliation(s)
- Hiroki Okazaki
- Department of Complex Systems Science, Graduate School of Information Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Naoki Matsuo
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.,BeCellBar LLC, Business Incubation Center, Nagoya University, Nagoya, 464-8601, Aichi, Japan
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshiki Shigemitsu
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Information Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.,BeCellBar LLC, Business Incubation Center, Nagoya University, Nagoya, 464-8601, Aichi, Japan.,The Structural Biology Research Center and Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
43
|
Camacho R, Täuber D, Hansen C, Shi J, Bousset L, Melki R, Li JY, Scheblykin IG. 2D polarization imaging as a low-cost fluorescence method to detect α-synuclein aggregation ex vivo in models of Parkinson's disease. Commun Biol 2018; 1:157. [PMID: 30302401 PMCID: PMC6168587 DOI: 10.1038/s42003-018-0156-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
A hallmark of Parkinson's disease is the formation of large protein-rich aggregates in neurons, where α-synuclein is the most abundant protein. A standard approach to visualize aggregation is to fluorescently label the proteins of interest. Then, highly fluorescent regions are assumed to contain aggregated proteins. However, fluorescence brightness alone cannot discriminate micrometer-sized regions with high expression of non-aggregated proteins from regions where the proteins are aggregated on the molecular scale. Here, we demonstrate that 2-dimensional polarization imaging can discriminate between preformed non-aggregated and aggregated forms of α-synuclein, and detect increased aggregation in brain tissues of transgenic mice. This imaging method assesses homo-FRET between labels by measuring fluorescence polarization in excitation and emission simultaneously, which translates into higher contrast than fluorescence anisotropy imaging. Exploring earlier aggregation states of α-synuclein using such technically simple imaging method could lead to crucial improvements in our understanding of α-synuclein-mediated pathology in Parkinson's Disease.
Collapse
Affiliation(s)
- Rafael Camacho
- Chemical Physics and NanoLund, Lund University, P.O. Box 124,, 22100, Lund, Sweden
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Daniela Täuber
- Chemical Physics and NanoLund, Lund University, P.O. Box 124,, 22100, Lund, Sweden
- Biopolarisation, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Solid State Physics, FSU Jena, Helmholtzweg 3, 07743, Jena, Germany
| | - Christian Hansen
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
- Molecular Neurobiology, Department of Experimental Medical Science, BMC B11, 221 84, Lund, Sweden
| | - Juanzi Shi
- Chemical Physics and NanoLund, Lund University, P.O. Box 124,, 22100, Lund, Sweden
| | - Luc Bousset
- Institut Fancois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses cedex, France
| | - Ronald Melki
- Institut Fancois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses cedex, France
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden.
- Institute of Health Sciences, China Medical University, 110122, Shenyang, People's Republic of China.
| | - Ivan G Scheblykin
- Chemical Physics and NanoLund, Lund University, P.O. Box 124,, 22100, Lund, Sweden.
| |
Collapse
|
44
|
Woodard J, Srivastava KR, Rahamim G, Grupi A, Hogan S, Witalka DJ, Nawrocki G, Haas E, Feig M, Lapidus LJ. Intramolecular Diffusion in α-Synuclein: It Depends on How You Measure It. Biophys J 2018; 115:1190-1199. [PMID: 30224053 DOI: 10.1016/j.bpj.2018.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022] Open
Abstract
Intramolecular protein diffusion, the motion of one part of the polypeptide chain relative to another part, is a fundamental aspect of protein folding and may modulate amyloidogenesis of disease-associated intrinsically disordered proteins. Much work has determined such diffusion coefficients using a variety of probes, but there has been an apparent discrepancy between measurements using long-range probes, such as fluorescence resonance energy transfer, and short-range probes, such as Trp-Cys quenching. In this work, we make both such measurements on the same protein, α-synuclein, and confirm that such discrepancy exists. Molecular dynamics simulations suggest that such differences result from a diffusion coefficient that depends on the spatial distance between probes. Diffusional estimates in good quantitative agreement with experiment are obtained by accounting for the distinct distance ranges probed by fluorescence resonance energy transfer and Trp-Cys quenching.
Collapse
Affiliation(s)
- Jaie Woodard
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kinshuk R Srivastava
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Gil Rahamim
- The Goodman Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| | - Asaf Grupi
- The Goodman Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| | - Steven Hogan
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - David J Witalka
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Elisha Haas
- The Goodman Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Lisa J Lapidus
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
45
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
46
|
Yoshimura Y, Holmberg MA, Kukic P, Andersen CB, Mata-Cabana A, Falsone SF, Vendruscolo M, Nollen EAA, Mulder FAA. MOAG-4 promotes the aggregation of α-synuclein by competing with self-protective electrostatic interactions. J Biol Chem 2017; 292:8269-8278. [PMID: 28336532 DOI: 10.1074/jbc.m116.764886] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/01/2017] [Indexed: 11/06/2022] Open
Abstract
Aberrant protein aggregation underlies a variety of age-related neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Little is known, however, about the molecular mechanisms that modulate the aggregation process in the cellular environment. Recently, MOAG-4/SERF has been identified as a class of evolutionarily conserved proteins that positively regulates aggregate formation. Here, by using nuclear magnetic resonance (NMR) spectroscopy, we examine the mechanism of action of MOAG-4 by characterizing its interaction with α-synuclein (α-Syn). NMR chemical shift perturbations demonstrate that a positively charged segment of MOAG-4 forms a transiently populated α-helix that interacts with the negatively charged C terminus of α-Syn. This process interferes with the intramolecular interactions between the N- and C-terminal regions of α-Syn, resulting in the protein populating less compact forms and aggregating more readily. These results provide a compelling example of the complex competition between molecular and cellular factors that protect against protein aggregation and those that promote it.
Collapse
Affiliation(s)
- Yuichi Yoshimura
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mats A Holmberg
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands
| | - Predrag Kukic
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Camilla B Andersen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Alejandro Mata-Cabana
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Ellen A A Nollen
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
47
|
Bhak G, Lee J, Kim CH, Chung DY, Kang JH, Oh S, Lee J, Kang JS, Yoo JM, Yang JE, Rhoo KY, Park S, Lee S, Nam KT, Jeon NL, Jang J, Hong BH, Sung YE, Yoon MH, Paik SR. High-Density Single-Layer Coating of Gold Nanoparticles onto Multiple Substrates by Using an Intrinsically Disordered Protein of α-Synuclein for Nanoapplications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8519-8532. [PMID: 28248091 DOI: 10.1021/acsami.6b16411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Functional graffiti of nanoparticles onto target surface is an important issue in the development of nanodevices. A general strategy has been introduced here to decorate chemically diverse substrates with gold nanoparticles (AuNPs) in the form of a close-packed single layer by using an omni-adhesive protein of α-synuclein (αS) as conjugated with the particles. Since the adsorption was highly sensitive to pH, the amino acid sequence of αS exposed from the conjugates and its conformationally disordered state capable of exhibiting structural plasticity are considered to be responsible for the single-layer coating over diverse surfaces. Merited by the simple solution-based adsorption procedure, the particles have been imprinted to various geometric shapes in 2-D and physically inaccessible surfaces of 3-D objects. The αS-encapsulated AuNPs to form a high-density single-layer coat has been employed in the development of nonvolatile memory, fule-cell, solar-cell, and cell-culture platform, where the outlying αS has played versatile roles such as a dielectric layer for charge retention, a sacrificial layer to expose AuNPs for chemical catalysis, a reaction center for silicification, and biointerface for cell attachment, respectively. Multiple utilizations of the αS-based hybrid NPs, therefore, could offer great versatility to fabricate a variety of NP-integrated advanced materials which would serve as an indispensable component for widespread applications of high-performance nanodevices.
Collapse
Affiliation(s)
| | | | - Chang-Hyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 500-712, Korea
| | - Dong Young Chung
- Center for Nanoparticle Research, Institute for Basic Science , Seoul 151-747, Korea
| | | | | | | | - Jin Soo Kang
- Center for Nanoparticle Research, Institute for Basic Science , Seoul 151-747, Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science , Seoul 151-747, Korea
| | | | | | | | | | | | | | | | | | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science , Seoul 151-747, Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 500-712, Korea
| | | |
Collapse
|
48
|
Burger VM, Vandervelde A, Hendrix J, Konijnenberg A, Sobott F, Loris R, Stultz CM. Hidden States within Disordered Regions of the CcdA Antitoxin Protein. J Am Chem Soc 2017; 139:2693-2701. [PMID: 28124913 DOI: 10.1021/jacs.6b11450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The bacterial toxin-antitoxin system CcdB-CcdA provides a mechanism for the control of cell death and quiescence. The antitoxin protein CcdA is a homodimer composed of two monomers that each contain a folded N-terminal region and an intrinsically disordered C-terminal arm. Binding of the intrinsically disordered C-terminal arm of CcdA to the toxin CcdB prevents CcdB from inhibiting DNA gyrase and thereby averts cell death. Accurate models of the unfolded state of the partially disordered CcdA antitoxin can therefore provide insight into general mechanisms whereby protein disorder regulates events that are crucial to cell survival. Previous structural studies were able to model only two of three distinct structural states, a closed state and an open state, that are adopted by the C-terminal arm of CcdA. Using a combination of free energy simulations, single-pair Förster resonance energy transfer experiments, and existing NMR data, we developed structural models for all three states of the protein. Contrary to prior studies, we find that CcdA samples a previously unknown state where only one of the disordered C-terminal arms makes extensive contacts with the folded N-terminal domain. Moreover, our data suggest that previously unobserved conformational states play a role in regulating antitoxin concentrations and the activity of CcdA's cognate toxin. These data demonstrate that intrinsic disorder in CcdA provides a mechanism for regulating cell fate.
Collapse
Affiliation(s)
| | - Alexandra Vandervelde
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel , B-1050 Brussels, Belgium.,Molecular Recognition Unit, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie , B-1050 Brussels, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, University of Leuven , B-3000 Leuven, Belgium.,Faculty of Medicine and Life Sciences and Biomedical Research Institute, Hasselt University , B-3500 Hasselt, Belgium
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp , B-2020 Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp , B-2020 Antwerp, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel , B-1050 Brussels, Belgium.,Molecular Recognition Unit, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie , B-1050 Brussels, Belgium
| | | |
Collapse
|
49
|
The chaperonin CCT inhibits assembly of α-synuclein amyloid fibrils by a specific, conformation-dependent interaction. Sci Rep 2017; 7:40859. [PMID: 28102321 PMCID: PMC5244355 DOI: 10.1038/srep40859] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington’s disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson’s disease. We evaluated fibrillation blockade in α-synuclein A53T deletion mutants and CCT interactions of full-length A53T in distinct oligomeric states to define an inhibition mechanism specific for α-synuclein. CCT interferes with fibre assembly by interaction of its CCTζ and CCTγ subunits with the A53T central hydrophobic region (NAC). This interaction is specific to NAC conformation, as it is produced once soluble α-synuclein A53T oligomers form and blocks the reaction before fibres begin to grow. Finally, we show that this association inhibits α-synuclein A53T oligomer toxicity in neuroblastoma cells. In summary, our results and those for huntingtin suggest that CCT is a general modulator of amyloidogenesis via a specific mechanism.
Collapse
|
50
|
Natalello A, Santambrogio C, Grandori R. Are Charge-State Distributions a Reliable Tool Describing Molecular Ensembles of Intrinsically Disordered Proteins by Native MS? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:21-28. [PMID: 27730522 DOI: 10.1007/s13361-016-1490-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Native mass spectrometry (MS) has become a central tool of structural proteomics, but its applicability to the peculiar class of intrinsically disordered proteins (IDPs) is still object of debate. IDPs lack an ordered tridimensional structure and are characterized by high conformational plasticity. Since they represent valuable targets for cancer and neurodegeneration research, there is an urgent need of methodological advances for description of the conformational ensembles populated by these proteins in solution. However, structural rearrangements during electrospray-ionization (ESI) or after the transfer to the gas phase could affect data obtained by native ESI-MS. In particular, charge-state distributions (CSDs) are affected by protein conformation inside ESI droplets, while ion mobility (IM) reflects protein conformation in the gas phase. This review focuses on the available evidence relating IDP solution ensembles with CSDs, trying to summarize cases of apparent consistency or discrepancy. The protein-specificity of ionization patterns and their responses to ligands and buffer conditions suggests that CSDs are imprinted to protein structural features also in the case of IDPs. Nevertheless, it seems that these proteins are more easily affected by electrospray conditions, leading in some cases to rearrangements of the conformational ensembles. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|