1
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
2
|
Santra S, Manna RN, Chakrabarty S, Ghosh D. Conformational Effects on the Absorption Spectra of Phytochromes. J Phys Chem B 2024; 128:3614-3620. [PMID: 38581077 DOI: 10.1021/acs.jpcb.4c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Bacteriophytochrome is a photoreceptor protein that contains the biliverdin (BV) chromophore as its active component. The spectra of BV upon mutation remain remarkably unchanged, as far as spectral positions are concerned. This points toward the minimal effect of electrostatic effects on the electronic structure of the chromophore. However, the relative intensities of the Q and Soret bands of the chromophore change dramatically upon mutation. In this work, we delve into the molecular origin of this unusual intensity modulation. Using extensive classical MD and QM/MM calculations, we show that due to mutation, the conformational population of the chromophore changes significantly. The noncovalent interactions, especially the stacking interactions, lead to extra stabilization of the cyclic form in the D207H mutated species as opposed to the open form in the wild-type BV. Thus, unlike the commonly observed direct electrostatic effect on the spectral shift, in the case of BV the difference observed is in varying intensities, and this in turn is driven by a conformational shift due to enhanced stacking interaction.
Collapse
Affiliation(s)
- Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rabindra Nath Manna
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Do TN, Menendez D, Bizhga D, Stojković EA, Kennis JTM. Two-photon Absorption and Photoionization of a Bacterial Phytochrome. J Mol Biol 2024; 436:168357. [PMID: 37944794 DOI: 10.1016/j.jmb.2023.168357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Phytochromes constitute a family of photosensory proteins that are utilized by various organisms to regulate several physiological processes. Phytochromes bind a bilin pigment that switches its isomeric state upon absorption of red or far-red photons, resulting in protein conformational changes that are sensed by the organism. Previously, the ultrafast dynamics in bacterial phytochrome was resolved to atomic resolution by time-resolved serial femtosecond X-ray diffraction (TR-SFX), showing extensive changes in its molecular conformation at 1 picosecond delay time. However, the large excitation fluence of mJ/mm2 used in TR-SFX questions the validity of the observed dynamics. In this work, we present an excitation-dependent ultrafast transient absorption study to test the response of a related bacterial phytochrome to excitation fluence. We observe excitation power-dependent sub-picosecond dynamics, assigned to the population of high-lying excited state Sn through resonantly enhanced two-photon absorption, followed by rapid internal conversion to the low-lying S1 state. Inspection of the long-lived spectrum under high fluence shows that in addition to the primary intermediate Lumi-R, spectroscopic signatures of solvated electrons and ionized chromophore radicals are observed. Supported by numerical modelling, we propose that under excitation fluences of tens of μJ/mm2 and higher, bacterial phytochrome partly undergoes photoionization from the Sn state in competition with internal conversion to the S1 state in 300 fs. We suggest that the extensive structural changes of related, shorter bacterial phytochrome, lacking the PHY domain, resolved from TR-SFX may have been affected by the ionized species. We propose approaches to minimize the two-photon absorption process by tuning the excitation spectrum away from the S1 absorption or using phytochromes exhibiting minimized or shifted S1 absorption.
Collapse
Affiliation(s)
- Thanh Nhut Do
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - David Menendez
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave., Chicago, IL 60625, USA
| | - Dorina Bizhga
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave., Chicago, IL 60625, USA
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave., Chicago, IL 60625, USA
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Hildebrandt P. Vibrational Spectroscopy of Phytochromes. Biomolecules 2023; 13:1007. [PMID: 37371587 DOI: 10.3390/biom13061007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochromes are biological photoswitches that translate light into physiological functions. Spectroscopic techniques are essential tools for molecular research into these photoreceptors. This review is directed at summarizing how resonance Raman and IR spectroscopy contributed to an understanding of the structure, dynamics, and reaction mechanism of phytochromes, outlining the substantial experimental and theoretical challenges and describing the strategies to master them. It is shown that the potential of the various vibrational spectroscopic techniques can be most efficiently exploited using integral approaches via a combination of theoretical methods as well as other experimental techniques.
Collapse
Affiliation(s)
- Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
5
|
Yang Y, Stensitzki T, Lang C, Hughes J, Mroginski MA, Heyne K. Ultrafast protein response in the Pfr state of Cph1 phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:919-930. [PMID: 36653574 DOI: 10.1007/s43630-023-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Photoisomerization is a fundamental process in several classes of photoreceptors. Phytochromes sense red and far-red light in their Pr and Pfr states, respectively. Upon light absorption, these states react via individual photoreactions to the other state. Cph1 phytochrome shows a photoisomerization of its phycocyanobilin (PCB) chromophore in the Pfr state with a time constant of 0.7 ps. The dynamics of the PCB chromophore has been described, but whether or not the apoprotein exhibits an ultrafast response too, is not known. Here, we compare the photoreaction of 13C/15N labeled apoprotein with unlabeled apoprotein to unravel ultrafast apoprotein dynamics in Cph1. In the spectral range from 1750 to 1620 cm-1 we assigned several signals due to ultrafast apoprotein dynamics. A bleaching signal at 1724 cm-1 is tentatively assigned to deprotonation of a carboxylic acid, probably Asp207, and signals around 1670 cm-1 are assigned to amide I vibrations of the capping helix close to the chromophore. These signals remain after photoisomerization. The apoprotein dynamics appear upon photoexcitation or concomitant with chromophore isomerization. Thus, apoprotein dynamics occur prior to and after photoisomerization on an ultrafast time-scale. We discuss the origin of the ultrafast apoprotein response with the 'Coulomb hammer' mechanism, i.e. an impulsive change of electric field and Coulombic force around the chromophore upon excitation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Till Stensitzki
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Maria Andrea Mroginski
- Institut Für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Karsten Heyne
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
6
|
Protein control of photochemistry and transient intermediates in phytochromes. Nat Commun 2022; 13:6838. [PMID: 36369284 PMCID: PMC9652276 DOI: 10.1038/s41467-022-34640-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Phytochromes are ubiquitous photoreceptors responsible for sensing light in plants, fungi and bacteria. Their photoactivation is initiated by the photoisomerization of the embedded chromophore, triggering large conformational changes in the protein. Despite numerous experimental and computational studies, the role of chromophore-protein interactions in controlling the mechanism and timescale of the process remains elusive. Here, we combine nonadiabatic surface hopping trajectories and adiabatic molecular dynamics simulations to reveal the molecular details of such control for the Deinococcus radiodurans bacteriophytochrome. Our simulations reveal that chromophore photoisomerization proceeds through a hula-twist mechanism whose kinetics is mainly determined by the hydrogen bond of the chromophore with a close-by histidine. The resulting photoproduct relaxes to an early intermediate stabilized by a tyrosine, and finally evolves into a late intermediate, featuring a more disordered binding pocket and a weakening of the aspartate-to-arginine salt-bridge interaction, whose cleavage is essential to interconvert the phytochrome to the active state.
Collapse
|
7
|
Kurttila M, Etzl S, Rumfeldt J, Takala H, Galler N, Winkler A, Ihalainen JA. The structural effect between the output module and chromophore-binding domain is a two-way street via the hairpin extension. Photochem Photobiol Sci 2022; 21:1881-1894. [PMID: 35984631 PMCID: PMC9630206 DOI: 10.1007/s43630-022-00265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
Abstract
Signal transduction typically starts with either ligand binding or cofactor activation, eventually affecting biological activities in the cell. In red light-sensing phytochromes, isomerization of the bilin chromophore results in regulation of the activity of diverse output modules. During this process, several structural elements and chemical events influence signal propagation. In our study, we have studied the full-length bacteriophytochrome from Deinococcus radiodurans as well as a previously generated optogenetic tool where the native histidine kinase output module has been replaced with an adenylate cyclase. We show that the composition of the output module influences the stability of the hairpin extension. The hairpin, often referred as the PHY tongue, is one of the central structural elements for signal transduction. It extends from a distinct domain establishing close contacts with the chromophore binding site. If the coupling between these interactions is disrupted, the dynamic range of the enzymatic regulation is reduced. Our study highlights the complex conformational properties of the hairpin extension as a bidirectional link between the chromophore-binding site and the output module, as well as functional properties of diverse output modules.
Collapse
Affiliation(s)
- Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nadine Galler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
8
|
Significant impact of deprotonated status on the photoisomerization dynamics of bacteriophytochrome chromophore. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nat Chem 2022; 14:823-830. [PMID: 35577919 PMCID: PMC9252900 DOI: 10.1038/s41557-022-00944-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.
Collapse
|
10
|
Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochem Photobiol Sci 2022; 21:471-491. [PMID: 35411484 PMCID: PMC9609751 DOI: 10.1007/s43630-022-00213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Rydzewski J, Walczewska-Szewc K, Czach S, Nowak W, Kuczera K. Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome. J Phys Chem B 2022; 126:2647-2657. [PMID: 35357137 PMCID: PMC9014414 DOI: 10.1021/acs.jpcb.2c00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The ability of phytochromes
to act as photoswitches in plants and
microorganisms depends on interactions between a bilin-like chromophore
and a host protein. The interconversion occurs between the spectrally
distinct red (Pr) and far-red (Pfr) conformers. This conformational
change is triggered by the photoisomerization of the chromophore D-ring
pyrrole. In this study, as a representative example of a phytochrome-bilin
system, we consider biliverdin IXα (BV) bound to bacteriophytochrome
(BphP) from Deinococcus radiodurans. In the absence
of light, we use an enhanced sampling molecular dynamics (MD) method
to overcome the photoisomerization energy barrier. We find that the
calculated free energy (FE) barriers between essential metastable
states agree with spectroscopic results. We show that the enhanced
dynamics of the BV chromophore in BphP contributes to triggering nanometer-scale
conformational movements that propagate by two experimentally determined
signal transduction pathways. Most importantly, we describe how the
metastable states enable a thermal transition known as the dark reversion
between Pfr and Pr, through a previously unknown intermediate state
of Pfr. We present the heterogeneity of temperature-dependent Pfr
states at the atomistic level. This work paves a way toward understanding
the complete mechanism of the photoisomerization of a bilin-like chromophore
in phytochromes.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Krzysztof Kuczera
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
12
|
Fischer T, van Wilderen LJGW, Gnau P, Bredenbeck J, Essen LO, Wachtveitl J, Slavov C. Ultrafast Photoconversion Dynamics of the Knotless Phytochrome SynCph2. Int J Mol Sci 2021; 22:ijms221910690. [PMID: 34639031 PMCID: PMC8508867 DOI: 10.3390/ijms221910690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore’s isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
| | - Luuk J. G. W. van Wilderen
- Institute of Biophysics, Goethe University Frankfurt am Main, Max-von-Laue Straße 1, 60438 Frankfurt, Germany; (L.J.G.W.v.W.); (J.B.)
| | - Petra Gnau
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; (P.G.); (L.-O.E.)
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt am Main, Max-von-Laue Straße 1, 60438 Frankfurt, Germany; (L.J.G.W.v.W.); (J.B.)
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; (P.G.); (L.-O.E.)
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
- Correspondence: (J.W.); (C.S.)
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
- Correspondence: (J.W.); (C.S.)
| |
Collapse
|
13
|
Merga G, Lopez MF, Fischer P, Piwowarski P, Nogacz Ż, Kraskov A, Buhrke D, Escobar FV, Michael N, Siebert F, Scheerer P, Bartl F, Hildebrandt P. Light- and temperature-dependent dynamics of chromophore and protein structural changes in bathy phytochrome Agp2. Phys Chem Chem Phys 2021; 23:18197-18205. [PMID: 34612283 DOI: 10.1039/d1cp02494a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.
Collapse
Affiliation(s)
- Galaan Merga
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstr. 42, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu X, Zhang T, Fang Q, Fang W, González L, Cui G. Hydrogen‐Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiang‐Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
| | - Teng‐Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Leticia González
- Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna Währinger Straße 17 1090 Vienna Austria
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
15
|
Liu XY, Zhang TS, Fang Q, Fang WH, González L, Cui G. Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Angew Chem Int Ed Engl 2021; 60:18688-18693. [PMID: 34097335 PMCID: PMC8456922 DOI: 10.1002/anie.202104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Indexed: 11/14/2022]
Abstract
Phytochrome proteins are light receptors that play a pivotal role in regulating the life cycles of plants and microorganisms. Intriguingly, while cyanobacterial phytochrome Cph1 and cyanobacteriochrome AnPixJ use the same phycocyanobilin (PCB) chromophore to absorb light, their excited‐state behavior is very different. We employ multiscale calculations to rationalize the different early photoisomerization mechanisms of PCB in Cph1 and AnPixJ. We found that their electronic S1, T1, and S0 potential minima exhibit distinct geometric and electronic structures due to different hydrogen bond networks with the protein environment. These specific interactions influence the S1 electronic structures along the photoisomerization paths, ultimately leading to internal conversion in Cph1 but intersystem crossing in AnPixJ. This explains why the excited‐state relaxation in AnPixJ is much slower (ca. 100 ns) than in Cph1 (ca. 30 ps). Further, we predict that efficient internal conversion in AnPixJ can be achieved upon protonating the carboxylic group that interacts with PCB.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.,College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
16
|
Kurttila M, Stucki-Buchli B, Rumfeldt J, Schroeder L, Häkkänen H, Liukkonen A, Takala H, Kottke T, Ihalainen JA. Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy. Phys Chem Chem Phys 2021; 23:5615-5628. [PMID: 33656023 DOI: 10.1039/d0cp06553f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in prime protein locations and running two-color step-scan FTIR spectroscopy on the Deinococcus radiodurans bacteriophytochrome, we track the signal propagation at three specific sites in the photosensory unit. We show that a structurally switchable hairpin extension, a so-called tongue region, responds to the photoconversion already in microseconds and finalizes its structural changes concomitant with the chromophore, in milliseconds. In contrast, kinetics from the other two label positions indicate that the site-specific changes deviate from the chromophore actions, even though the labels locate in the chromophore vicinity. Several other sites for labeling resulted in impaired photoswitching, low structural stability, or no changes in the difference spectrum, which provides additional information on the inner dynamics of the photosensory unit. Our work enlightens the multidimensionality of the structural changes of proteins under action. The study also shows that the signaling mechanism of phytochromes is accessible in a time-resolved and site-specific approach by azido probes and demonstrates challenges in using these labels.
Collapse
Affiliation(s)
- Moona Kurttila
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Brigitte Stucki-Buchli
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Jessica Rumfeldt
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Lea Schroeder
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Heikki Häkkänen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Alli Liukkonen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Heikki Takala
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Janne A Ihalainen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| |
Collapse
|
17
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
18
|
Fischer T, Xu Q, Zhao K, Gärtner W, Slavov C, Wachtveitl J. Effect of the PHY Domain on the Photoisomerization Step of the Forward P r →P fr Conversion of a Knotless Phytochrome. Chemistry 2020; 26:17261-17266. [PMID: 32812681 PMCID: PMC7839672 DOI: 10.1002/chem.202003138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Indexed: 01/26/2023]
Abstract
Phytochrome photoreceptors operate via photoisomerization of a bound bilin chromophore. Their typical architecture consists of GAF, PAS and PHY domains. Knotless phytochromes lack the PAS domain, while retaining photoconversion abilities, with some being able to photoconvert with just the GAF domain. Therefore, we investigated the ultrafast photoisomerization of the Pr state of a knotless phytochrome to reveal the effect of the PHY domain and its "tongue" region on the transduction of the light signal. We show that the PHY domain does not affect the initial conformational dynamics of the chromophore. However, it significantly accelerates the consecutively induced reorganizational dynamics of the protein, necessary for the progression of the photoisomerization. Consequently, the PHY domain keeps the bilin and its binding pocket in a more reactive conformation, which decreases the extent of protein reorganization required for the chromophore isomerization. Thereby, less energy is lost along nonproductive reaction pathways, resulting in increased efficiency.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt am MainMax-von-Laue Straße 760438FrankfurtGermany
| | - Qianzhao Xu
- Institute of Analytical ChemistryUniversity of LeipzigLinnéstr. 304103LeipzigGermany
| | - Kai‐Hong Zhao
- Key State Laboratory of Agriculture MicrobiologyHuazhong Agriculture University WuhanShizishan Street, Hongshan DistrictWuhan430070P. R. China
| | - Wolfgang Gärtner
- Institute of Analytical ChemistryUniversity of LeipzigLinnéstr. 304103LeipzigGermany
| | - Chavdar Slavov
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt am MainMax-von-Laue Straße 760438FrankfurtGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt am MainMax-von-Laue Straße 760438FrankfurtGermany
| |
Collapse
|
19
|
Wang D, Li X, Wang L, Yang X, Zhong D. Elucidating Ultrafast Multiphasic Dynamics in the Photoisomerization of Cyanobacteriochrome. J Phys Chem Lett 2020; 11:8819-8824. [PMID: 32940473 PMCID: PMC8172094 DOI: 10.1021/acs.jpclett.0c02467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding photoisomerization dynamics in cyanobacteriochromes is important to the development of optical agents in near-infrared biological imaging and optogenetics. Here, by integrating femtosecond spectroscopy and site-directed mutagenesis, we investigate the photoinduced Pr-state isomerization dynamics and mechanism of a unique red/green cyanobacteriochrome from Leptolyngbya sp. JSC-1. We observed multiphasic dynamics in the Pr state, a widespread phenomenon for photoreceptors in the phytochrome superfamily, and revealed their origins; the initial dynamics over a few to tens and hundreds of picoseconds arises from the local active-site relaxations followed by the slow double-bond isomerization in several hundreds of picoseconds. Such continuous active-site evolution results in a unique spectral tuning effect that favors the blue-side emission and suppresses the red-side emission. We also observed the faster dynamics in both relaxation and isomerization with critical mutants at the active site that render a looser active site. These results clearly distinguish the multiphasic dynamics between relaxation and isomerization and reveal a novel molecular mechanism for better biological applications.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | |
Collapse
|
20
|
Khan FI, Hassan F, Anwer R, Juan F, Lai D. Comparative Analysis of Bacteriophytochrome Agp2 and Its Engineered Photoactivatable NIR Fluorescent Proteins PAiRFP1 and PAiRFP2. Biomolecules 2020; 10:biom10091286. [PMID: 32906690 PMCID: PMC7564321 DOI: 10.3390/biom10091286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Two photoactivatable near infrared fluorescent proteins (NIR FPs) named “PAiRFP1” and “PAiRFP2” are formed by directed molecular evolution from Agp2, a bathy bacteriophytochrome of Agrobacterium tumefaciens C58. There are 15 and 24 amino acid substitutions in the structure of PAiRFP1 and PAiRFP2, respectively. A comprehensive molecular exploration of these bacteriophytochrome photoreceptors (BphPs) are required to understand the structure dynamics. In this study, the NIR fluorescence emission spectra for PAiRFP1 were recorded upon repeated excitation and the fluorescence intensity of PAiRFP1 tends to increase as the irradiation time was prolonged. We also predicted that mutations Q168L, V244F, and A480V in Agp2 will enhance the molecular stability and flexibility. During molecular dynamics (MD) simulations, the average root mean square deviations of Agp2, PAiRFP1, and PAiRFP2 were found to be 0.40, 0.49, and 0.48 nm, respectively. The structure of PAiRFP1 and PAiRFP2 were more deviated than Agp2 from its native conformation and the hydrophobic regions that were buried in PAiRFP1 and PAiRFP2 core exposed to solvent molecules. The eigenvalues and the trace of covariance matrix were found to be high for PAiRFP1 (597.90 nm2) and PAiRFP2 (726.74 nm2) when compared with Agp2 (535.79 nm2). It was also found that PAiRFP1 has more sharp Gibbs free energy global minima than Agp2 and PAiRFP2. This comparative analysis will help to gain deeper understanding on the structural changes during the evolution of photoactivatable NIR FPs. Further work can be carried out by combining PCR-based directed mutagenesis and spectroscopic methods to provide strategies for the rational designing of these PAiRFPs.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: ; Tel.: +86-182-0052-9516
| |
Collapse
|
21
|
Kim Y, Xu QZ, Zhao KH, Gärtner W, Matysik J, Song C. Lyophilization Reveals a Multitude of Structural Conformations in the Chromophore of a Cph2-like Phytochrome. J Phys Chem B 2020; 124:7115-7127. [PMID: 32693592 DOI: 10.1021/acs.jpcb.0c03431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria sense and respond to various colors of light employing a large number of bilin-based phytochrome-like photoreceptors. All2699 from Nostoc 7120 has three consecutive GAF domains with GAF1 and GAF3 binding a phycocyanobilin chromophore. GAF1, even when expressed independently, can be photoconverted between red-absorbing Pr and far-red-absorbing Pfr states, while the nonphotosensory GAF2 domain is structurally and functionally homologous to the PHY domains in canonical and Cph2-like phytochromes. Here, we characterize possible bilin chromophore conformers using solid-state NMR spectroscopy on the two lyophilized All2699 samples (GAF1-only and GAF1-PHY constructs). On the basis of complete 1H, 13C, and 15N assignments for the chromophore obtained on the two Pr lyophilizates, multiple static conformations of the chromophore in both cases are identified. Moreover, most atoms of the chromophore in the bidomain sample show only subtle changes in the mean chemical shifts relative to those in frozen solution (FS), indicating an optimized interaction of the GAF2 domain with the GAF1-bound chromophore. Our results confirm the conservation of key chromophore-protein interactions and the photoreversibility in both All2699 lyophilizates, offering the possibility to investigate conformational distributions of the heterogeneous chromophore and its functional consequences in phytochromes and other bilin-dependent photoreceptors intractable by the solid-state NMR technique as FSs.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Qian-Zhao Xu
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Wang D, Qin Y, Zhang M, Li X, Wang L, Yang X, Zhong D. The Origin of Ultrafast Multiphasic Dynamics in Photoisomerization of Bacteriophytochrome. J Phys Chem Lett 2020; 11:5913-5919. [PMID: 32614188 PMCID: PMC8172095 DOI: 10.1021/acs.jpclett.0c01394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Red-light bacteriophytochromes regulate many physiological functions through photoisomerization of a linear tetrapyrrole chromophore. In this work, we mapped out femtosecond-resolved fluorescence spectra of the excited Pr state and observed unique active-site relaxations on the picosecond time scale with unusual spectral tuning of rises on the blue side and decays on the red side of the emission. We also observed initial wavepacket dynamics in femtoseconds with two low-frequency modes of 38 and 181 cm-1 as well as the intermediate product formation after isomerization in hundreds of picoseconds. With critical mutations at the active site, we observed similar dynamic patterns with different times for both relaxation and isomerization, consistent with the structural and chemical changes induced by the mutations. The observed multiphasic dynamics clearly represents the active-site relaxation, not different intermediate reactions or excitation of heterogeneous ground states. The active-site relaxation must be considered in understanding overall isomerization reactions in phytochromes, and such a molecular mechanism should be general.
Collapse
Affiliation(s)
- Dihao Wang
- Program of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yangzhong Qin
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Meng Zhang
- Program of Biophysics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiankun Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lijuan Wang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | |
Collapse
|
23
|
Revealing the origin of multiphasic dynamic behaviors in cyanobacteriochrome. Proc Natl Acad Sci U S A 2020; 117:19731-19736. [PMID: 32759207 DOI: 10.1073/pnas.2001114117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteriochromes are photoreceptors in cyanobacteria that exhibit a wide spectral coverage and unique photophysical properties from the photoinduced isomerization of a linear tetrapyrrole chromophore. Here, we integrate femtosecond-resolved fluorescence and transient-absorption methods and unambiguously showed the significant solvation dynamics occurring at the active site from a few to hundreds of picoseconds. These motions of local water molecules and polar side chains are continuously convoluted with the isomerization reaction, leading to a nonequilibrium processes with continuous active-site motions. By mutations of critical residues at the active site, the modified local structures become looser, resulting in faster solvation relaxations and isomerization reaction. The observation of solvation dynamics is significant and critical to the correct interpretation of often-observed multiphasic dynamic behaviors, and thus the previously invoked ground-state heterogeneity may not be relevant to the excited-state isomerization reaction.
Collapse
|
24
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light‐Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [DOI: https:/doi.org/10.1111/php.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2023]
Abstract
AbstractThe evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light‐harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D‐ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D. Bekasova
- Bach Institute of Biochemistry Fundamentals of Biotechnology Federal Research Centre Russian Academy of Sciences Moscow Russia
| |
Collapse
|
25
|
The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome. Proc Natl Acad Sci U S A 2020; 117:16356-16362. [PMID: 32591422 DOI: 10.1073/pnas.1921706117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the Z ⇄ E photoisomerization about the double bond in the bilin chromophore. However, it is not fully understood at the molecular level how the protein framework facilitates the complex photoisomerization dynamics. We have studied a single-domain bilin-binding photoreceptor All2699g1 (Nostoc sp. PCC 7120) that exhibits photoconversion between the red light-absorbing (Pr) and far red-absorbing (Pfr) states just like canonical phytochromes. We present the crystal structure and examine the photoisomerization mechanism of the Pr form as well as the formation of the primary photoproduct Lumi-R using time-resolved spectroscopy and hybrid quantum mechanics/molecular mechanics simulations. We show that the unusually long excited state lifetime (broad lifetime distribution centered at ∼300 picoseconds) is due to the interactions between the isomerizing pyrrole ring D and an adjacent conserved Tyr142. The decay kinetics shows a strongly distributed character which is imposed by the nonexponential protein dynamics. Our findings offer a mechanistic insight into how the quantum efficiency of the bilin photoisomerization is tuned by the protein environment, thereby providing a structural framework for engineering bilin-based optical agents for imaging and optogenetics applications.
Collapse
|
26
|
Velazquez Escobar F, Kneip C, Michael N, Hildebrandt T, Tavraz N, Gärtner W, Hughes J, Friedrich T, Scheerer P, Mroginski MA, Hildebrandt P. The Lumi-R Intermediates of Prototypical Phytochromes. J Phys Chem B 2020; 124:4044-4055. [PMID: 32330037 DOI: 10.1021/acs.jpcb.0c01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytochromes are photoreceptors that upon light absorption initiate a physiological reaction cascade. The starting point is the photoisomerization of the tetrapyrrole cofactor in the parent Pr state, followed by thermal relaxation steps culminating in activation of the physiological signal. Here we have employed resonance Raman (RR) spectroscopy to study the chromophore structure in the primary photoproduct Lumi-R, trapped between 130 and 200 K. The investigations covered phytochromes from plants (phyA) and prokaryotes (Cph1, Agp1, CphB, and RpBphP2) including phytochromobilin (PΦB), phycocyanobilin (PCB), and biliverdin (BV). In PΦB- and PCB-binding phyA and Cph1, two Lumi-R states (Lumi-R1, Lumi-R2) were identified and discussed in terms of sequential and parallel reaction models. In Lumi-R1, the chromophore structural changes are restricted to the C-D methine bridge isomerization site but extended throughout the chromophore in Lumi-R2. Formation and decay kinetics as well as photochemical activity depend on the specific protein-chromophore interactions and thus account for the different distribution between Lumi-R1 and Lumi-R2 in the photostationary mixtures of the various PΦB(PCB)-binding phytochromes. For BV-binding bacteriophytochromes, only a single Lumi-R(BV) state was found. In this state, which is similar for Agp1, CphB, and RpBphP2, the chromophore structural changes comprise major torsions of the C-D methine bridge but also perturbations at the A-B methine bridge remote from the isomerization site. The different structures of the photoproducts in PΦB(PCB)-binding phytochromes and BV-binding bacteriophytochromes are attributed to the different disposition of ring D upon isomerization, which leads to distinct protein-chromophore interactions in the Lumi-R states of these two classes of phytochromes.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Christa Kneip
- Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Thomas Hildebrandt
- Universitätsklinikum Düsseldorf, Klinik für Neurologie, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Neslihan Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Universität Leipzig, Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Jon Hughes
- Plant Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
27
|
Abstract
Extremely short X-ray pulses from a free-electron laser are helping to clarify how phytochromes respond to light, but puzzles remain.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
28
|
Claesson E, Wahlgren WY, Takala H, Pandey S, Castillon L, Kuznetsova V, Henry L, Panman M, Carrillo M, Kübel J, Nanekar R, Isaksson L, Nimmrich A, Cellini A, Morozov D, Maj M, Kurttila M, Bosman R, Nango E, Tanaka R, Tanaka T, Fangjia L, Iwata S, Owada S, Moffat K, Groenhof G, Stojković EA, Ihalainen JA, Schmidt M, Westenhoff S. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. eLife 2020; 9:53514. [PMID: 32228856 PMCID: PMC7164956 DOI: 10.7554/elife.53514] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/13/2020] [Indexed: 01/27/2023] Open
Abstract
Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light. Plants adapt to the availability of light throughout their lives because it regulates so many aspects of their growth and reproduction. To detect the level of light, plant cells use proteins called phytochromes, which are also found in some bacteria and fungi. Phytochrome proteins change shape when they are exposed to red light, and this change alters the behaviour of the cell. The red light is absorbed by a molecule known as chromophore, which is connected to a region of the phytochrome called the PHY-tongue. This region undergoes one of the key structural changes that occur when the phytochrome protein absorbs light, turning from a flat sheet into a helix. Claesson, Wahlgren, Takala et al. studied the structure of a bacterial phytochrome protein almost immediately after shining a very brief flash of red light using a laser. The experiments revealed that the structure of the protein begins to change within a trillionth of a second: specifically, the chromophore twists, which disrupts its attachment to the protein, freeing the protein to change shape. Claesson, Wahlgren, Takala et al. note that this structure is likely a very short-lived intermediate state, which however triggers more changes in the overall shape change of the protein. One feature of the rearrangement is the disappearance of a particular water molecule. This molecule can be found at the core of many different phytochrome structures and interacts with several parts of the chromophore and the phytochrome protein. It is unclear why the water molecule is lost, but given how quickly this happens after the red light is applied it is likely that this disappearance is an integral part of the reshaping process. Together these events disrupt the interactions between the chromophore and the PHY-tongue, enabling the PHY-tongue to change shape and alter the structure of the phytochrome protein. Understanding and controlling this process could allow scientists to alter growth patterns in plants, such as crops or weeds.
Collapse
Affiliation(s)
- Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Valentyna Kuznetsova
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Melissa Carrillo
- Department of Biology, Northeastern Illinois University, Chicago, United States
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rahul Nanekar
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dmitry Morozov
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Michał Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Moona Kurttila
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eriko Nango
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Rie Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Tomoyuki Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Luo Fangjia
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Gerrit Groenhof
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, United States
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Ultrafast Backbone Protonation in Channelrhodopsin-1 Captured by Polarization Resolved Fs Vis-pump-IR-Probe Spectroscopy and Computational Methods. Molecules 2020; 25:molecules25040848. [PMID: 32075128 PMCID: PMC7070883 DOI: 10.3390/molecules25040848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. Channelrhodopsin-1 in Chlamydomonas augustae exhibits a 100 fs photoisomerization and a protonated counterion complex. By polarization resolved ultrafast spectroscopy in the mid-IR we show that the initial reaction of the retinal is accompanied by changes in the protein backbone and ultrafast protonation changes at the counterion complex comprising Asp299 and Glu169. In combination with homology modelling and quantum mechanics/molecular mechanics (QM/MM) geometry optimization we assign the protonation dynamics to ultrafast deprotonation of Glu169, and transient protonation of the Glu169 backbone, followed by a proton transfer from the backbone to the carboxylate group of Asp299 on a timescale of tens of picoseconds. The second proton transfer is not related to retinal dynamics and reflects pure protein changes in the first photoproduct. We assume these protein dynamics to be the first steps in a cascade of protein-wide changes resulting in channel conductivity.
Collapse
|
30
|
Villegas-Escobar N, Matute RA. The Keto-Enol Tautomerism of Biliverdin in Bacteriophytochrome: Could it Explain the Bathochromic Shift in the Pfr Form? †. Photochem Photobiol 2020; 97:99-109. [PMID: 33053203 DOI: 10.1111/php.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/08/2020] [Indexed: 01/21/2023]
Abstract
Phytochromes are ubiquitous photoreceptors found in plants, eukaryotic algae, bacteria and fungi. Particularly, when bacteriophytochrome is irradiated with light, a Z-to-E (photo)isomerization takes place in the biliverdin chromophore as part of the Pr-to-Pfr conversion. This photoisomerization is concomitant with a bathochromic shift in the Q-band. Based on experimental evidence, we studied a possible keto-enol tautomerization of BV, as an alternative reaction channel after its photoisomerization. In this contribution, the noncatalyzed and water-assisted reaction pathways for the lactam-lactim interconversion through consecutive keto-enol tautomerization of a model BV species were studied deeply. It was found that in the absence of water molecules, the proton transfer reaction is unable to take place at normal conditions, due to large activation energies, and the endothermic formation of lactim derivatives prevents its occurrence. However, when a water molecule assists the process by catalyzing the proton transfer reaction, the activation free energy lowers considerably. The drastic lowering in the activation energy for the keto-enol tautomerism is due to the stabilization of the water moiety through hydrogen bonds along the reaction coordinate. The absorption spectra were computed for all tautomers. It was found that the UV-visible absorption bands are in reasonable agreement with the experimental data. Our results suggest that although the keto-enol equilibrium is likely favoring the lactam tautomer, the equilibrium could eventually be shifted in favor of the lactim, as it has been reported to occur in the dark reversion mechanism of bathy phytochromes.
Collapse
Affiliation(s)
- Nery Villegas-Escobar
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile
| | - Ricardo A Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
31
|
Kübel J, Chenchiliyan M, Ooi SA, Gustavsson E, Isaksson L, Kuznetsova V, Ihalainen JA, Westenhoff S, Maj M. Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome. Phys Chem Chem Phys 2020; 22:9195-9203. [DOI: 10.1039/c9cp06995j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infra-red spectroscopy advances our understanding of how photosensory proteins carry their function.
Collapse
Affiliation(s)
- Joachim Kübel
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Manoop Chenchiliyan
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Valentyna Kuznetsova
- Nanoscience Center
- Department of Biological and Environmental Science
- University of Jyväskylä
- Jyväskylä 40014
- Finland
| | - Janne A. Ihalainen
- Nanoscience Center
- Department of Biological and Environmental Science
- University of Jyväskylä
- Jyväskylä 40014
- Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Michał Maj
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| |
Collapse
|
32
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2019; 96:750-767. [PMID: 31869438 DOI: 10.1111/php.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
Abstract
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D Bekasova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from Nostoc. Int J Mol Sci 2019; 20:ijms20153656. [PMID: 31357417 PMCID: PMC6696110 DOI: 10.3390/ijms20153656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Unlike canonical phytochromes, the GAF domain of cyanobacteriochromes (CBCRs) can bind bilins autonomously and is sufficient for functional photocycles. Despite the astonishing spectral diversity of CBCRs, the GAF1 domain of the three-GAF-domain photoreceptor all2699 from the cyanobacterium Nostoc 7120 is the only CBCR-GAF known that converts from a red-absorbing (Pr) dark state to a far-red-absorbing (Pfr) photoproduct, analogous to the more conservative phytochromes. Here we report a solid-state NMR spectroscopic study of all2699g1 in its Pr state. Conclusive NMR evidence unveils a particular stereochemical heterogeneity at the tetrahedral C31 atom, whereas the crystal structure shows exclusively the R-stereochemistry at this chiral center. Additional NMR experiments were performed on a construct comprising the GAF1 and GAF2 domains of all2699, showing a greater precision in the chromophore-protein interactions in the GAF1-2 construct. A 3D Pr structural model of the all2699g1-2 construct predicts a tongue-like region extending from the GAF2 domain (akin to canonical phytochromes) in the direction of the chromophore, shielding it from the solvent. In addition, this stabilizing element allows exclusively the R-stereochemistry for the chromophore-protein linkage. Site-directed mutagenesis performed on three conserved motifs in the hairpin-like tip confirms the interaction of the tongue region with the GAF1-bound chromophore.
Collapse
|
34
|
Rumfeldt JA, Takala H, Liukkonen A, Ihalainen JA. UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes. Photochem Photobiol 2019; 95:969-979. [DOI: 10.1111/php.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica A. Rumfeldt
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| | - Heikki Takala
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
- Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| | - Alli Liukkonen
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| | - Janne A. Ihalainen
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
35
|
Konold PE, van Stokkum IHM, Muzzopappa F, Wilson A, Groot ML, Kirilovsky D, Kennis JTM. Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. J Am Chem Soc 2019; 141:520-530. [PMID: 30511841 PMCID: PMC6331140 DOI: 10.1021/jacs.8b11373] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 01/10/2023]
Abstract
The orange carotenoid protein (OCP) is a two-domain photoactive protein that noncovalently binds an echinenone (ECN) carotenoid and mediates photoprotection in cyanobacteria. In the dark, OCP assumes an orange, inactive state known as OCPO; blue light illumination results in the red active state, known as OCPR. The OCPR state is characterized by large-scale structural changes that involve dissociation and separation of C-terminal and N-terminal domains accompanied by carotenoid translocation into the N-terminal domain. The mechanistic and dynamic-structural relations between photon absorption and formation of the OCPR state have remained largely unknown. Here, we employ a combination of time-resolved UV-visible and (polarized) mid-infrared spectroscopy to assess the electronic and structural dynamics of the carotenoid and the protein secondary structure, from femtoseconds to 0.5 ms. We identify a hereto unidentified carotenoid excited state in OCP, the so-called S* state, which we propose to play a key role in breaking conserved hydrogen-bond interactions between carotenoid and aromatic amino acids in the binding pocket. We arrive at a comprehensive reaction model where the hydrogen-bond rupture with conserved aromatic side chains at the carotenoid β1-ring in picoseconds occurs at a low yield of <1%, whereby the β1-ring retains a trans configuration with respect to the conjugated π-electron chain. This event initiates structural changes at the N-terminal domain in 1 μs, which allow the carotenoid to translocate into the N-terminal domain in 10 μs. We identified infrared signatures of helical elements that dock on the C-terminal domain β-sheet in the dark and unfold in the light to allow domain separation. These helical elements do not move within the experimental range of 0.5 ms, indicating that domain separation occurs on longer time scales, lagging carotenoid translocation by at least 2 decades of time.
Collapse
Affiliation(s)
- Patrick E. Konold
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Marie-Louise Groot
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - John T. M. Kennis
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
36
|
Stensitzki T, Yang Y, Wölke AL, Knapp EW, Hughes J, Mroginski MA, Heyne K. Influence of Heterogeneity on the Ultrafast Photoisomerization Dynamics of Pfr in Cph1 Phytochrome. Photochem Photobiol 2018; 93:703-712. [PMID: 28500700 DOI: 10.1111/php.12743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/03/2017] [Indexed: 01/23/2023]
Abstract
Photoisomerization of a protein-bound chromophore is the basis of light sensing and signaling in many photoreceptors. Phytochrome photoreceptors can be photoconverted reversibly between the Pr and Pfr states through photoisomerization of the methine bridge between rings C and D. Ground-state heterogeneity of the chromophore has been reported for both Pr and Pfr. Here, we report ultrafast visible (Vis) pump-probe and femtosecond polarization-resolved Vis pump-infrared (IR) probe studies of the Pfr photoreaction in native and 13 C/15 N-labeled Cph1 phytochrome with unlabeled PCB chromophore, demonstrating different S0 substates, Pfr-I and Pfr-II, with distinct IR absorptions, orientations and dynamics of the carbonyl vibration of ring D. We derived time constants of 0.24 ps, 0.7 ps and 6 ps, describing the complete initial photoreaction. We identified an isomerizing pathway with 0.7 ps for Pfr-I, and silent dynamics with 6 ps for Pfr-II. We discuss different origins of the Pfr substates, and favor different facial orientations of ring D. The model provides a quantum yield for Pfr-I of 38%, in line with ~35% ring D rotation in the electronic excited state. We tentatively assign the silent form Pfr-II to a dark-adapted state that can convert to Pfr-I upon light absorption.
Collapse
Affiliation(s)
- Till Stensitzki
- Department of Physics, Free University Berlin, Berlin, Germany
| | - Yang Yang
- Department of Physics, Free University Berlin, Berlin, Germany
| | - Anna Lena Wölke
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Ernst-Walter Knapp
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig Universität, Gießen, Germany
| | | | - Karsten Heyne
- Department of Physics, Free University Berlin, Berlin, Germany
| |
Collapse
|
37
|
Soeta T, Ohashi N, Kobayashi T, Sakata Y, Suga T, Ukaji Y. Synthesis of Sterically Fixed Phytochrome Chromophore Derivatives Bearing a 15 E- Fixed or 15 E- Anti- Fixed CD-Ring Component. J Org Chem 2018; 83:10743-10748. [PMID: 30129757 DOI: 10.1021/acs.joc.8b01252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To analyze the structure and function of phytochrome chromophores, we have been synthesizing natural and unnatural bilin chromophores of phytochromes. In this manuscript, we report the synthesis of sterically fixed 15 E- fixed 18Et-biliverdin (BV) and 15 E- anti-fixed 18Et-BV derivatives. The key reaction is the introduction of an sp3 carbon alkyl chain bearing a leaving group at the meso-position of the CD-ring component by using the corresponding Grignard reagents in the presence of LiCl.
Collapse
Affiliation(s)
- Takahiro Soeta
- Division of Material Sciences, Graduate School of Natural Science and Technology , Kanazawa University , Kakuma, Kanazawa 920-1192 , Japan
| | - Nobuhiko Ohashi
- Division of Material Sciences, Graduate School of Natural Science and Technology , Kanazawa University , Kakuma, Kanazawa 920-1192 , Japan
| | - Toshiharu Kobayashi
- Division of Material Sciences, Graduate School of Natural Science and Technology , Kanazawa University , Kakuma, Kanazawa 920-1192 , Japan
| | - Yoko Sakata
- Division of Material Sciences, Graduate School of Natural Science and Technology , Kanazawa University , Kakuma, Kanazawa 920-1192 , Japan
| | - Takuya Suga
- Division of Material Sciences, Graduate School of Natural Science and Technology , Kanazawa University , Kakuma, Kanazawa 920-1192 , Japan
| | - Yutaka Ukaji
- Division of Material Sciences, Graduate School of Natural Science and Technology , Kanazawa University , Kakuma, Kanazawa 920-1192 , Japan
| |
Collapse
|
38
|
Ihalainen JA, Gustavsson E, Schroeder L, Donnini S, Lehtivuori H, Isaksson L, Thöing C, Modi V, Berntsson O, Stucki-Buchli B, Liukkonen A, Häkkänen H, Kalenius E, Westenhoff S, Kottke T. Chromophore–Protein Interplay during the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy. J Am Chem Soc 2018; 140:12396-12404. [DOI: 10.1021/jacs.8b04659] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janne A. Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Lea Schroeder
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Serena Donnini
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Heli Lehtivuori
- Nanoscience Center, Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Christian Thöing
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Vaibhav Modi
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Brigitte Stucki-Buchli
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Alli Liukkonen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Heikki Häkkänen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Elina Kalenius
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
39
|
Kirpich JS, Mix LT, Martin SS, Rockwell NC, Lagarias JC, Larsen DS. Protonation Heterogeneity Modulates the Ultrafast Photocycle Initiation Dynamics of Phytochrome Cph1. J Phys Chem Lett 2018; 9:3454-3462. [PMID: 29874080 PMCID: PMC6247788 DOI: 10.1021/acs.jpclett.8b01133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytochrome proteins utilize ultrafast photoisomerization of a linear tetrapyrrole chromophore to detect the ratio of red to far-red light. Femtosecond photodynamics in the PAS-GAF-PHY photosensory core of the Cph1 phytochrome from Synechocystis sp. PCC6803 (Cph1Δ) were resolved with a dual-excitation-wavelength-interleaved pump-probe (DEWI) approach with two excitation wavelengths (600 and 660 nm) at three pH values (6.5, 8.0, and 9.0). Observed spectral and kinetic heterogeneity in the excited-state dynamics were described with a self-consistent model comprised of three spectrally distinct populations with different protonation states (Pr-I, Pr-II, and Pr-III), each composed of multiple kinetically distinct subpopulations. Apparent partitioning among these populations is dictated by pH, temperature, and excitation wavelength. Our studies provide insight into photocycle initiation dynamics at physiological temperatures, implicate the low-pH/low-temperature Pr-I state as the photoactive state in vitro, and implicate an internal hydrogen-bonding network in regulating the photochemical quantum yield.
Collapse
Affiliation(s)
- Julia S. Kirpich
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, 95616
| | - L. Tyler Mix
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, 95616
| | - Shelley S. Martin
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616
| | - Nathan C. Rockwell
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616
| | - J. Clark Lagarias
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616
| | - Delmar S. Larsen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, 95616
| |
Collapse
|
40
|
Lenngren N, Edlund P, Takala H, Stucki-Buchli B, Rumfeldt J, Peshev I, Häkkänen H, Westenhoff S, Ihalainen JA. Coordination of the biliverdin D-ring in bacteriophytochromes. Phys Chem Chem Phys 2018; 20:18216-18225. [DOI: 10.1039/c8cp01696h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrational spectroscopy and crystallography experiments provide a basis for understanding the isomerization reaction in phytochrome proteins.
Collapse
Affiliation(s)
- Nils Lenngren
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology
- Biochemistry and Biophysics
- University of Gothenburg
- SE-40530 Gothenburg
- Sweden
| | - Heikki Takala
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
- University of Helsinki
| | - Brigitte Stucki-Buchli
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Jessica Rumfeldt
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Ivan Peshev
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Heikki Häkkänen
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology
- Biochemistry and Biophysics
- University of Gothenburg
- SE-40530 Gothenburg
- Sweden
| | - Janne A. Ihalainen
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| |
Collapse
|
41
|
Gozem S, Luk HL, Schapiro I, Olivucci M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem Rev 2017; 117:13502-13565. [DOI: 10.1021/acs.chemrev.7b00177] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hoi Ling Luk
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
42
|
Bizimana LA, Epstein J, Brazard J, Turner DB. Conformational Homogeneity in the P r Isomer of Phytochrome Cph1. J Phys Chem B 2017; 121:2622-2630. [PMID: 28282147 DOI: 10.1021/acs.jpcb.7b02180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous time-resolved studies of the Pr to Pfr photoisomerization in phytochrome Cph1 have revealed multiphasic excited-state decay kinetics. It remains unclear whether these kinetics arise from multiple ground-state conformational subpopulations or from a single ground-state conformation that undergoes an excited-state photoisomerization process-either branching on the excited state or relaxing through multiple sequential intermediates. Many studies have attempted to resolve this debate by fitting the measured dynamics to proposed kinetic models, arriving at different conclusions. Here we probe spectral signatures of ground-state heterogeneity of Pr. Two-dimensional electronic spectra display negligible inhomogeneous line broadening, and vibrational coherence spectra extracted from transient absorption measurements do not contain nodes and phase shifts at the fluorescence maximum. These spectroscopic results support the homogeneous model, in which the primary photochemical transformation of Pr to Lumi-R occurs adiabatically on the excited-state potential energy surface.
Collapse
Affiliation(s)
- Laurie A Bizimana
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Jordan Epstein
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Johanna Brazard
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
43
|
Velazquez Escobar F, Lang C, Takiden A, Schneider C, Balke J, Hughes J, Alexiev U, Hildebrandt P, Mroginski MA. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. J Phys Chem B 2016; 121:47-57. [DOI: 10.1021/acs.jpcb.6b09600] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco Velazquez Escobar
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Christina Lang
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Aref Takiden
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Constantin Schneider
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jens Balke
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jon Hughes
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
44
|
Stöppler D, Song C, van Rossum BJ, Geiger MA, Lang C, Mroginski MA, Jagtap AP, Sigurdsson ST, Matysik J, Hughes J, Oschkinat H. Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel Stöppler
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| | - Chen Song
- Universität Leipzig; Institut für Analytische Chemie; Linnéstr. 3 04103 Leipzig Germany
| | - Barth-Jan van Rossum
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Michel-Andreas Geiger
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| | - Christina Lang
- Justus-Liebig-Universität Gießen; Institut für Pflanzenphysiologie; Senckenbergstr. 3 35390 Gießen Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 135 10623 Berlin Germany
| | | | | | - Jörg Matysik
- Universität Leipzig; Institut für Analytische Chemie; Linnéstr. 3 04103 Leipzig Germany
| | - Jon Hughes
- Justus-Liebig-Universität Gießen; Institut für Pflanzenphysiologie; Senckenbergstr. 3 35390 Gießen Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| |
Collapse
|
45
|
Stöppler D, Song C, van Rossum BJ, Geiger MA, Lang C, Mroginski MA, Jagtap AP, Sigurdsson ST, Matysik J, Hughes J, Oschkinat H. Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Angew Chem Int Ed Engl 2016; 55:16017-16020. [DOI: 10.1002/anie.201608119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/30/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Stöppler
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| | - Chen Song
- Universität Leipzig; Institut für Analytische Chemie; Linnéstr. 3 04103 Leipzig Germany
| | - Barth-Jan van Rossum
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Michel-Andreas Geiger
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| | - Christina Lang
- Justus-Liebig-Universität Gießen; Institut für Pflanzenphysiologie; Senckenbergstr. 3 35390 Gießen Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 135 10623 Berlin Germany
| | | | | | - Jörg Matysik
- Universität Leipzig; Institut für Analytische Chemie; Linnéstr. 3 04103 Leipzig Germany
| | - Jon Hughes
- Justus-Liebig-Universität Gießen; Institut für Pflanzenphysiologie; Senckenbergstr. 3 35390 Gießen Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie (FMP); NMR-supported Structural Biology; Robert-Rössle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Fachbereich BCP; Takustr. 3 14195 Berlin Germany
| |
Collapse
|
46
|
Wang C, Flanagan ML, McGillicuddy RD, Zheng H, Ginzburg AR, Yang X, Moffat K, Engel GS. Bacteriophytochrome Photoisomerization Proceeds Homogeneously Despite Heterogeneity in Ground State. Biophys J 2016; 111:2125-2134. [PMID: 27851937 PMCID: PMC5113153 DOI: 10.1016/j.bpj.2016.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 11/21/2022] Open
Abstract
Phytochromes are red/far-red photoreceptors that are widely distributed in plants and prokaryotes. Ultrafast photoisomerization of a double bond in a biliverdin cofactor or other linear tetrapyrrole drives their photoactivity, but their photodynamics are only partially understood. Multiexponential dynamics were observed in previous ultrafast spectroscopic studies and were attributed to heterogeneous populations of the pigment-protein complex. In this work, two-dimensional photon echo spectroscopy was applied to study dynamics of the bacteriophytochromes RpBphP2 and PaBphP. Two-dimensional photon echo spectroscopy can simultaneously resolve inhomogeneity in ensembles and fast dynamics by correlating pump wavelength with the emitted signal wavelength. The distribution of absorption and emission energies within the same state indicates an ensemble of heterogeneous protein environments that are spectroscopically distinct. However, the lifetimes of the dynamics are uniform across the ensemble, suggesting a homogeneous model involving sequential intermediates for the initial photodynamics of isomerization.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Chemistry, The James Franck Institute, Institute for Biophysical Dyanmics, The University of Chicago, Chicago, Illinois
| | - Moira L Flanagan
- Graduate Program in Biophysical Science, The James Franck Institute, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Ryan D McGillicuddy
- Department of Chemistry, The James Franck Institute, Institute for Biophysical Dyanmics, The University of Chicago, Chicago, Illinois
| | - Haibin Zheng
- Department of Chemistry, The James Franck Institute, Institute for Biophysical Dyanmics, The University of Chicago, Chicago, Illinois
| | - Alan Ruvim Ginzburg
- Department of Chemistry, The James Franck Institute, Institute for Biophysical Dyanmics, The University of Chicago, Chicago, Illinois
| | - Xiaojing Yang
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Gregory S Engel
- Department of Chemistry, The James Franck Institute, Institute for Biophysical Dyanmics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
47
|
Singer P, Wörner S, Lamparter T, Diller R. Spectroscopic Investigation on the Primary Photoreaction of Bathy Phytochrome Agp2-Pr ofAgrobacterium fabrum: Isomerization in a pH-dependent H-bond Network. Chemphyschem 2016; 17:1288-97. [DOI: 10.1002/cphc.201600199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Singer
- Department of Physics; University of Kaiserslautern; Erwin-Schrödinger-Strasse, Geb. 46 67663 Kaiserslautern Germany), Fax: +49-631-205-3902
| | - Sybille Wörner
- Botanical Institute; Karlsruhe Institute of Technology; Kaiserstraße 2 76131 Karlsruhe Germany
| | - Tilman Lamparter
- Botanical Institute; Karlsruhe Institute of Technology; Kaiserstraße 2 76131 Karlsruhe Germany
| | - Rolf Diller
- Department of Physics; University of Kaiserslautern; Erwin-Schrödinger-Strasse, Geb. 46 67663 Kaiserslautern Germany), Fax: +49-631-205-3902
| |
Collapse
|
48
|
High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter. Sci Rep 2016; 6:22256. [PMID: 26924651 PMCID: PMC4770290 DOI: 10.1038/srep22256] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/10/2016] [Indexed: 12/04/2022] Open
Abstract
Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.
Collapse
|
49
|
|
50
|
Falklöf O, Durbeej B. Steric Effects Govern the Photoactivation of Phytochromes. Chemphyschem 2016; 17:954-7. [DOI: 10.1002/cphc.201501080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Olle Falklöf
- Division of Theoretical Chemistry, IFM; Linköping University; 581 83 Linköping Sweden
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM; Linköping University; 581 83 Linköping Sweden
| |
Collapse
|