1
|
Adams HR, Svistunenko DA, Wilson MT, Fujii S, Strange RW, Hardy ZA, Vazquez PA, Dabritz T, Streblow GJ, Andrew CR, Hough MA. A Heme Pocket Aromatic Quadrupole Modulates Gas Binding to Cytochrome c'-β: Implications for NO Sensors. J Biol Chem 2023:104742. [PMID: 37100286 DOI: 10.1016/j.jbc.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2, is fundamental to enzymology, biotechnology and human health. Cytochromes c´ (cyts c´) are a group of putative NO-binding heme proteins that fall into two families: the well characterised four alpha helix bundle fold (cyts c´-α) and an unrelated family with a largely beta sheet fold (cyts c´-β) resembling that of cytochromes P460. A recent structure of cyt c´-β from Methylococcus capsulatus Bath (McCP-β) revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas binding site. This feature, dubbed the "Phe cap", is highly conserved within the sequences of other cyts c´-β, but is absent in their close homologues, the hydroxylamine oxidizing cytochromes P460, although some do contain a single Phe residue. Here we report an integrated structural, spectroscopic, and kinetic characterization of McCP-β complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron rich aromatic ring face of Phe 32 towards distally-bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO-sensor, soluble guanylate cyclase (sGC). Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-β, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Richard W Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Zoe A Hardy
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Priscilla A Vazquez
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Tyler Dabritz
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Gabriel J Streblow
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Colin R Andrew
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA.
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
2
|
Wu G, Sharina I, Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front Mol Biosci 2022; 9:1007768. [PMID: 36304925 PMCID: PMC9592903 DOI: 10.3389/fmolb.2022.1007768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide (NO), carbon monoxide (CO), oxygen (O2), hydrogen sulfide (H2S) are gaseous molecules that play important roles in the physiology and pathophysiology of eukaryotes. Tissue concentrations of these physiologically relevant gases vary remarkable from nM range for NO to high μM range of O2. Various hemoproteins play a significant role in sensing and transducing cellular signals encoded by gaseous molecules or in transporting them. Soluble guanylyl cyclase (sGC) is a hemoprotein that plays vital roles in a wide range of physiological functions and combines the functions of gaseous sensor and signal transducer. sGC uniquely evolved to sense low non-toxic levels of NO and respond to elevated NO levels by increasing its catalytic ability to generate the secondary signaling messenger cyclic guanosine monophosphate (cGMP). This review discusses sGC's gaseous ligand selectivity and the molecular basis for sGC function as high-affinity and selectivity NO receptor. The effects of other gaseous molecules and small molecules of cellular origin on sGC's function are also discussed.
Collapse
Affiliation(s)
- Gang Wu
- Hematology-Oncology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States,*Correspondence: Gang Wu, ; Emil Martin,
| | - Iraida Sharina
- Cardiology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States
| | - Emil Martin
- Cardiology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States,*Correspondence: Gang Wu, ; Emil Martin,
| |
Collapse
|
3
|
Fujii S, Kobayashi S, Yoshimi T, Kobayashi Y, Wakai S, Yamanaka M, Sambongi Y. Thermal stability tuning without affecting gas-binding function of Thermochromatium tepidum cytochrome c'. Biosci Biotechnol Biochem 2021; 85:1846-1852. [PMID: 34124760 DOI: 10.1093/bbb/zbab108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Hydrogenophilus thermoluteolus, Thermochromatium tepidum, and Allochromatium vinosum, which grow optimally at 52, 49, and 25 °C, respectively, have homologous cytochromes c' (PHCP, TTCP, and AVCP, respectively) exhibiting at least 50% amino acid sequence identity. Here, the thermal stability of the recombinant TTCP protein was first confirmed to be between those of PHCP and AVCP. Structure comparison of the 3 proteins and a mutagenesis study on TTCP revealed that hydrogen bonds and hydrophobic interactions between the heme and amino acid residues were responsible for their stability differences. In addition, PHCP, TTCP, and AVCP and their variants with altered stability similarly bound nitric oxide and carbon oxide, but not oxygen. Therefore, the thermal stability of TTCP together with PHCP and AVCP can be tuned through specific interactions around the heme without affecting their gas-binding function. These cytochromes c' will be useful as specific gas sensor proteins exhibiting a wide thermal stability range.
Collapse
Affiliation(s)
- Sotaro Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Satoru Kobayashi
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Taisuke Yoshimi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Satoshi Wakai
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan
| | - Masaru Yamanaka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshihiro Sambongi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
A new paradigm for gaseous ligand selectivity of hemoproteins highlighted by soluble guanylate cyclase. J Inorg Biochem 2020; 214:111267. [PMID: 33099233 DOI: 10.1016/j.jinorgbio.2020.111267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and oxygen (O2) are important physiological messengers whose concentrations vary in a remarkable range, [NO] typically from nM to several μM while [O2] reaching to hundreds of μM. One of the machineries evolved in living organisms for gas sensing is sensor hemoproteins whose conformational change upon gas binding triggers downstream response cascades. The recently proposed "sliding scale rule" hypothesis provides a general interpretation for gaseous ligand selectivity of hemoproteins, identifying five factors that govern gaseous ligand selectivity. Hemoproteins have intrinsic selectivity for the three gases due to a neutral proximal histidine ligand while proximal strain of heme and distal steric hindrance indiscriminately adjust the affinity of these three gases for heme. On the other hand, multiple-step NO binding and distal hydrogen bond donor(s) specifically enhance affinity for NO and O2, respectively. The "sliding scale rule" hypothesis provides clear interpretation for dramatic selectivity for NO over O2 in soluble guanylate cyclase (sGC) which is an important example of sensor hemoproteins and plays vital roles in a wide range of physiological functions. The "sliding scale rule" hypothesis has so far been validated by all experimental data and it may guide future designs for heme-based gas sensors.
Collapse
|
5
|
Brown BN, Robinson KJ, Durfee QC, Kekilli D, Hough MA, Andrew CR. Hydroxylamine Complexes of Cytochrome c': Influence of Heme Iron Redox State on Kinetic and Spectroscopic Properties. Inorg Chem 2020; 59:14162-14170. [PMID: 32970420 DOI: 10.1021/acs.inorgchem.0c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxylamine (NH2OH or HA) is a redox-active nitrogen oxide that occurs as a toxic intermediate in the oxidation of ammonium by nitrifying and methanotrophic bacteria. Within ammonium containing environments, HA is generated by ammonia monooxygenase (nitrifiers) or methane monooxygenase (methanotrophs). Subsequent oxidation of HA is catalyzed by heme proteins, including cytochromes P460 and multiheme hydroxylamine oxidoreductases, the former contributing to emissions of N2O, an ozone-depleting greenhouse gas. A heme-HA complex is also a proposed intermediate in the reduction of nitrite to ammonia by cytochrome c nitrite reductase. Despite the importance of heme-HA complexes within the biogeochemical nitrogen cycle, fundamental aspects of their coordination chemistry remain unknown, including the effect of the Fe redox state on heme-HA affinity, kinetics, and spectroscopy. Using stopped-flow UV-vis and resonance Raman spectroscopy, we investigated HA complexes of the L16G distal pocket variant of Alcaligenes xylosoxidans cytochrome c'-α (L16G AxCP-α), a pentacoordinate c-type cytochrome that we show binds HA in its Fe(III) (Kd ∼ 2.5 mM) and Fe(II) (Kd = 0.0345 mM) states. The ∼70-fold higher HA affinity of the Fe(II) state is due mostly to its lower koff value (0.0994 s-1 vs 11 s-1), whereas kon values for Fe(II) (2880 M-1 s-1) and Fe(III) (4300 M-1 s-1) redox states are relatively similar. A comparison of the HA and imidazole affinities of L16G AxCP-α was also used to predict the influence of Fe redox state on HA binding to other proteins. Although HA complexes of L16G AxCP-α decompose via redox reactions, the lifetime of the Fe(II)HA complex was prolonged in the presence of excess reductant. Spectroscopic parameters determined for the Fe(II)HA complex include the N-O stretching vibration of the NH2OH ligand, ν(N-O) = 906 cm-1. Overall, the kinetic trends and spectroscopic benchmarks from this study provide a foundation for future investigations of heme-HA reaction mechanisms.
Collapse
Affiliation(s)
- Brianna N Brown
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Kelsey J Robinson
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Quentin C Durfee
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Demet Kekilli
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Colin R Andrew
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| |
Collapse
|
6
|
Négrerie M. Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 2020; 11:868-893. [PMID: 30957812 DOI: 10.1039/c8mt00337h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric heme proteins can fulfill a very large number of different functions thanks to the remarkable chemical versatility of heme through the entire living kingdom. Their efficacy resides in the ability of heme to transmit both iron coordination changes and iron redox state changes to the protein structure. Besides the properties of iron, proteins may impose a particular heme geometry leading to distortion, which allows selection or modulation of the electronic properties of heme. This review focusses on the mechanisms of allosteric protein activation triggered by heme coordination changes following diatomic binding to proteins as diverse as the human NO-receptor, cytochromes, NO-transporters and sensors, and a heme-activated potassium channel. It describes at the molecular level the chemical capabilities of heme to achieve very different tasks and emphasizes how the properties of heme are determined by the protein structure. Particularly, this reviews aims at giving an overview of the exquisite adaptability of heme, from bacteria to mammals.
Collapse
Affiliation(s)
- Michel Négrerie
- Laboratoire d'Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, 91120 Palaiseau, France.
| |
Collapse
|
7
|
Adams HR, Krewson C, Vardanega JE, Fujii S, Moreno-Chicano T, Moreno T, Chicano, Sambongi Y, Svistunenko D, Paps J, Andrew CR, Hough MA. One fold, two functions: cytochrome P460 and cytochrome c'-β from the methanotroph Methylococcus capsulatus (Bath). Chem Sci 2019; 10:3031-3041. [PMID: 30996884 PMCID: PMC6427953 DOI: 10.1039/c8sc05210g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/20/2019] [Indexed: 11/21/2022] Open
Abstract
Nature is adept at utilising highly similar protein folds to carry out very different functions, yet the mechanisms by which this functional divergence occurs remain poorly characterised. In certain methanotrophic bacteria, two homologous pentacoordinate c-type heme proteins have been identified: a cytochrome P460 (cyt P460) and a cytochrome c'-β (cyt cp-β). Cytochromes P460 are able to convert hydroxylamine to nitrous oxide (N2O), a potent greenhouse gas. This reactivity is similar to that of hydroxylamine oxidoreductase (HAO), which is a key enzyme in nitrifying and methanotrophic bacteria. Cyt P460 and HAO both have unusual protein-heme cross-links, formed by a Tyr residue in HAO and a Lys in cyt P460. In contrast, cyts cp-β (the only known cytochromes c' with a β-sheet fold) lack this crosslink and appears to be optimized for binding non-polar molecules (including NO and CO) without enzymatic conversion. Our bioinformatics analysis supports the proposal that cyt cp-β may have evolved from cyt P460 via a gene duplication event. Using high-resolution X-ray crystallography, UV-visible absorption, electron paramagnetic resonance (EPR) and resonance Raman spectroscopy, we have characterized the overall protein folding and active site structures of cyt cp-β and cyt P460 from the obligate methanotroph, Methylococcus capsulatus (Bath). These proteins display a similar β-sheet protein fold, together with a pattern of changes to the heme pocket regions and localised tertiary structure that have converted a hydroxylamine oxidizing enzyme into a gas-binding protein. Structural comparisons provide insights relevant to enzyme redesign for synthetic enzymology and engineering of gas sensor proteins. We also show the widespread occurrence of cyts cp-β and characterise their phylogeny.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Callie Krewson
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Jenny E Vardanega
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Sotaro Fujii
- Graduate School of Biosphere Science , Hiroshima University , Kagamiyama 1-4-4, Higashi-Hiroshima , Hiroshima , 739-8528 , Japan
| | | | - Tadeo Moreno
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Chicano
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science , Hiroshima University , Kagamiyama 1-4-4, Higashi-Hiroshima , Hiroshima , 739-8528 , Japan
| | - Dimitri Svistunenko
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Jordi Paps
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Colin R Andrew
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Michael A Hough
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| |
Collapse
|
8
|
Nilsson ZN, Mandella BL, Sen K, Kekilli D, Hough MA, Moenne-Loccoz P, Strange RW, Andrew CR. Distinguishing Nitro vs Nitrito Coordination in Cytochrome c' Using Vibrational Spectroscopy and Density Functional Theory. Inorg Chem 2017; 56:13205-13213. [PMID: 29053273 PMCID: PMC5677563 DOI: 10.1021/acs.inorgchem.7b01945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrite coordination to heme cofactors is a key step in the anaerobic production of the signaling molecule nitric oxide (NO). An ambidentate ligand, nitrite has the potential to coordinate via the N- (nitro) or O- (nitrito) atoms in a manner that can direct its reactivity. Distinguishing nitro vs nitrito coordination, along with the influence of the surrounding protein, is therefore of particular interest. In this study, we probed Fe(III) heme-nitrite coordination in Alcaligenes xylosoxidans cytochrome c' (AXCP), an NO carrier that excludes anions in its native state but that readily binds nitrite (Kd ∼ 0.5 mM) following a distal Leu16 → Gly mutation to remove distal steric constraints. Room-temperature resonance Raman spectra (407 nm excitation) identify ν(Fe-NO2), δ(ONO), and νs(NO2) nitrite ligand vibrations in solution. Illumination with 351 nm UV light results in photoconversion to {FeNO}6 and {FeNO}7 states, enabling FTIR measurements to distinguish νs(NO2) and νas(NO2) vibrations from differential spectra. Density functional theory calculations highlight the connections between heme environment, nitrite coordination mode, and vibrational properties and confirm that nitrite binds to L16G AXCP exclusively through the N atom. Efforts to obtain the nitrite complex crystal structure were hampered by photochemistry in the X-ray beam. Although low dose crystal structures could be modeled with a mixed nitrite (nitro)/H2O distal population, their photosensitivity and partial occupancy underscores the value of the vibrational approach. Overall, this study sheds light on steric determinants of heme-nitrite binding and provides vibrational benchmarks for future studies of heme protein nitrite reactions.
Collapse
Affiliation(s)
- Zach N. Nilsson
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Brian L. Mandella
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Kakali Sen
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - Demet Kekilli
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Pierre Moenne-Loccoz
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Colin R. Andrew
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| |
Collapse
|
9
|
Fujii S, Oki H, Kawahara K, Yamane D, Yamanaka M, Maruno T, Kobayashi Y, Masanari M, Wakai S, Nishihara H, Ohkubo T, Sambongi Y. Structural and functional insights into thermally stable cytochrome c' from a thermophile. Protein Sci 2017; 26:737-748. [PMID: 28097774 PMCID: PMC5368077 DOI: 10.1002/pro.3120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 11/10/2022]
Abstract
Thermophilic Hydrogenophilus thermoluteolus cytochrome c′ (PHCP) exhibits higher thermal stability than a mesophilic counterpart, Allochromatium vinosum cytochrome c′ (AVCP), which has a homo‐dimeric structure and ligand‐binding ability. To understand the thermal stability mechanism and ligand‐binding ability of the thermally stable PHCP protein, the crystal structure of PHCP was first determined. It formed a homo‐dimeric structure, the main chain root mean square deviation (rmsd) value between PHCP and AVCP being 0.65 Å. In the PHCP structure, six specific residues appeared to strengthen the heme‐related and subunit–subunit interactions, which were not conserved in the AVCP structure. PHCP variants having altered subunit–subunit interactions were more severely destabilized than ones having altered heme‐related interactions. The PHCP structure further revealed a ligand‐binding channel and a penta‐coordinated heme, as observed in the AVCP protein. A spectroscopic study clearly showed that some ligands were bound to the PHCP protein. It is concluded that the dimeric PHCP from the thermophile is effectively stabilized through heme‐related and subunit–subunit interactions with conservation of the ligand‐binding ability. Brief Summary We report the X‐ray crystal structure of cytochrome c′ (PHCP) from thermophilic Hydrogenophilus thermoluteolus. The high thermal stability of PHCP was attributed to heme‐related and subunit–subunit interactions, which were confirmed by a mutagenesis study. The ligand‐binding ability of PHCP was examined by spectrophotometry. PHCP acquired the thermal stability with conservation of the ligand‐binding ability. This study furthers the understanding of the stability and function of cytochromes c. PDB Code(s): 5B3I
Collapse
Affiliation(s)
- Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroya Oki
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Daisuke Yamane
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Misa Masanari
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology, and Innovation, Kobe University, Rokkodai, Kobe, Hyogo, Japan
| | | | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
10
|
Kekilli D, Petersen CA, Pixton DA, Ghafoor DD, Abdullah GH, Dworkowski FSN, Wilson MT, Heyes DJ, Hardman SJO, Murphy LM, Strange RW, Scrutton NS, Andrew CR, Hough MA. Engineering proximal vs. distal heme-NO coordination via dinitrosyl dynamics: implications for NO sensor design. Chem Sci 2017; 8:1986-1994. [PMID: 28451315 PMCID: PMC5390784 DOI: 10.1039/c6sc04190f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Proximal vs. distal heme-NO coordination is a novel strategy for selective gas response in heme-based NO-sensors. In the case of Alcaligenes xylosoxidans cytochrome c' (AXCP), formation of a transient distal 6cNO complex is followed by scission of the trans Fe-His bond and conversion to a proximal 5cNO product via a putative dinitrosyl species. Here we show that replacement of the AXCP distal Leu16 residue with smaller or similar sized residues (Ala, Val or Ile) traps the distal 6cNO complex, whereas Leu or Phe residues lead to a proximal 5cNO product with a transient or non-detectable distal 6cNO precursor. Crystallographic, spectroscopic, and kinetic measurements of 6cNO AXCP complexes show that increased distal steric hindrance leads to distortion of the Fe-N-O angle and flipping of the heme 7-propionate. However, it is the kinetic parameters of the distal NO ligand that determine whether 6cNO or proximal 5cNO end products are formed. Our data support a 'balance of affinities' mechanism in which proximal 5cNO coordination depends on relatively rapid release of the distal NO from the dinitrosyl precursor. This mechanism, which is applicable to other proteins that form transient dinitrosyls, represents a novel strategy for 5cNO formation that does not rely on an inherently weak Fe-His bond. Our data suggest a general means of engineering selective gas response into biologically-derived gas sensors in synthetic biology.
Collapse
Affiliation(s)
- Demet Kekilli
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Christine A Petersen
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - David A Pixton
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Dlzar D Ghafoor
- Faculty of Science and Education Science , University of Sulaimani , Sulaymaniyah , Iraq
| | | | | | - Michael T Wilson
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Derren J Heyes
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Loretta M Murphy
- School of Chemistry , Bangor University , Bangor , Gwynedd , Wales LL57 2UW , UK
| | - Richard W Strange
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
- Molecular Biophysics Group , Institute of Integrative Biology , Faculty of Health and Life Sciences , University of Liverpool , Liverpool , L69 7ZB , UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Colin R Andrew
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Michael A Hough
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| |
Collapse
|
11
|
Andrew CR, Petrova ON, Lamarre I, Lambry JC, Rappaport F, Negrerie M. The Dynamics Behind the Affinity: Controlling Heme-Gas Affinity via Geminate Recombination and Heme Propionate Conformation in the NO Carrier Cytochrome c'. ACS Chem Biol 2016; 11:3191-3201. [PMID: 27709886 DOI: 10.1021/acschembio.6b00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) sensors are heme proteins which may also bind CO and O2. Control of heme-gas affinity and their discrimination are achieved by the structural properties and reactivity of the heme and its distal and proximal environments, leading to several energy barriers. In the bacterial NO sensor cytochrome c' from Alcaligenes xylosoxidans (AXCP), the single Leu16Ala distal mutation boosts the affinity for gas ligands by a remarkable 106-108-fold, transforming AXCP from one of the lowest affinity gas binding proteins to one of the highest. Here, we report the dynamics of diatomics after photodissociation from wild type and L16A-AXCP over 12 orders of magnitude in time. For the L16A variant, the picosecond geminate rebinding of both CO and NO appears with an unprecedented 100% yield, and no exit of these ligands from protein to solvent could be observed. Molecular dynamic simulations saliently demonstrate that dissociated CO stays within 4 Å from Fe2+, in contrast to wild-type AXCP. The L16A mutation confers a heme propionate conformation and docking site which traps the diatomics, maximizing the probability of recombination and directly explaining the ultrahigh affinities for CO, NO, and O2. Overall, our results point to a novel mechanism for modulating heme-gas affinities in proteins.
Collapse
Affiliation(s)
- Colin R. Andrew
- Department
of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Olga N. Petrova
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Isabelle Lamarre
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Fabrice Rappaport
- Laboratoire
de Physiologie Membranaire et Moléculaire du Chloroplaste, CNRS, Université Pierre et Marie Curie, 75005 Paris, France
| | - Michel Negrerie
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
12
|
Zhou Z, Tang M, Liu Q, Zhang X, Zhou X. Formation of π‐Cation Radicals in Highly Deformed Copper(II) Porphyrins: Implications for the Distortion of Natural Tetrapyrrole Macrocycles. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zaichun Zhou
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| | - Min Tang
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| | - Qiuhua Liu
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| | - Xi Zhang
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| | - Xiaochun Zhou
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| |
Collapse
|
13
|
Conformational control of the binding of diatomic gases to cytochrome c'. J Biol Inorg Chem 2015; 20:675-86. [PMID: 25792378 DOI: 10.1007/s00775-015-1253-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
The cytochromes c' (CYTcp) are found in denitrifying, methanotrophic and photosynthetic bacteria. These proteins are able to form stable adducts with CO and NO but not with O2. The binding of NO to CYTcp currently provides the best structural model for the NO activation mechanism of soluble guanylate cyclase. Ligand binding in CYTcps has been shown to be highly dependent on residues in both the proximal and distal heme pockets. Group 1 CYTcps typically have a phenylalanine residue positioned close to the distal face of heme, while for group 2, this residue is typically leucine. We have structurally, spectroscopically and kinetically characterised the CYTcp from Shewanella frigidimarina (SFCP), a protein that has a distal phenylalanine residue and a lysine in the proximal pocket in place of the more common arginine. Each monomer of the SFCP dimer folds as a 4-alpha-helical bundle in a similar manner to CYTcps previously characterised. SFCP exhibits biphasic binding kinetics for both NO and CO as a result of the high level of steric hindrance from the aromatic side chain of residue Phe 16. The binding of distal ligands is thus controlled by the conformation of the phenylalanine ring. Only a proximal 5-coordinate NO adduct, confirmed by structural data, is observed with no detectable hexacoordinate distal NO adduct.
Collapse
|
14
|
Hough MA, Andrew CR. Cytochromes c': Structure, Reactivity and Relevance to Haem-Based Gas Sensing. Adv Microb Physiol 2015; 67:1-84. [PMID: 26616515 DOI: 10.1016/bs.ampbs.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes c' are a group of class IIa cytochromes with pentacoordinate haem centres and are found in photosynthetic, denitrifying and methanotrophic bacteria. Their function remains unclear, although roles in nitric oxide (NO) trafficking during denitrification or in cellular defence against nitrosoative stress have been proposed. Cytochromes c' are typically dimeric with each c-type haem-containing monomer folding as a four-α-helix bundle. Their hydrophobic and crowded distal sites impose severe restrictions on the binding of distal ligands, including diatomic gases. By contrast, NO binds to the proximal haem face in a similar manner to that of the eukaryotic NO sensor, soluble guanylate cyclase and bacterial analogues. In this review, we focus on how structural features of cytochromes c' influence haem spectroscopy and reactivity with NO, CO and O2. We also discuss the relevance of cytochrome c' to understanding the mechanisms of gas binding to haem-based sensor proteins.
Collapse
|
15
|
Kekilli D, Dworkowski FSN, Pompidor G, Fuchs MR, Andrew CR, Antonyuk S, Strange RW, Eady RR, Hasnain SS, Hough MA. Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy. ACTA ACUST UNITED AC 2014; 70:1289-96. [PMID: 24816098 DOI: 10.1107/s1399004714004039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/20/2014] [Indexed: 11/10/2022]
Abstract
It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals.
Collapse
Affiliation(s)
- Demet Kekilli
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | | | - Guillaume Pompidor
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Martin R Fuchs
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Colin R Andrew
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, OR 97850-2899, USA
| | - Svetlana Antonyuk
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - Richard W Strange
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - Robert R Eady
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - S Samar Hasnain
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| |
Collapse
|
16
|
Vicente JB, Colaço HG, Mendes MIS, Sarti P, Leandro P, Giuffrè A. NO* binds human cystathionine β-synthase quickly and tightly. J Biol Chem 2014; 289:8579-87. [PMID: 24515102 DOI: 10.1074/jbc.m113.507533] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hexa-coordinate heme in the H2S-generating human enzyme cystathionine β-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding of NO(•) or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO(•) was reported to bind at the CBS heme with very low affinity (Kd = 30-281 μm). This discrepancy was herein reconciled by investigating the NO(•) reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO(•) binds tightly to the ferrous CBS heme, with an apparent Kd ≤ 0.23 μm. In line with this result, at 25 °C, NO(•) binds quickly to CBS (k on ∼ 8 × 10(3) m(-1) s(-1)) and dissociates slowly from the enzyme (k off ∼ 0.003 s(-1)). The observed rate constants for NO(•) binding were found to be linearly dependent on [NO(•)] up to ∼ 800 μm NO(•), and >100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation of Cys-52 from the heme iron, as reported for CO. For the first time the heme of human CBS is reported to bind NO(•) quickly and tightly, providing a mechanistic basis for the in vivo regulation of the enzyme by NO(•). The novel findings reported here shed new light on CBS regulation by NO(•) and its possible (patho)physiological relevance, enforcing the growing evidence for an interplay among the gasotransmitters NO(•), CO, and H2S in cell signaling.
Collapse
Affiliation(s)
- João B Vicente
- From the Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Hough MA, Silkstone G, Worrall JAR, Wilson MT. NO binding to the proapoptotic cytochrome c-cardiolipin complex. VITAMINS AND HORMONES 2014; 96:193-209. [PMID: 25189388 DOI: 10.1016/b978-0-12-800254-4.00008-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome c is a heme protein that is localized in the compartment between the inner and outer mitochondrial membranes where it functions to transfer electrons between complex III and complex IV of the respiratory chain. It can also form an intimate association with the mitochondrion-specific phospholipid cardiolipin that induces a conformational change in the protein enabling it to act as a peroxidase catalyzing the oxidation of cardiolipin and thereby instigating a chain of events that leads to apoptosis. Unlike the native protein, cytochrome c within the complex binds ligands rapidly; in particular, NO can coordinate to either the ferric or ferrous iron of the heme. Remarkably, in the ferrous form, NO binds preferentially to the proximal side of the heme and thus behaves in a way similar to cytochrome c'-type proteins and to guanylate cyclase. The implications of NO binding to the proapoptotic cytochrome c/cardiolipin complex are discussed in terms of modulating the apoptotic response and buffering NO concentrations. Insights into the structure of the complex are provided by comparison with cytochrome c' for which X-ray structures are available.
Collapse
Affiliation(s)
- Michael A Hough
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Gary Silkstone
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - J A R Worrall
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom.
| |
Collapse
|
18
|
Russell HJ, Hardman SJO, Heyes DJ, Hough MA, Greetham GM, Towrie M, Hay S, Scrutton NS. Modulation of ligand-heme reactivity by binding pocket residues demonstrated in cytochrome c' over the femtosecond-second temporal range. FEBS J 2013; 280:6070-82. [PMID: 24034856 PMCID: PMC4163637 DOI: 10.1111/febs.12526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 12/27/2022]
Abstract
The ability of hemoproteins to discriminate between diatomic molecules, and the subsequent affinity for their chosen ligand, is fundamental to the existence of life. These processes are often controlled by precise structural arrangements in proteins, with heme pocket residues driving reactivity and specificity. One such protein is cytochrome c', which has the ability to bind nitric oxide (NO) and carbon monoxide (CO) on opposite faces of the heme, a property that is shared with soluble guanylate cycle. Like soluble guanylate cyclase, cytochrome c' also excludes O2 completely from the binding pocket. Previous studies have shown that the NO binding mechanism is regulated by a proximal arginine residue (R124) and a distal leucine residue (L16). Here, we have investigated the roles of these residues in maintaining the affinity for NO in the heme binding environment by using various time‐resolved spectroscopy techniques that span the entire femtosecond–second temporal range in the UV‐vis spectrum, and the femtosecond–nanosecond range by IR spectroscopy. Our findings indicate that the tightly regulated NO rebinding events following excitation in wild‐type cytochrome c' are affected in the R124A variant. In the R124A variant, vibrational and electronic changes extend continuously across all time scales (from fs–s), in contrast to wild‐type cytochrome c' and the L16A variant. Based on these findings, we propose a NO (re)binding mechanism for the R124A variant of cytochrome c' that is distinct from that in wild‐type cytochrome c'. In the wider context, these findings emphasize the importance of heme pocket architecture in maintaining the reactivity of hemoproteins towards their chosen ligand, and demonstrate the power of spectroscopic probes spanning a wide temporal range.
Collapse
Affiliation(s)
- Henry J Russell
- Faculty of Life Sciences, Manchester Institute of Biotechnology and Photon Science Institute, The University of Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoo BK, Lamarre I, Martin JL, Andrew CR, Negrerie M. Picosecond binding of the His ligand to four-coordinate heme in cytochrome c': a one-way gate for releasing proximal NO. J Am Chem Soc 2013; 135:3248-54. [PMID: 23373628 DOI: 10.1021/ja312140f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We provide a direct demonstration of a "kinetic trap" mechanism in the proximal 5-coordinate heme-nitrosyl complex (5c-NO) of cytochrome c' from Alcaligenes xylosoxidans (AXCP) in which picosecond rebinding of the endogenous His ligand following heme-NO dissociation acts as a one-way gate for the release of proximal NO into solution. This demonstration is based upon picosecond transient absorption changes following NO photodissociation of the proximal 5c-NO AXCP complex. We have determined the absolute transient absorption spectrum of 4-coordinate ferrous heme to which NO rebinds with a time constant τ(NO) = 7 ps (k(NO) = 1.4 × 10(11) s(-1)) and shown that rebinding of the proximal histidine to the 4-coordinate heme takes place with a time constant τ(His) = 100 ± 10 ps (k(His) = 10(10) s(-1)) after the release of NO from the proximal heme pocket. This rapid His reattachment acts as a one-way gate for releasing proximal NO by precluding direct proximal NO rebinding once it has left the proximal heme pocket and requiring NO rebinding from solution to proceed via the distal heme face.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d'Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | |
Collapse
|
20
|
Tsai AL, Martin E, Berka V, Olson JS. How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Antioxid Redox Signal 2012; 17:1246-63. [PMID: 22356101 PMCID: PMC3430480 DOI: 10.1089/ars.2012.4564] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Ligand selectivity for dioxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO) is critical for signal transduction and is tailored specifically for each heme-protein sensor. Key NO sensors, such as soluble guanylyl cyclase (sGC), specifically recognized low levels of NO and achieve a total O(2) exclusion. Several mechanisms have been proposed to explain the O(2) insensitivity, including lack of a hydrogen bond donor and negative electrostatic fields to selectively destabilize bound O(2), distal steric hindrance of all bound ligands to the heme iron, and restriction of in-plane movements of the iron atom. RECENT ADVANCES Crystallographic structures of the gas sensors, Thermoanaerobacter tengcongensis heme-nitric oxide/oxygen-binding domain (Tt H-NOX(1)) or Nostoc puntiforme (Ns) H-NOX, and measurements of O(2) binding to site-specific mutants of Tt H-NOX and the truncated β subunit of sGC suggest the need for a H-bonding donor to facilitate O(2) binding. CRITICAL ISSUES However, the O(2) insensitivity of full length sGC with a site-specific replacement of isoleucine by a tyrosine on residue 145 and the very slow autooxidation of Ns H-NOX and cytochrome c' suggest that more complex mechanisms have evolved to exclude O(2) but retain high affinity NO binding. A combined graphical analysis of ligand binding data for libraries of heme sensors, globins, and model heme shows that the NO sensors dramatically inhibit the formation of six-coordinated NO, CO, and O(2) complexes by direct distal steric hindrance (cyt c'), proximal constraints of in-plane iron movement (sGC), or combinations of both following a sliding scale rule. High affinity NO binding in H-NOX proteins is achieved by multiple NO binding steps that produce a high affinity five-coordinate NO complex, a mechanism that also prevents NO dioxygenation. FUTURE DIRECTIONS Knowledge advanced by further extensive test of this "sliding scale rule" hypothesis should be valuable in guiding novel designs for heme based sensors.
Collapse
Affiliation(s)
- Ah-Lim Tsai
- Division of Hematology, University of Texas Health Science Center at Houston, Houston, Texas 77225, USA.
| | | | | | | |
Collapse
|