1
|
Mohammadi M, Aboonajmi J, Panahi F, Sasanipour M, Sharghi H. Zirconium-catalyzed one-pot synthesis of benzoxazoles using reaction of catechols, aldehydes and ammonium acetate. Sci Rep 2024; 14:25973. [PMID: 39472665 PMCID: PMC11522672 DOI: 10.1038/s41598-024-76839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
In this study, an efficient method for the synthesis of benzoxazoles by coupling catechols, aldehydes and ammonium acetate using ZrCl4 as catalyst in ethanol is reported. A wide range of benzoxazoles (59 examples) are smoothly produced in high yields (up to 97%). Other advantages of the method include large-scale synthesis and the use of oxygen as an oxidant. The mild reaction conditions allowed late-stage functionalization, facilitating access to several derivatives with biologically relevant structures such as β-lactam and quinoline heterocycles.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran.
| | - Maryam Sasanipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| |
Collapse
|
2
|
Schneider HJ. Distinction and Quantification of Noncovalent Dispersive and Hydrophobic Effects. Molecules 2024; 29:1591. [PMID: 38611870 PMCID: PMC11013637 DOI: 10.3390/molecules29071591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The possibilities of comparing computational results of noncovalent interactions with experimental data are discussed, first with respect to intramolecular interactions. For these a variety of experimental data such as heats of formation, crystal sublimation heats, comparison with energy minimized structures, and spectroscopic data are available, but until now largely have not found widespread application. Early force field and QM/MP2 calculations have already shown that the sublimation heats of hydrocarbons can be predicted with an accuracy of ±1%. Intermolecular interactions in solution or the gas phase are always accompanied by difficult to compute entropic contributions, like all associations between molecules. Experimentally observed T∆S values contribute 10% to 80% of the total ∆G, depending on interaction mechanisms within the complexes, such as, e.g., hydrogen bonding and ion pairing. Free energies ∆G derived from equilibrium measurements in solution allow us to define binding increments ∆∆G, which are additive and transferable to a variety of supramolecular complexes. Data from more than 90 equilibrium measurements of porphyrin receptors in water indicate that small alkanes do not bind to the hydrophobic flat surfaces within a measuring limit of ∆G = ±0.5 kJ/mol, and that 20 functions bearing heteroatoms show associations by dispersive interactions with up to ∆G = 8 kJ/mol, roughly as a function of their polarizability. Aromatic systems display size-dependent affinities ∆G as a linear function of the number of π-electrons.
Collapse
Affiliation(s)
- Hans-Jörg Schneider
- FR Organische Chemie, Universität des Saarlandes, D 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pearce N, Tarnowska M, Andersen NJ, Wahrhaftig-Lewis A, Pilgrim BS, Champness NR. Mechanically interlocked molecular handcuffs. Chem Sci 2022; 13:3915-3941. [PMID: 35440998 PMCID: PMC8985514 DOI: 10.1039/d2sc00568a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 01/20/2023] Open
Abstract
The field of mechanically interlocked molecules that employ a handcuff component are reviewed. The variety of rotaxane and catenane structures that use the handcuff motif to interlock different components are discussed and a new nomenclature, distilling diverse terminologies to a single approach, is proposed. By unifying the interpretation of this class of molecules we identify new opportunities for employing this structural unit for new architectures. Mechanically interlocked molecules that employ a handcuff component provide a pathway to highly unusual structures, a new nomenclature is proposed which helps to identify opportunities for employing this structural unit for new architectures.![]()
Collapse
Affiliation(s)
- Nicholas Pearce
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Marysia Tarnowska
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Nathan J Andersen
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | | | - Ben S Pilgrim
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
5
|
Abdelhamid IA, Shaaban MR, Elwahy AH. Bis-aldehydes: Versatile precursors for bis-heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Serrano‐Molina D, Juan A, González‐Rodríguez D. Dinucleoside‐Based Macrocycles Displaying Unusually Large Chelate Cooperativities. CHEM REC 2020; 21:480-497. [DOI: 10.1002/tcr.202000141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- David Serrano‐Molina
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Alberto Juan
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - David González‐Rodríguez
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
7
|
Hashidzume A, Itami T, Kamon Y, Harada A. A Simplified Model for Multivalent Interaction Competing with a Low Molecular Weight Competitor. CHEM LETT 2020. [DOI: 10.1246/cl.200501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takahiro Itami
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
8
|
Groppi J, Casimiro L, Canton M, Corra S, Jafari‐Nasab M, Tabacchi G, Cavallo L, Baroncini M, Silvi S, Fois E, Credi A. Precision Molecular Threading/Dethreading. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Martina Canton
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Stefano Corra
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Mina Jafari‐Nasab
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza ed Alta Tecnologia and INSTM Università dell'Insubria via Valleggio 11 22100 Como Italy
| | - Luigi Cavallo
- KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Ettore Fois
- Dipartimento di Scienza ed Alta Tecnologia and INSTM Università dell'Insubria via Valleggio 11 22100 Como Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
9
|
Groppi J, Casimiro L, Canton M, Corra S, Jafari‐Nasab M, Tabacchi G, Cavallo L, Baroncini M, Silvi S, Fois E, Credi A. Precision Molecular Threading/Dethreading. Angew Chem Int Ed Engl 2020; 59:14825-14834. [PMID: 32396687 PMCID: PMC7496742 DOI: 10.1002/anie.202003064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/12/2022]
Abstract
The general principles guiding the design of molecular machines based on interlocked structures are well known. Nonetheless, the identification of suitable molecular components for a precise tuning of the energetic parameters that determine the mechanical link is still challenging. Indeed, what are the reasons of the "all-or-nothing" effect, which turns a molecular "speed-bump" into a stopper in pseudorotaxane-based architectures? Here we investigate the threading and dethreading processes for a representative class of molecular components, based on symmetric dibenzylammonium axles and dibenzo[24]crown-8 ether, with a joint experimental-computational strategy. From the analysis of quantitative data and an atomistic insight, we derive simple rules correlating the kinetic behaviour with the substitution pattern, and provide rational guidelines for the design of modules to be integrated in molecular switches and motors with sophisticated dynamic features.
Collapse
Affiliation(s)
- Jessica Groppi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Martina Canton
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di Bolognaviale del Risorgimento 440136BolognaItaly
| | - Stefano Corra
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di Bolognaviale Fanin 4440127BolognaItaly
| | - Mina Jafari‐Nasab
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Gloria Tabacchi
- Dipartimento di Scienza ed Alta Tecnologia and INSTMUniversità dell'Insubriavia Valleggio 1122100ComoItaly
| | - Luigi Cavallo
- KAUST Catalysis CenterKing Abdullah University of Science and TechnologyThuwal23955-6900Saudi Arabia
| | - Massimo Baroncini
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di Bolognaviale Fanin 4440127BolognaItaly
| | - Serena Silvi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Ettore Fois
- Dipartimento di Scienza ed Alta Tecnologia and INSTMUniversità dell'Insubriavia Valleggio 1122100ComoItaly
| | - Alberto Credi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di Bolognaviale del Risorgimento 440136BolognaItaly
| |
Collapse
|
10
|
Berry SN, Qin L, Lewis W, Jolliffe KA. Conformationally adaptable macrocyclic receptors for ditopic anions: analysis of chelate cooperativity in aqueous containing media. Chem Sci 2020; 11:7015-7022. [PMID: 33250974 PMCID: PMC7690315 DOI: 10.1039/d0sc02533j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The effect of chelate cooperativity on the binding of several ditopic anions to two tetrathiourea macrocycles has been analysed in competitive solvent mixtures (H2O : DMSO 1 : 9 v/v). The semi-flexible receptors bind dicarboxylates with high affinity dependent on the length and flexibility of the guest. Chemical double mutant cycle (DMC) analysis allowed the chelate cooperativity effects to be measured in detail and revealed both positive and negative cooperativity effects which were dependent on guest size, flexibility and spacer interactions between guest and macrocycle. 1H NMR and crystallographic studies confirmed the macrocycle hosts are adaptable, changing conformation to match their pore size to a selected guest.
Collapse
Affiliation(s)
- Stuart N Berry
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - Lei Qin
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - William Lewis
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | | |
Collapse
|
11
|
Khademi Z, Nikoofar K, Shahriyari F. Pentaerythritol: A Versatile Substrate in Organic Transformations, Centralization on the Reaction Medium. Curr Org Synth 2020; 16:38-69. [PMID: 31965922 DOI: 10.2174/1570179415666181115102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/31/2018] [Accepted: 10/14/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pentaerythritol (2,2-bis (hydroxymethyl) propane-1,3-diol) as white crystalline odorless solid has been synthesized in 1891. Pentaerythritol is multifaceted species in many compounds, which are wildly utilized in medicine and industry. Also, multicomponent reactions (MCRs) play a crucial role in organic and medicinal chemistry. Hence, in these reactions, pentaerythritol is a versatile substrate for the synthesis of many polyfunctionalized products, because of the presence of the neopentane core and one hydroxyl group in each of the four terminal carbons. OBJECTIVE The review describes pentaerythritol multicomponent reactions in the presence of different solvents in the reaction medium to produce various compounds including pentaerythritols. This review covers the literature relevant up to 2018. CONCLUSION It is obvious from the provided review that a great deal of research has been done in this field, utilizing various mediums (solvent-free conditions, aqueous media, and organic solvents) for the synthesis of the products of containing pentaerythritols. This classification is based on the importance of economic and environmental friendly reactions. Due to the whole aforesaid reports, some reactions required heat for their progress, and some others were accompanied by microwave or ultrasonic waves.
Collapse
Affiliation(s)
- Zahra Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Fatemeh Shahriyari
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
12
|
Mechanisms of noncanonical binding dynamics in multivalent protein-protein interactions. Proc Natl Acad Sci U S A 2019; 116:25659-25667. [PMID: 31776263 DOI: 10.1073/pnas.1902909116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein multivalency can provide increased affinity and specificity relative to monovalent counterparts, but these emergent biochemical properties and their mechanistic underpinnings are difficult to predict as a function of the biophysical properties of the multivalent binding partners. Here, we present a mathematical model that accurately simulates binding kinetics and equilibria of multivalent protein-protein interactions as a function of the kinetics of monomer-monomer binding, the structure and topology of the multidomain interacting partners, and the valency of each partner. These properties are all experimentally or computationally estimated a priori, including approximating topology with a worm-like chain model applicable to a variety of structurally disparate systems, thus making the model predictive without parameter fitting. We conceptualize multivalent binding as a protein-protein interaction network: ligand and receptor valencies determine the number of interacting species in the network, with monomer kinetics and structural properties dictating the dynamics of each species. As predicted by the model and validated by surface plasmon resonance experiments, multivalent interactions can generate several noncanonical macroscopic binding dynamics, including a transient burst of high-energy configurations during association, biphasic equilibria resulting from interligand competition at high concentrations, and multiexponential dissociation arising from differential lifetimes of distinct network species. The transient burst was only uncovered when extending our analysis to trivalent interactions due to the significantly larger network, and we were able to predictably tune burst magnitude by altering linker rigidity. This study elucidates mechanisms of multivalent binding and establishes a framework for model-guided analysis and engineering of such interactions.
Collapse
|
13
|
Hudspith L, Shmam F, Dalton CF, Princivalle A, Turega SM. Neurotransmitter selection by monoamine oxidase isoforms, dissected in terms of functional groups by mixed double mutant cycles. Org Biomol Chem 2019; 17:8871-8877. [PMID: 31556440 DOI: 10.1039/c9ob01558b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double mutant cycles were constructed using neurotransmitters and synthetic substrates that measure their selective binding to one monoamine oxidase (MAO) enzyme isoform over another as a function of structural change. This work measures a reduction in selectivity for the MAOB isoform of 3 to 9.5 kJ mol-1 upon the addition of hydroxy functional groups to a phenethylamine scaffold. Replacement of hydroxy functional groups on the phenethylamine scaffold by hydrophobic substituents measures an increase in selectivity for MAOB of -1.1 to -6.9 kJ mol-1. The strategies presented here can be applied to the development of competitive reversible inhibitors of MAO enzymes and other targets with structurally related isoforms.
Collapse
Affiliation(s)
- L Hudspith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.
| | | | | | | | | |
Collapse
|
14
|
Gong X, Taszarek M, Schefzig L, Reissig HU, Thierbach S, Wassermann B, Graf C, Mollenhauer D, Rühl E. Adsorption of Mono- and Divalent 4-(Dimethylamino)pyridines on Gold Surfaces: Studies by Surface-Enhanced Raman Scattering and Density Functional Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8667-8680. [PMID: 31173693 DOI: 10.1021/acs.langmuir.9b00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adsorption thermodynamics of 4-(dimethylamino)pyridine (DMAP) and its five divalent derivatives di-DMAP- n (2 ≤ n ≤ 6) with gradually increasing methylene-spacer lengths n binding to planar gold surfaces has been studied by surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT). SERS intensities of the totally symmetrical breathing mode of the pyridine ring at approximately 1007 cm-1 are used to monitor the surface coverage of the DMAP and di-DMAP- n ligands on gold surfaces at different concentrations. The equilibrium constant as a measure of the binding affinity is obtained from these measurements by using a modified Langmuir isotherm. Due to multivalent binding to the gold substrate, a characteristic enhancement of the binding affinity of di-DMAP- n compared to the monovalent DMAP is observed for all divalent species. First principles calculations of the di-DMAP- n ligands on an ideal Au(111) surface model as well as step terrace models have been performed to understand the adsorption structures and the multivalent binding enhancements. Furthermore, Raman spectra of the adsorbed molecules have been studied by first principles calculations to correlate the binding affinities to experimentally determined adsorption constants. The joint experimental and theoretical investigation of an oscillatory behavior of the binding affinity as a function of the methylene-spacer length in mono- and divalent 4-(dimethylamino)pyridines reveals that the molecular architecture plays an important role for the structure-function interplay of multivalently bound adsorbates.
Collapse
Affiliation(s)
- Xin Gong
- Physikalische Chemie , Institut für Chemie und Biochemie, Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Maurice Taszarek
- Organische Chemie , Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Luise Schefzig
- Organische Chemie , Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Hans-Ulrich Reissig
- Organische Chemie , Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Steffen Thierbach
- Physikalische Chemie , Institut für Chemie und Biochemie, Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Bernhard Wassermann
- Physikalische Chemie , Institut für Chemie und Biochemie, Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Christina Graf
- Fachbereich Chemie- und Biotechnologie, Hochschule Darmstadt , Stephanstrasse 7 , 64295 Darmstadt , Germany
| | - Doreen Mollenhauer
- Physikalisch-Chemisches Institut , Justus-Liebig-Universität Gießen , Heinrich-Buff-Ring 17 , 35392 Gießen , Germany
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , 35392 Gießen , Germany
| | - Eckart Rühl
- Physikalische Chemie , Institut für Chemie und Biochemie, Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
15
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019; 58:8053-8057. [DOI: 10.1002/anie.201902278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
16
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
17
|
Aparicio F, Mayoral MJ, Montoro-García C, González-Rodríguez D. Guidelines for the assembly of hydrogen-bonded macrocycles. Chem Commun (Camb) 2019; 55:7277-7299. [DOI: 10.1039/c9cc03166a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article highlights selected examples on the synthesis of hydrogen-bonded macrocycles from ditopic molecules and analyze the main factors, often interrelated, that influence the equilibrium between ring and chain species.
Collapse
Affiliation(s)
- F. Aparicio
- Nanostructured Molecular Systems and Materials (MSMn) group
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| | - M. J. Mayoral
- Nanostructured Molecular Systems and Materials (MSMn) group
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| | - C. Montoro-García
- Nanostructured Molecular Systems and Materials (MSMn) group
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| | - D. González-Rodríguez
- Nanostructured Molecular Systems and Materials (MSMn) group
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| |
Collapse
|
18
|
Probing the kinetics in supramolecular chemistry and molecular assembly by microfluidic-NMR spectroscopy. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9293-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Senapati S, Biswas S, Manna S, Ros R, Lindsay S, Zhang P. A Y-Shaped Three-Arm Structure for Probing Bivalent Interactions between Protein Receptor-Ligand Using AFM and SPR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6930-6940. [PMID: 29783836 DOI: 10.1021/acs.langmuir.8b00735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of this research was to develop linkage chemistry for the study of bivalent interactions between a receptor and its ligand using atomic force microscopy (AFM) and surface plasmon resonance (SPR). We conceived a three-arm structure composed of flexible chains connected to a large rigid core with orthogonal functional groups at their ends for formation and attachment (or immobilization) of bivalent ligands. To demonstrate the principle, we chose the well-known biotin-streptavidin interaction as a model system. On the basis of a crystal structure of the biotin-streptavidin complex, we designed and synthesized a bisbiotin ligand to have a Y shape with two biotin motifs on its arms for binding and a functional group on its stem for immobilization or attachment, referred to as y-bisbiotin. First, we found that the y-bisbiotin ligand stabilized the streptavidin more than its monobiotin counterpart did in solution, which indicates that the bivalent interaction was synergistic. The y-bisbiotin was attached to AFM tips through a click reaction for the force measurement experiments, which showed that unbinding the bisbiotin from streptavidin needed twice the force of unbinding a monobiotin. For the SPR study, we added a ω-thiolated alkyl chain to y-bisbiotin for its incorporation into a monolayer. The SPR data indicated that the streptavidin dissociated from a mixed monolayer bearing y-bisbiotin much slower than from the one bearing monobiotin. This work demonstrates unique chemistry for the study of bivalent interactions using AFM and SPR.
Collapse
|
20
|
Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW. Biological and related applications of pillar[n]arenes. Chem Commun (Camb) 2018; 53:677-696. [PMID: 27942626 DOI: 10.1039/c6cc08967d] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pillar[n]arenes are a new class of synthetic supramolecular macrocycles streamlined by their particular pillar-shaped architecture which consists of an electron-rich cavity and two fine-tuneable rims. The ease and diversity of the functionalization of the two rims open possibilities for the design of new architectures, topological isomers, and scaffolds. Significantly, this emerging class of macrocyclic receptors offers a unique platform for biological purposes. This review article covers the most recent contributions from the pillar[n]arene field in terms of artificial membrane transport systems, controlled drug delivery systems, biomedical imaging, biosensors, cell adhesion, fluorescent sensing, and pesticide detection based on host-guest interactions. The review also uniquely describes the properties of sub-units that make pillar[n]arenes suitable for biological applications and it provides a detailed outline for the design of new innovative pillar-like structures with specific properties to open up a new avenue for pillar[n]arene chemistry.
Collapse
Affiliation(s)
- CuhaWijay Sathiyajith
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Rafik Rajjak Shaikh
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qian Han
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yue Zhang
- The First Clinical College, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, P. R. China.
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
21
|
Rao SJ, Zhang Q, Ye XH, Gao C, Qu DH. Integrative Self-Sorting: One-Pot Synthesis of a Hetero[4]rotaxane from a Daisy-Chain-Containing Hetero[4]pseudorotaxane. Chem Asian J 2018; 13:815-821. [PMID: 29424064 DOI: 10.1002/asia.201800011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Indexed: 12/22/2022]
Abstract
The structural complexity of mechanically interlocked molecules are very attractive to chemists owing to the challenges they present. In this article, novel mechanically interlocked molecules with a daisy-chain-containing hetero[4]rotaxane motif were efficiently synthesized. In addition, a novel integrative self-sorting strategy is demonstrated, involving an ABB-type (A for host, dibenzo-24-crown-8 (DB24C8), and B for guest, ammonium salt sites) monomer and a macrocycle host, benzo-21-crown-7 (B21C7), in which the assembled species in hydrogen-bonding-supported solvent only includes a novel daisy-chain-containing hetero[4]pseudorotaxane. The found self-sorting process involves the integrative recognition between B21C7 macrocycles and carefully designed components simultaneously containing two types of secondary ammonium ions and a host molecule, DB24C8 crown ether. The self-sorting strategy is integrative to undertake self-recognition behavior to form one single species of pseudorotaxane compared with the previous report. This self-sorting system can be used for the efficient one-pot synthesis of a daisy-chain-containing hetero[4]rotaxane in a good yield. The structure of hetero[4]rotaxane was confirmed by 1 H NMR spectroscopy and high-resolution electrospray ionization (HR-ESI) mass spectrometry.
Collapse
Affiliation(s)
- Si-Jia Rao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Xu-Hao Ye
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Chuan Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| |
Collapse
|
22
|
Hewson SW, Mullen KM. Understanding coordination equilibria in solution and gel-phase [2]rotaxanes. Org Biomol Chem 2018; 16:8569-8578. [DOI: 10.1039/c8ob02304b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An active-metal template approach has been use to synthesise solution and surface bound addressable [2]rotaxanes giving unique insights into thermodynamic equilibria in interlocked structures.
Collapse
Affiliation(s)
- Sean W. Hewson
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Kathleen M. Mullen
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
23
|
Igde S, Röblitz S, Müller A, Kolbe K, Boden S, Fessele C, Lindhorst TK, Weber M, Hartmann L. Linear Precision Glycomacromolecules with Varying Interligand Spacing and Linker Functionalities Binding to Concanavalin A and the Bacterial Lectin FimH. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Sinaida Igde
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Susanna Röblitz
- Department of Numerical Mathematics; Zuse Institute Berlin (ZIB); Takustr. 7 14195 Berlin Germany
- Department of Mathematics and Computer Science; Freie Universität Berlin; Arnimallee 6 14195 Berlin Germany
| | - Anne Müller
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Katharina Kolbe
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Sophia Boden
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Claudia Fessele
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Marcus Weber
- Department of Numerical Mathematics; Zuse Institute Berlin (ZIB); Takustr. 7 14195 Berlin Germany
- Department of Mathematics and Computer Science; Freie Universität Berlin; Arnimallee 6 14195 Berlin Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
24
|
Zinin AI, Stepanova EV, Jost U, Kondakov NN, Shpirt AM, Chizhov AO, Torgov VI, Kononov LO. An efficient multigram-scale synthesis of 4-(ω-chloroalkoxy)phenols. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1732-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Bloch MB, Yavin E, Nissan A, Ariel I, Kenett R, Brass D, Rubinstein A. The effect of linker type and recognition peptide conjugation chemistry on tissue affinity and cytotoxicity of charged polyacrylamide. J Control Release 2017; 257:102-117. [DOI: 10.1016/j.jconrel.2016.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/27/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022]
|
26
|
Bach M, Lehmann A, Brünnert D, Vanselow JT, Hartung A, Bargou RC, Holzgrabe U, Schlosser A, Chatterjee M. Ugi Reaction-Derived α-Acyl Aminocarboxamides Bind to Phosphatidylinositol 3-Kinase-Related Kinases, Inhibit HSF1-Dependent Heat Shock Response, and Induce Apoptosis in Multiple Myeloma Cells. J Med Chem 2017; 60:4147-4160. [PMID: 28453931 DOI: 10.1021/acs.jmedchem.6b01613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heat shock transcription factor 1 (HSF1) has been identified as a therapeutic target for pharmacological treatment of multiple myeloma (MM). However, direct therapeutic targeting of HSF1 function seems to be difficult due to the shortage of clinically suitable pharmacological inhibitors. We utilized the Ugi multicomponent reaction to create a small but smart library of α-acyl aminocarboxamides and evaluated their ability to suppress heat shock response (HSR) in MM cells. Using the INA-6 cell line as the MM model and the strictly HSF1-dependent HSP72 induction as a HSR model, we identified potential HSF1 inhibitors. Mass spectrometry-based affinity capture experiments with biotin-linked derivatives revealed a number of target proteins and complexes, which exhibit an armadillo domain. Also, four members of the tumor-promoting and HSF1-associated phosphatidylinositol 3-kinase-related kinase (PIKK) family were identified. The antitumor activity was evaluated, showing that treatment with the anti-HSF1 compounds strongly induced apoptotic cell death in MM cells.
Collapse
Affiliation(s)
- Matthias Bach
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg , Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Anna Lehmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Daniela Brünnert
- Department of Internal Medicine II, Translational Oncology, University Hospital of Würzburg , Versbacher Straße 5, 97078 Würzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg , Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Andreas Hartung
- Institute of Pharmacy and Food Chemistry, University of Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Ralf C Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg , Versbacher Straße 5, 97080 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg , Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Manik Chatterjee
- Department of Internal Medicine II, Translational Oncology, University Hospital of Würzburg , Versbacher Straße 5, 97078 Würzburg, Germany
| |
Collapse
|
27
|
Yang F, Xie F, Zhang Y, Xia Y, Liu W, Jiang F, Lam C, Qiao Y, Xie D, Li J, Fu L. Y-shaped bis-arylethenesulfonic acid esters: Potential potent and membrane permeable protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 2017; 27:2166-2170. [DOI: 10.1016/j.bmcl.2017.03.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
|
28
|
Schröder HV, Hupatz H, Achazi AJ, Sobottka S, Sarkar B, Paulus B, Schalley CA. A Divalent Pentastable Redox-Switchable Donor-Acceptor Rotaxane. Chemistry 2017; 23:2960-2967. [DOI: 10.1002/chem.201605710] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hendrik V. Schröder
- Institut für Chemie und Biochemie, Organische Chemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Henrik Hupatz
- Institut für Chemie und Biochemie, Organische Chemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Andreas J. Achazi
- Institut für Chemie und Biochemie; Theoretische Chemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstr. 34/36 14195 Berlin Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstr. 34/36 14195 Berlin Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie; Theoretische Chemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie, Organische Chemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| |
Collapse
|
29
|
Dzhardimalieva GI, Uflyand IE. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers. Dalton Trans 2017; 46:10139-10176. [DOI: 10.1039/c7dt01916e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
30
|
von Krbek LKS, Schalley CA, Thordarson P. Assessing cooperativity in supramolecular systems. Chem Soc Rev 2017; 46:2622-2637. [DOI: 10.1039/c7cs00063d] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this tutorial review, different aspects of cooperativity in supramolecular chemistry and their thermodynamic analysis are discussed.
Collapse
Affiliation(s)
| | | | - Pall Thordarson
- School of Chemistry
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- University of New South Wales
- Australia
| |
Collapse
|
31
|
Meng Z, Wang BY, Xiang JF, Shi Q, Chen CF. Self-Assembly of a [2]Pseudorotaxane by an Inchworm-Motion Mechanism. Chemistry 2016; 22:15075-15084. [PMID: 27601275 DOI: 10.1002/chem.201602785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Indexed: 01/22/2023]
Abstract
The threading of biomolecules through pores or channels in membranes is important to validate the physiological activities of cells. To aid understanding of the controlling factors required for the translocation in space with confined size and distorted conformation, it is desirable to identify experimental systems with minimized complexity. We demonstrate the mechanism of a linear guest L1 threading into a tris(crown ether) host TC with a combinational distorted cavity to form a triply interlocked [2]pseudorotaxane 3in-[L1⊂TC]. An inchworm-motion mechanism is proposed for the process. For the forward-threading steps that lead to the formation of higher-order interlocked species, guest L1 must adopt a bent conformation to find the next crown ether cavity. Two simplified models are applied to investigate the self-assembly dynamic of 3in-[L1⊂TC]. Kinetic NMR spectroscopic and molecular dynamics (MD) studies show that formation of the singly penetrated species is fast, whereas formation of the doubly and triply threaded species is several orders of magnitude slower. During threading the freedom of both the guest L1 and host TC gradually decrease due to their interactions. This results in a significant entropy effect for the threading dynamic, which is also observed for the threading of a biomolecular chain through a channel.
Collapse
Affiliation(s)
- Zheng Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo-Yang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun-Feng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiang Shi
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
32
|
Neal EA, Goldup SM. A Kinetic Self-Sorting Approach to Heterocircuit [3]Rotaxanes. Angew Chem Int Ed Engl 2016; 55:12488-93. [PMID: 27600208 PMCID: PMC5113769 DOI: 10.1002/anie.201606640] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/24/2022]
Abstract
In this proof-of-concept study, an active-template coupling is used to demonstrate a novel kinetic self-sorting process. This process iteratively increases the yield of the target heterocircuit [3]rotaxane product at the expense of other threaded species.
Collapse
Affiliation(s)
- Edward A Neal
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Stephen M Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
33
|
von Krbek LKS, Achazi AJ, Solleder M, Weber M, Paulus B, Schalley CA. Allosteric and Chelate Cooperativity in Divalent Crown Ether/Ammonium Complexes with Strong Binding Enhancement. Chemistry 2016; 22:15475-15484. [DOI: 10.1002/chem.201603098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Larissa K. S. von Krbek
- Institut für Chemie und Biochemie; Organische Chemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| | - Andreas J. Achazi
- Institut für Chemie und Biochemie; Organische Chemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| | - Marthe Solleder
- Zuse Institute Berlin (ZIB); Takustr. 7 14195 Berlin Germany
| | - Marcus Weber
- Zuse Institute Berlin (ZIB); Takustr. 7 14195 Berlin Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie; Organische Chemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie; Organische Chemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| |
Collapse
|
34
|
Neal EA, Goldup SM. A Kinetic Self-Sorting Approach to Heterocircuit [3]Rotaxanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Edward A. Neal
- School of Biological and Chemical Sciences; Queen Mary University of London; UK
| | - Stephen M. Goldup
- School of Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| |
Collapse
|
35
|
Stross AE, Iadevaia G, Hunter CA. Mix and match recognition modules for the formation of H-bonded duplexes. Chem Sci 2016; 7:5686-5691. [PMID: 30034707 PMCID: PMC6022071 DOI: 10.1039/c6sc01884j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/24/2016] [Indexed: 11/21/2022] Open
Abstract
Oligomeric molecules equipped with complementary H-bond recognition sites form stable duplexes in non-polar solvents. The use of a single H-bond between a good H-bond donor and a good H-bond acceptor as the recognition motif appended to a non-polar backbone leads to an architecture with interchangeable recognition alphabets. The interactions of three different families of H-bond acceptor oligomers (pyridine, pyridine N-oxide or phosphine oxide recognition module) with a family of H-bond donor oligomers (phenol recognition module) are compared. All three donor-acceptor combinations form stable duplexes, where the stability of the 1 : 1 complex increases with increasing numbers of recognition modules. The effective molarity for formation of intramolecular H-bonds that lead to zipping up of the duplex (EM) increases with decreasing flexibility of the recognition modules: 14 mM for the phosphine oxides which are connected to the backbone via a flexible linker; 40 mM for the pyridine N-oxides which have three fewer degrees of torsional freedom, and 80 mM for the pyridines where the geometry of the H-bond is more directional. However, the pyridine-phenol H-bond is an order of magnitude weaker than the other two types of H-bond, so overall the pyridine N-oxides form the most stable duplexes with the highest degree of cooperativity. The results show that it is possible to use different recognition motifs with the same duplex architecture, and this makes it possible to tune overall stabilities of the complexes by varying the components.
Collapse
Affiliation(s)
- Alexander E Stross
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
36
|
Nowosinski K, Warnke S, Pagel K, Komáromy D, Jiang W, Schalley CA. Photooxygenation and gas-phase reactivity of multiply threaded pseudorotaxanes. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:269-281. [PMID: 27041657 DOI: 10.1002/jms.3746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
The solution-phase photooxygenation of multiply threaded crown/ammonium pseudorotaxanes containing anthracene spacers is monitored by electrospray ionization Fourier-transform ion-cyclotron-resonance (ESI-FTICR) mass spectrometry. The oxygenated pseudorotaxanes are mass-selected and fragmented by infrared multiphoton dissociation (IRMPD) and/or collision-induced dissociation (CID) experiments and and their behavior compared to that of the non-oxygenated precursors. [4+2]Cycloreversion reactions lead to the loss of O2, when no other reaction channel with competitive energy demand is available. Thus, the release of molecular oxygen can serve as a reference reaction for the energy demand of other fragmentation reactions such as the dissociation of the crown/ammonium binding motifs. The photooxygenation induces curvature into the initially planar anthracene and thus significantly changes the geometry of the divalent, anthracene-spacered wheel. This is reflected in ion-mobility data. Coulomb repulsion in multiply charged pseudorotaxanes assists the oxygen loss as the re-planarization of the anthracene increases the distance between the two charges.
Collapse
Affiliation(s)
- Karol Nowosinski
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Stephan Warnke
- Fritz Haber Institute of the Max Planck Society, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Dávid Komáromy
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wei Jiang
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, South University of Science and Technology of China (SUSTC), No.1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, China
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
37
|
New pseudodimeric aurones as palm pocket inhibitors of Hepatitis C virus RNA-dependent RNA polymerase. Eur J Med Chem 2016; 115:217-29. [PMID: 27017550 DOI: 10.1016/j.ejmech.2016.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022]
Abstract
The NS5B RNA-dependent RNA polymerase (RdRp) is a key enzyme for Hepatitis C Virus (HCV) replication. In addition to the catalytic site, this enzyme is characterized by the presence of at least four allosteric pockets making it an interesting target for development of inhibitors as potential anti-HCV drugs. Based on a previous study showing the potential of the naturally occurring aurones as inhibitors of NS5B, we pursued our efforts to focus on pseudodimeric aurones that have never been investigated so far. Hence, 14 original compounds characterized by the presence of a spacer between the benzofuranone moieties were synthesized and investigated as HCV RdRp inhibitors by means of an in vitro assay. The most active inhibitor, pseudodimeric aurone 4, induced high inhibition activity (IC50 = 1.3 μM). Mutagenic and molecular modeling studies reveal that the binding site for the most active derivatives probably is the palm pocket I instead of the thumb pocket I as for the monomeric derivatives.
Collapse
|
38
|
Iadevaia G, Stross AE, Neumann A, Hunter CA. Mix and match backbones for the formation of H-bonded duplexes. Chem Sci 2016; 7:1760-1767. [PMID: 28936325 PMCID: PMC5592378 DOI: 10.1039/c5sc04467g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022] Open
Abstract
The formation of well-defined supramolecular assemblies involves competition between intermolecular and intramolecular interactions, which is quantified by effective molarity. Formation of a duplex between two oligomers equipped with recognition sites displayed along a non-interacting backbone requires that once one intermolecular interaction has been formed, all subsequent interactions take place in an intramolecular sense. The efficiency of this process is governed by the geometric complementarity and conformational flexibility of the backbone linking the recognition sites. Here we report a series of phosphine oxide H-bond acceptor AA 2-mers and phenol H-bond donor DD 2-mers, where the two recognition sites are connected by isomeric backbone modules that vary in geometry and flexibility. All AA and DD combinations form stable AA·DD duplexes, where two cooperative H-bonds lead to an increase in stability of an order of magnitude compared with the corresponding A·D complexes that can only form one H-bond. For all six possible backbone combinations, the effective molarity for duplex formation is approximately constant (7-20 mM). Thus strict complementarity and high degrees of preorganisation are not required for efficient supramolecular assembly. Provided there is some flexibility, quite different backbone modules can be used interchangeably to construct stable H-bonded duplexes.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Alexander E Stross
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Anja Neumann
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , UK
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
39
|
Affiliation(s)
- A. Subha Mahadevi
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| | - G. Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| |
Collapse
|
40
|
Fu X, Zhang Q, Rao SJ, Qu DH, Tian H. One-pot synthesis of a [c2]daisy-chain-containing hetero[4]rotaxane via a self-sorting strategy. Chem Sci 2016; 7:1696-1701. [PMID: 28808537 PMCID: PMC5535066 DOI: 10.1039/c5sc04844c] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022] Open
Abstract
The construction and efficient synthesis of hetero[n]rotaxanes with high structural complexity are always attractive challenges. Herein, we demonstrate a facile one-pot preparation of a hetero[4]rotaxane, by employing a self-sorting strategy, which contains an interpenetrated dibenzo-24-crown-8 (DB24C8) based [c2]daisy chain structure and is ended with a benzo-21-crown-7 (B21C7) based rotaxane at each side. The key to the design involved encoding the selective threading using a steric hindrance-related "language", where highly selective self-assemblies occurred in a three-component self-sorting process, which included the threading of a benzylalkylammonium into a B21C7 and interpenetrated dimerized formation of a DB24C8 based [c2]daisy chain simultaneously; the precise pre-assembled system resulted in the efficient synthesis of hetero[4]rotaxane with a high-level of structural complexity under the "CuAAC" reaction.
Collapse
Affiliation(s)
- Xin Fu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Si-Jia Rao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| |
Collapse
|
41
|
Interview with Christoph A. Schalley. Org Chem Front 2016. [DOI: 10.1039/c6qo90041k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Đorđević L, Marangoni T, De Leo F, Papagiannouli I, Aloukos P, Couris S, Pavoni E, Monti F, Armaroli N, Prato M, Bonifazi D. [60]Fullerene–porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response. Phys Chem Chem Phys 2016; 18:11858-68. [DOI: 10.1039/c5cp06055a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein we report a series of porphyrin and methano[60]fullerene that undergo self-assembly.
Collapse
|
43
|
Motloch P, Hunter C. Thermodynamic Effective Molarities for Supramolecular Complexes. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.apoc.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Equilibrium Effective Molarity As a Key Concept in Ring-Chain Equilibria, Dynamic Combinatorial Chemistry, Cooperativity and Self-assembly. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.apoc.2016.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
45
|
Hu WB, Hu WJ, Liu YA, Li JS, Jiang B, Wen K. Multicavity macrocyclic hosts. Chem Commun (Camb) 2016; 52:12130-12142. [DOI: 10.1039/c6cc03651a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multicavity macrocyclic hosts are host molecules comprising more than one macrocyclic guest binding components connected through multipoint linkages.
Collapse
Affiliation(s)
- Wei-Bo Hu
- Shanghai Advanced Research Institute
- Chinese Academy of Science
- Shanghai 201210
- China
- University of Chinese Academy of Sciences
| | - Wen-Jing Hu
- Shanghai Advanced Research Institute
- Chinese Academy of Science
- Shanghai 201210
- China
| | - Yahu A. Liu
- Genomics Institute of the Novartis Research Foundation
- San Diego
- USA
| | - Jiu-Sheng Li
- Shanghai Advanced Research Institute
- Chinese Academy of Science
- Shanghai 201210
- China
| | - Biao Jiang
- Shanghai Advanced Research Institute
- Chinese Academy of Science
- Shanghai 201210
- China
| | - Ke Wen
- Shanghai Advanced Research Institute
- Chinese Academy of Science
- Shanghai 201210
- China
- School of Physical Science and Technology
| |
Collapse
|
46
|
Li H, Fan X, Qi M, Yang Z, Zhang H, Tian W. Supramolecular Alternating Polymer from Crown Ether and Pillar[5]arene-Based Double Molecular Recognition for Preparation of Hierarchical Materials. Chemistry 2015; 22:101-5. [DOI: 10.1002/chem.201504012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/22/2022]
|
47
|
Stross AE, Iadevaia G, Hunter CA. Cooperative duplex formation by synthetic H-bonding oligomers. Chem Sci 2015; 7:94-101. [PMID: 29861969 PMCID: PMC5950798 DOI: 10.1039/c5sc03414k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023] Open
Abstract
Flexible phenol-phosphine oxide oligomers show promise as a new class of synthetic information molecule.
A series of flexible oligomers equipped with phenol H-bond donors and phosphine oxide H-bond acceptors have been synthesised using reductive amination chemistry. H-bonding interactions between complementary oligomers leads to the formation of double-stranded complexes which were characterised using NMR titrations and thermal denaturation experiments. The stability of the duplex increases by one order of magnitude for every H-bonding group added to the chain. Similarly, the enthalpy change for duplex assembly and the melting temperature for duplex denaturation both increase with increasing chain length. These observations indicate that H-bond formation along the oligomers is cooperative despite the flexible backbone, and the effective molarity for intramolecular H-bond formation (14 mM) is sufficient to propagate the formation of longer duplexes using this approach. The product K EM, which is used to quantify chelate cooperativity is 5, which means that each H-bond is more than 80% populated in the assembled duplex. The modular design of these oligomers represents a general strategy for the design of synthetic information molecules that could potentially encode and replicate chemical information in the same way as nucleic acids.
Collapse
Affiliation(s)
- Alexander E Stross
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
48
|
Nowosinski K, von Krbek LKS, Traulsen NL, Schalley CA. Thermodynamic Analysis of Allosteric and Chelate Cooperativity in Di- and Trivalent Ammonium/Crown-Ether Pseudorotaxanes. Org Lett 2015; 17:5076-9. [DOI: 10.1021/acs.orglett.5b02592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karol Nowosinski
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustraße
3, 14195 Berlin, Germany
| | - Larissa K. S. von Krbek
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustraße
3, 14195 Berlin, Germany
| | - Nora L. Traulsen
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustraße
3, 14195 Berlin, Germany
| | - Christoph A. Schalley
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustraße
3, 14195 Berlin, Germany
| |
Collapse
|
49
|
Meng Z, Han Y, Wang LN, Xiang JF, He SG, Chen CF. Stepwise Motion in a Multivalent [2](3)Catenane. J Am Chem Soc 2015; 137:9739-45. [DOI: 10.1021/jacs.5b05758] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zheng Meng
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Na Wang
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun-Feng Xiang
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng-Gui He
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan-Feng Chen
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
50
|
Achazi AJ, Mollenhauer D, Paulus B. First principle investigation of the linker length effects on the thermodynamics of divalent pseudorotaxanes. Beilstein J Org Chem 2015; 11:687-92. [PMID: 26124872 PMCID: PMC4464336 DOI: 10.3762/bjoc.11.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
The Gibbs energies of association (Gibbs free (binding) energies) for divalent crown-8/ammonium pseudorotaxanes are determined by investigating the influence of different linkers onto the binding. Calculations are performed with density functional theory including dispersion corrections. The translational, rotational and vibrational contributions are taken into account and solvation effects including counter ions are investigated by applying the COSMO-RS method, which is based on a continuum solvation model. The calculated energies agree well with the experimentally determined ones. The shortest investigated linker shows an enhanced binding strength due to electronic effects, namely the dispersion interaction between the linkers from the guest and the host. For the longer linkers this ideal packing is not possible due to steric hindrance.
Collapse
Affiliation(s)
- Andreas J Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Doreen Mollenhauer
- Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|