1
|
Ochmann M, Harich J, Ma R, Freibert A, Kim Y, Gopannagari M, Hong DH, Nam D, Kim S, Kim M, Eom I, Lee JH, Yorke BA, Kim TK, Huse N. UV photochemistry of the L-cystine disulfide bridge in aqueous solution investigated by femtosecond X-ray absorption spectroscopy. Nat Commun 2024; 15:8838. [PMID: 39397016 PMCID: PMC11471820 DOI: 10.1038/s41467-024-52748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
The photolysis of disulfide bonds is implicated in denaturation of proteins exposed to ultraviolet light. Despite this biological relevance in stabilizing the structure of many proteins, the mechanisms of disulfide photolysis are still contested after decades of research. Herein, we report new insight into the photochemistry of L-cystine in aqueous solution by femtosecond X-ray absorption spectroscopy at the sulfur K-edge. We observe homolytic bond cleavage upon ultraviolet irradiation and the formation of thiyl radicals as the single primary photoproduct. Ultrafast thiyl decay due to geminate recombination proceeds at a quantum yield of >80 % within 20 ps. These dynamics coincide with the emergence of a secondary product, attributed to the generation of perthiyl radicals. From these findings, we suggest a mechanism of perthiyl radical generation from a vibrationally excited parent molecule that asymmetrically fragments along a carbon-sulfur bond. Our results point toward a dynamic photostability of the disulfide bridge in condensed-phase.
Collapse
Affiliation(s)
- Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany
| | - Rory Ma
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Antonia Freibert
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany.
| | - Yujin Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Madhusudana Gopannagari
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Da Hye Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Briony A Yorke
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Tae Kyu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany.
| |
Collapse
|
2
|
Yao J, Hua X, Huo W, Xiao L, Wang Y, Tang Q, Valdivia CR, Valdivia HH, Dong W, Xiao L. The Effect of Acidic Residues on the Binding between Opicalcin1 and Ryanodine Receptor from the Structure-Functional Analysis. JOURNAL OF NATURAL PRODUCTS 2024; 87:104-112. [PMID: 38128916 PMCID: PMC10825818 DOI: 10.1021/acs.jnatprod.3c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Calcin is a group ligand with high affinity and specificity for the ryanodine receptors (RyRs). Little is known about the effect of its acidic residues on the spacial structure as well as the interaction with RyRs. We screened the opicalcin1 acidic mutants and investigated the effect of mutation on activity. The results indicated that all acidic mutants maintained the structural features, but their surface charge distribution underwent significant changes. Molecular docking and dynamics simulations were used to analyze the interaction between opicalcin1 mutants and RyRs, which demonstrated that all opicalcin1 mutants effectively bound to the channel domain of RyR1. This stable binding induced a pronounced asymmetry in the structure of the RyR tetramer, exhibiting a high degree of structural dissimilarity. [3H]Ryanodine binding to RyR1 was enhanced in D2A and D15A, which was similar to opicalcin1, but that effect was suppressed in E12A and E29A and reversed for the DE-4A, thereby inhibiting ryanodine binding. Opicalcin1 and DE-4A also exhibited the ability to form stable docking structures with RyR2. Acidic residues play a crucial role in the structure of calcin and its functional interaction with RyRs that is beneficial for the calcin optimization to develop more active peptide lead compounds for RyR-related diseases.
Collapse
Affiliation(s)
- Jinchi Yao
- School
of Life Sciences, Liaoning Normal University, Dalian116081, China
- Department
of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical
University), Shanghai 200433, China
| | - Xiaoyu Hua
- Department
of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical
University), Shanghai 200433, China
| | - Wenjing Huo
- The
305 Hospital of PLA, Beijing 100017, China
| | - Li Xiao
- Department
of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53188, United States
- Department
of Forensic Toxicological Analysis, West China School of Basic Medical
Sciences and Forensic Medicine, Sichuan
University, Chengdu 610017, China
| | - Yongfang Wang
- Department
of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical
University), Shanghai 200433, China
| | - Qinglong Tang
- Central
Medical District of Chinese, PLA General Hospital, Beijing 100120, China
| | - Carmen R. Valdivia
- Department
of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53188, United States
| | - Héctor H. Valdivia
- Department
of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53188, United States
| | - Weibing Dong
- School
of Life Sciences, Liaoning Normal University, Dalian116081, China
| | - Liang Xiao
- Department
of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical
University), Shanghai 200433, China
| |
Collapse
|
3
|
Ma J, Gong ZY, Dong ZB. Synthesis of symmetric diaryl disulfides using odorless and easily available phenyl dimethylcarbamodithioates as organosulfur sources. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People’s Republic of China
| | - Zhi-Ying Gong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People’s Republic of China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People’s Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, People’s Republic of China
| |
Collapse
|
4
|
Yalala VR, Lynch AK, Mills KV. Conditional Alternative Protein Splicing Promoted by Inteins from Haloquadratum walsbyi. Biochemistry 2022; 61:294-302. [PMID: 35073064 PMCID: PMC8847336 DOI: 10.1021/acs.biochem.1c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein splicing is a post-translational process by which an intervening protein, or an intein, catalyzes its own excision from flanking polypeptides, or exteins, coupled to extein ligation. Four inteins interrupt the MCM helicase of the halophile Haloquadratum walsbyi, two of which are mini-inteins that lack a homing endonuclease. Both inteins can be overexpressed in Escherichia coli and purified as unspliced precursors; splicing can be induced in vitro by incubation with salt. However, one intein can splice in 0.5 M NaCl in vitro, whereas the other splices efficiently only in buffer containing over 2 M NaCl; the organism also requires high salt to grow, with the standard growth media containing over 3 M NaCl and about 0.75 M magnesium salts. Consistent with this difference in salt-dependent activity, an intein-containing precursor protein with both inteins promotes conditional alternative protein splicing (CAPS) to yield different spliced products dependent on the salt concentration. Native Trp fluorescence of the inteins suggests that the difference in activity may be due to partial unfolding of the inteins at lower salt concentrations. This differential salt sensitivity of intein activity may provide a useful mechanism for halophiles to respond to environmental changes.
Collapse
Affiliation(s)
- Vaishnavi R Yalala
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Abigeal K Lynch
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
5
|
Rather SA, Bhat MY, Hussain F, Ahmed QN. Sulfonyl-Promoted Michaelis-Arbuzov-Type Reaction: An Approach to S/Se-P Bonds. J Org Chem 2021; 86:13644-13663. [PMID: 34516111 DOI: 10.1021/acs.joc.1c01681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By facilitating the chemical conversion of thiols to thiosulfonates, phosphoramidite/phosphite bearing sp3-hybridized carbon serves as an ideal coupling material to forge new connections at room temperature. In this work, a functional group-induced, additive-free, novel, S-P bond-forming approach is presented. This protocol exhibits good functional group tolerance with wide applications that include phosphorylation of cysteine derivatives, development of a one-pot approach to mixed unsymmetrical thiophosphonates, and extension of the concept to different Se-P bonds. Meticulously, our reaction also generated a S-P bond against cyclic 1,2-dithiane-1-dioxide in a byproduct-free manner. These Michaelis-Arbuzov-type reactions are easy to conduct, work efficiently in a reduced reaction time, and are applicable to gram-scale preparation as well.
Collapse
Affiliation(s)
- Suhail A Rather
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Yaqoob Bhat
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Feroze Hussain
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Williams JE, Jaramillo MV, Li Z, Zhao J, Wang C, Li H, Mills KV. An alternative domain-swapped structure of the Pyrococcus horikoshii PolII mini-intein. Sci Rep 2021; 11:11680. [PMID: 34083592 PMCID: PMC8175363 DOI: 10.1038/s41598-021-91090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Protein splicing is a post-translational process by which an intein catalyzes its own excision from flanking polypeptides, or exteins, concomitant with extein ligation. Many inteins have nested homing endonuclease domains that facilitate their propagation into intein-less alleles, whereas other inteins lack the homing endonuclease (HEN) and are called mini-inteins. The mini-intein that interrupts the DNA PolII of Pyrococcus horikoshii has a linker region in place of the HEN domain that is shorter than the linker in a closely related intein from Pyrococcus abyssi. The P. horikoshii PolII intein requires a higher temperature for catalytic activity and is more stable to digestion by the thermostable protease thermolysin, suggesting that it is more rigid than the P. abyssi intein. We solved a crystal structure of the intein precursor that revealed a domain-swapped dimer. Inteins found as domain swapped dimers have been shown to promote intein-mediated protein alternative splicing, but the solved P. horikoshii PolII intein structure has an active site unlikely to be catalytically competent.
Collapse
Affiliation(s)
- Jennie E Williams
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA
| | - Mario V Jaramillo
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA
| | - Zhong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- China Agricultural University, Beijing, China
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hongmin Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA.
| |
Collapse
|
7
|
Xia HF, Zhou TJ, Du YX, Wang YJ, Shi CH, Wood DW. Improved protein purification system based on C-terminal cleavage of Npu DnaE split intein. Bioprocess Biosyst Eng 2020; 43:1931-1941. [PMID: 32447513 DOI: 10.1007/s00449-020-02382-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
A purification system was constructed with the N-segment of the Npu DnaE split intein as an affinity ligand immobilized onto an epoxy-activated medium and the C-segment used as the cleavable tag fusing target protein. The affinity properties of C-tagged proteins adsorbed on IN affinity chromatography medium were studied with GFP as a model target protein. The saturated adsorption capacity and dynamic adsorption capacity reached 51.9-21.0 mg mL-1, respectively. With this system, two model proteins, GFP and alcohol dehydrogenase (ADH), has been successfully taglessly purified with regulation of Zn2+ and DTT. The yield, purification factor and purity of purified tagless GFP reached 39, 11.7 and 97%, respectively; while these values for purified tagless ADH were 38.2, 6.8 and 91%, respectively. These results showed that the system for Npu DnaE split intein-mediated affinity adsorption and in situ cleavage is a potential platform for recombinant protein production.
Collapse
Affiliation(s)
- Hai-Feng Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | - Ting-Jun Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ye-Xing Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yu-Jun Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chang-Hua Shi
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Robinzon S, Cawood AR, Ruiz MA, Gophna U, Altman-Price N, Mills KV. Protein Splicing Activity of the Haloferax volcanii PolB-c Intein Is Sensitive to Homing Endonuclease Domain Mutations. Biochemistry 2020; 59:3359-3367. [PMID: 32822531 DOI: 10.1021/acs.biochem.0c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inteins are selfish genetic elements residing in open reading frames that can splice post-translationally, resulting in the ligation of an uninterrupted, functional protein. Like other inteins, the DNA polymerase B (PolB) intein of the halophilic archaeon Haloferax volcanii has an active homing endonuclease (HEN) domain, facilitating its horizontal transmission. Previous work has shown that the presence of the PolB intein exerts a significant fitness cost on the organism compared to an intein-free isogenic H. volcanii. Here, we show that mutation of a conserved residue in the HEN domain not only reduces intein homing but also slows growth. Surprisingly, although this mutation is far from the protein splicing active site, it also significantly reduces in vitro protein splicing. Moreover, two additional HEN domain mutations, which could not be introduced to H. volcanii, presumably due to lethality, also eliminate protein splicing activity in vitro. These results suggest an interplay between HEN residues and the protein splicing domain, despite an over 35 Å separation in a PolB intein homology model. The combination of in vivo and in vitro evidence strongly supports a model of codependence between the self-splicing domain and the HEN domain that has been alluded to by previous in vitro studies of protein splicing with HEN domain-containing inteins.
Collapse
Affiliation(s)
- Shachar Robinzon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexandra R Cawood
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Mercedes A Ruiz
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,The Open University, Raanana 43107, Israel
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| |
Collapse
|
9
|
Woods D, Vangaveti S, Egbanum I, Sweeney AM, Li Z, Bacot-Davis V, LeSassier DS, Stanger M, Hardison GE, Li H, Belfort M, Lennon CW. Conditional DnaB Protein Splicing Is Reversibly Inhibited by Zinc in Mycobacteria. mBio 2020; 11:e01403-20. [PMID: 32665276 PMCID: PMC7360933 DOI: 10.1128/mbio.01403-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Inteins, as posttranslational regulatory elements, can tune protein function to environmental changes by conditional protein splicing (CPS). Translated as subdomains interrupting host proteins, inteins splice to scarlessly join flanking sequences (exteins). We used DnaB-intein1 (DnaBi1) from a replicative helicase of Mycobacterium smegmatis to build a kanamycin intein splicing reporter (KISR) that links splicing of DnaBi1 to kanamycin resistance. Using expression in heterologous Escherichia coli, we observed phenotypic classes of various levels of splicing-dependent resistance (SDR) and related these to the insertion position of DnaBi1 within the kanamycin resistance protein (KanR). The KanR-DnaBi1 construct demonstrating the most stringent SDR was used to probe for CPS of DnaB in the native host environment, M. smegmatis We show here that zinc, important during mycobacterial pathogenesis, inhibits DnaB splicing in M. smegmatis Using an in vitro reporter system, we demonstrated that zinc potently and reversibly inhibited DnaBi1 splicing, as well as splicing of a comparable intein from Mycobacterium leprae Finally, in a 1.95 Å crystal structure, we show that zinc inhibits splicing through binding to the very cysteine that initiates the splicing reaction. Together, our results provide compelling support for a model whereby mycobacterial DnaB protein splicing, and thus DNA replication, is responsive to environmental zinc.IMPORTANCE Inteins are present in a large fraction of prokaryotes and localize within conserved proteins, including the mycobacterial replicative helicase DnaB. In addition to their extensive protein engineering applications, inteins have emerged as environmentally responsive posttranslational regulators of the genes that encode them. While several studies have shown compelling evidence of conditional protein splicing (CPS), examination of splicing in the native host of the intein has proven to be challenging. Here, we demonstrated through a number of measures, including the use of a splicing-dependent sensor capable of monitoring intein activity in the native host, that zinc is a potent and reversible inhibitor of mycobacterial DnaB splicing. This work also expands our knowledge of site selection for intein insertion within nonnative proteins, demonstrating that splicing-dependent host protein activation correlates with proximity to the active site. Additionally, we surmise that splicing regulation by zinc has mycobacteriocidal and CPS application potential.
Collapse
Affiliation(s)
- Daniel Woods
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, Albany, New York, USA
| | - Ikechukwu Egbanum
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Allison M Sweeney
- Department of Biology, Murray State University, Murray, Kentucky, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Valjean Bacot-Davis
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | - Matthew Stanger
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | | | - Hongmin Li
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marlene Belfort
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- The RNA Institute, University at Albany, Albany, New York, USA
| | | |
Collapse
|
10
|
Chiarolanzio KC, Pusztay JM, Chavez A, Zhao J, Xie J, Wang C, Mills KV. Allosteric Influence of Extremophile Hairpin Motif Mutations on the Protein Splicing Activity of a Hyperthermophilic Intein. Biochemistry 2020; 59:2459-2467. [PMID: 32559373 DOI: 10.1021/acs.biochem.0c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein splicing is a post-translational process mediated by an intein, whereby the intein excises itself from a precursor protein with concomitant ligation of the two flanking polypeptides. The intein that interrupts the DNA polymerase II in the extreme hyperthermophile Pyrococcus abyssi has a β-hairpin that extends the central β-sheet of the intein. This β-hairpin is mostly found in inteins from archaea, as well as halophilic eubacteria, and is thus called the extremophile hairpin (EXH) motif. The EXH is stabilized by multiple favorable interactions, including electrostatic interactions involving Glu29, Glu31, and Arg40. Mutations of these residues diminish the extent of N-terminal cleavage and the extent of protein splicing, likely by interfering with the coordination of the steps of splicing. These same mutations decrease the global stability of the intein fold as measured by susceptibility to thermolysin cleavage. 15N-1H heteronuclear single-quantum coherence demonstrated that these mutations altered the chemical environment of active site residues such as His93 (B-block histidine) and Ser166 (F-block residue 4). This work again underscores the connected and coordinated nature of intein conformation and dynamics, where remote mutations can disturb a finely tuned interaction network to inhibit or enhance protein splicing.
Collapse
Affiliation(s)
- Kathryn C Chiarolanzio
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Jennifer M Pusztay
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Angel Chavez
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Jing Zhao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Xie
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
11
|
Roskamp KW, Azim S, Kassier G, Norton-Baker B, Sprague-Piercy MA, Miller RJD, Martin RW. Human γS-Crystallin-Copper Binding Helps Buffer against Aggregation Caused by Oxidative Damage. Biochemistry 2020; 59:2371-2385. [PMID: 32510933 DOI: 10.1021/acs.biochem.0c00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Günther Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - R J Dwyane Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany.,Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
12
|
Eichler J. Modifying Post‐Translational Modifications: A Strategy Used by Archaea for Adapting to Changing Environments? Bioessays 2020; 42:e1900207. [DOI: 10.1002/bies.201900207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jerry Eichler
- Department of Life SciencesBen Gurion University of the Negev Beersheva 84105 Israel
| |
Collapse
|
13
|
Zhao J, Du Z, Wang C, Mills KV. Methods to Study the Structure and Catalytic Activity of cis-Splicing Inteins. Methods Mol Biol 2020; 2133:55-73. [PMID: 32144663 PMCID: PMC7325523 DOI: 10.1007/978-1-0716-0434-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The autocatalytic process of protein splicing is facilitated by an intein, which interrupts flanking polypeptides called exteins. The mechanism of protein splicing has been studied by overexpression in E. coli of intein fusion proteins with nonnative exteins. Inteins can be used to generate reactive α-thioesters, as well as proteins with N-terminal Cys residues, to facilitate expressed protein ligation. As such, a more detailed understanding of the function of inteins can have significant impact for biotechnology applications. Here, we provide biochemical methods to study splicing activity and NMR methods to study intein structure and the catalytic mechanism.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Zhenming Du
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA.
| |
Collapse
|
14
|
Lennon CW, Stanger MJ, Belfort M. Mechanism of Single-Stranded DNA Activation of Recombinase Intein Splicing. Biochemistry 2019; 58:3335-3339. [PMID: 31318538 DOI: 10.1021/acs.biochem.9b00506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inteins, or intervening proteins, are mobile genetic elements translated within host polypeptides and removed through protein splicing. This self-catalyzed process breaks two peptide bonds and rejoins the flanking sequences, called N- and C-exteins, with the intein scarlessly escaping the host protein. As these elements have traditionally been viewed as purely selfish genetic elements, recent work has demonstrated that the conditional protein splicing (CPS) of several naturally occurring inteins can be regulated by a variety of environmental cues relevant to the survival of the host organism or crucial to the invading protein function. The RadA recombinase from the archaeon Pyrococcus horikoshii represents an intriguing example of CPS, whereby protein splicing is inhibited by interactions between the intein and host protein C-extein. Single-stranded DNA (ssDNA), a natural substrate of RadA as well as signal that recombinase activity is needed by the cell, dramatically improves the splicing rate and accuracy. Here, we investigate the mechanism by which ssDNA exhibits this influence and find that ssDNA strongly promotes a specific step of the splicing reaction, cyclization of the terminal asparagine of the intein. Interestingly, inhibitory interactions between the host protein and intein that block splicing localize to this asparagine, suggesting that ssDNA binding alleviates this inhibition to promote splicing. We also find that ssDNA directly influences the position of catalytic nucleophiles required for protein splicing, implying that ssDNA promotes assembly of the intein active site. This work advances our understanding of how ssDNA accelerates RadA splicing, providing important insights into this intriguing example of CPS.
Collapse
Affiliation(s)
- Christopher W Lennon
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Matthew J Stanger
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| |
Collapse
|
15
|
Zhang Y, Yang D, Li Y, Zhao X, Wang B, Qu J. Biomimetic catalytic oxidative coupling of thiols using thiolate-bridged dinuclear metal complexes containing iron in water under mild conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01667h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green approach to disulfides via aerobic oxidative coupling of thiols was developed with a thiolate-bridged heteronuclear complex in water.
Collapse
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Ying Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Xiangyu Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- Key Laboratory for Advanced Materials
| |
Collapse
|
16
|
Xu Y, Zhang L, Ma B, Hu L, Lu H, Dou T, Chen J, Zhu J. Intermolecular disulfide bonds between unpaired cysteines retard the C-terminal trans-cleavage of Npu DnaE. Enzyme Microb Technol 2018; 118:6-12. [PMID: 30143201 DOI: 10.1016/j.enzmictec.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Npu DnaE is a naturally occurred split intein possessing robust trans-splicing activity and could be engineered to perform rapid C-terminal cleavage module by a single mutation D118G. Unfortunately, however, for this modified selfcleaving module, reducing agents were needed to trigger the rapid cleavage, which prevents the utilization in purification of disulfide bonds containing recombinant proteins. In this study, we demonstrated that the unpaired cysteine residues in Npu DnaE tend to form disulfide bonds, and contributed to the reduction of the cleavage under non-reducing conditions. This redox trap can be disrupted by site-directed mutation of these unpaired cysteines. The results further indicated that the position 28 and 59 may play certain roles in the correct folding of the active conformation.
Collapse
Affiliation(s)
- Yanran Xu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tonglu Dou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junsheng Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Laboratories, Inc., Frederick, MD, USA.
| |
Collapse
|
17
|
Wang M, Jiang X. Sulfur–Sulfur Bond Construction. Top Curr Chem (Cham) 2018; 376:14. [DOI: 10.1007/s41061-018-0192-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/21/2018] [Indexed: 01/27/2023]
|
18
|
Pavankumar TL. Inteins: Localized Distribution, Gene Regulation, and Protein Engineering for Biological Applications. Microorganisms 2018; 6:E19. [PMID: 29495613 PMCID: PMC5874633 DOI: 10.3390/microorganisms6010019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/24/2018] [Accepted: 02/25/2018] [Indexed: 11/25/2022] Open
Abstract
Inteins are self-splicing polypeptides with an ability to excise themselves from flanking host protein regions with remarkable precision; in the process, they ligate flanked host protein fragments. Inteins are distributed sporadically across all three domains of life (bacteria, archaea, and unicellular eukaryotes). However, their apparent localized distribution in DNA replication, repair, and recombination proteins (the 3Rs), particularly in bacteria and archaea, is enigmatic. Our understanding of the localized distribution of inteins in the 3Rs, and their possible regulatory role in such distribution, is still only partial. Nevertheless, understanding the chemistry of post-translational self-splicing of inteins has opened up opportunities for protein chemists to modify, manipulate, and bioengineer proteins. Protein-splicing technology is adapted to a wide range of applications, starting with untagged protein purification, site-specific protein labeling, protein biotinylation, isotope incorporation, peptide cyclization, as an antimicrobial target, and so on. This review is focused on the chemistry of splicing; the localized distribution of inteins, particularly in the 3Rs and their possible role in regulating host protein function; and finally, the use of protein-splicing technology in various protein engineering applications.
Collapse
Affiliation(s)
- Theetha L Pavankumar
- Department of Microbiology and Molecular Genetics, Briggs Hall, One Shields Ave, University of California, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Belfort M. Mobile self-splicing introns and inteins as environmental sensors. Curr Opin Microbiol 2017; 38:51-58. [PMID: 28482231 DOI: 10.1016/j.mib.2017.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Self-splicing introns and inteins are often mobile at the level of the genome. Although these RNA and protein elements, respectively, are generally considered to be selfish parasites, group I and group II introns and inteins can be triggered by environmental cues to splice and/or to mobilize. These cues include stressors such as oxidizing agents, reactive oxygen and nitrogen species, starvation, temperature, osmolarity and DNA damage. Their sensitivity to these stimuli leads to a carefully choreographed dance between the mobile element and its host that is in tune with the cellular environment. This responsiveness to a changing milieu provides strong evidence that these diverse, self-splicing mobile elements have adapted to react to prevailing conditions, to the potential advantage of both the element and its host.
Collapse
Affiliation(s)
- Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Life Sciences Research Building 2061, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
20
|
|
21
|
Minteer CJ, Siegart NM, Colelli KM, Liu X, Linhardt RJ, Wang C, Gomez AV, Reitter JN, Mills KV. Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N-Terminal Cleavage. Biochemistry 2017; 56:1042-1050. [PMID: 28165720 DOI: 10.1021/acs.biochem.6b00894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from Pyrococcus abyssi (Pab PolII intein) can promote protein splicing in vitro on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar "aspartic acid effects" have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology.
Collapse
Affiliation(s)
- Christopher J Minteer
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Nicolle M Siegart
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Kathryn M Colelli
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | | | | | | | - Alvin V Gomez
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Julie N Reitter
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| |
Collapse
|
22
|
Purification and identification of an angiotensin I-converting enzyme-inhibitory peptide from Argopecten irradians mantle enzymatic hydrolysate. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Chan H, Pearson CS, Green CM, Li Z, Zhang J, Belfort G, Shekhtman A, Li H, Belfort M. Exploring Intein Inhibition by Platinum Compounds as an Antimicrobial Strategy. J Biol Chem 2016; 291:22661-22670. [PMID: 27609519 DOI: 10.1074/jbc.m116.747824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/29/2016] [Indexed: 01/10/2023] Open
Abstract
Inteins, self-splicing protein elements, interrupt genes and proteins in many microbes, including the human pathogen Mycobacterium tuberculosis Using conserved catalytic nucleophiles at their N- and C-terminal splice junctions, inteins are able to excise out of precursor polypeptides. The splicing of the intein in the mycobacterial recombinase RecA is specifically inhibited by the widely used cancer therapeutic cisplatin, cis-[Pt(NH3)2Cl2], and this compound inhibits mycobacterial growth. Mass spectrometric and crystallographic studies of Pt(II) binding to the RecA intein revealed a complex in which two platinum atoms bind at N- and C-terminal catalytic cysteine residues. Kinetic analyses of NMR spectroscopic data support a two-step binding mechanism in which a Pt(II) first rapidly interacts reversibly at the N terminus followed by a slower, first order irreversible binding event involving both the N and C termini. Notably, the ligands of Pt(II) compounds that are required for chemotherapeutic efficacy and toxicity are no longer bound to the metal atom in the intein adduct. The lack of ammine ligands and need for phosphine represent a springboard for future design of platinum-based compounds targeting inteins. Because the intein splicing mechanism is conserved across a range of pathogenic microbes, developing these drugs could lead to novel, broad range antimicrobial agents.
Collapse
Affiliation(s)
- Hon Chan
- From the Department of Biological Sciences and RNA Institute and.,Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - C Seth Pearson
- From the Department of Biological Sciences and RNA Institute and.,Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Cathleen M Green
- From the Department of Biological Sciences and RNA Institute and
| | - Zhong Li
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Jing Zhang
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Alex Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222
| | - Hongmin Li
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and.,Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
| | - Marlene Belfort
- From the Department of Biological Sciences and RNA Institute and
| |
Collapse
|
24
|
Reitter JN, Cousin CE, Nicastri MC, Jaramillo MV, Mills KV. Salt-Dependent Conditional Protein Splicing of an Intein from Halobacterium salinarum. Biochemistry 2016; 55:1279-82. [PMID: 26913597 DOI: 10.1021/acs.biochem.6b00128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An intein from Halobacterium salinarum can be isolated as an unspliced precursor protein with exogenous exteins after Escherichia coli overexpression. The intein promotes protein splicing and uncoupled N-terminal cleavage in vitro, conditional on incubation with NaCl or KCl at concentrations of >1.5 M. The protein splicing reaction also is conditional on reduction of a disulfide bond between two active site cysteines. Conditional protein splicing under these relatively mild conditions may lead to advances in intein-based biotechnology applications and hints at the possibility that this H. salinarum intein could serve as a switch to control extein activity under physiologically relevant conditions.
Collapse
Affiliation(s)
- Julie N Reitter
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Christopher E Cousin
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Michael C Nicastri
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Mario V Jaramillo
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| |
Collapse
|
25
|
Pitman DJ, Banerjee S, Macari SJ, Castaldi CA, Crone DE, Bystroff C. Exploring the folding pathway of green fluorescent protein through disulfide engineering. Protein Sci 2015; 24:341-53. [PMID: 25516354 PMCID: PMC4353360 DOI: 10.1002/pro.2621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 11/12/2022]
Abstract
We have introduced two disulfide crosslinks into the loop regions on opposite ends of the beta barrel in superfolder green fluorescent protein (GFP) in order to better understand the nature of its folding pathway. When the disulfide on the side opposite the N/C-termini is formed, folding is 2× faster, unfolding is 2000× slower, and the protein is stabilized by 16 kJ/mol. But when the disulfide bond on the side of the termini is formed we see little change in the kinetics and stability. The stabilization upon combining the two crosslinks is approximately additive. When the kinetic effects are broken down into multiple phases, we observe Hammond behavior in the upward shift of the kinetic m-value of unfolding. We use these results in conjunction with structural analysis to assign folding intermediates to two parallel folding pathways. The data are consistent with a view that the two fastest transition states of folding are "barrel closing" steps. The slower of the two phases passes through an intermediate with the barrel opening occurring between strands 7 and 8, while the faster phase opens between 9 and 4. We conclude that disulfide crosslink-induced perturbations in kinetics are useful for mapping the protein folding pathway.
Collapse
Affiliation(s)
- Derek J Pitman
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies
| | - Shounak Banerjee
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies
| | - Stephen J Macari
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies
| | - Christopher A Castaldi
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies
| | - Donna E Crone
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies
| | - Christopher Bystroff
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies
- Department of Computer Science, Rensselaer Polytechnic InstituteTroy, New York
| |
Collapse
|
26
|
Zhou Y, Zhang N, Li BQ, Huang T, Cai YD, Kong XY. A method to distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis. J Biomol Struct Dyn 2015; 33:2479-90. [PMID: 25616595 DOI: 10.1080/07391102.2014.1001793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysine acetylation and ubiquitination are two primary post-translational modifications (PTMs) in most eukaryotic proteins. Lysine residues are targets for both types of PTMs, resulting in different cellular roles. With the increasing availability of protein sequences and PTM data, it is challenging to distinguish the two types of PTMs on lysine residues. Experimental approaches are often laborious and time consuming. There is an urgent need for computational tools to distinguish between lysine acetylation and ubiquitination. In this study, we developed a novel method, called DAUFSA (distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis), to discriminate ubiquitinated and acetylated lysine residues. The method incorporated several types of features: PSSM (position-specific scoring matrix) conservation scores, amino acid factors, secondary structures, solvent accessibilities, and disorder scores. By using the mRMR (maximum relevance minimum redundancy) method and the IFS (incremental feature selection) method, an optimal feature set containing 290 features was selected from all incorporated features. A dagging-based classifier constructed by the optimal features achieved a classification accuracy of 69.53%, with an MCC of .3853. An optimal feature set analysis showed that the PSSM conservation score features and the amino acid factor features were the most important attributes, suggesting differences between acetylation and ubiquitination. Our study results also supported previous findings that different motifs were employed by acetylation and ubiquitination. The feature differences between the two modifications revealed in this study are worthy of experimental validation and further investigation.
Collapse
Affiliation(s)
- You Zhou
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine , Shanghai 200031 , P.R. China
| | - Ning Zhang
- b Department of Biomedical Engineering, Tianjin Key Lab of BME Measurement , Tianjin University , Tianjin 300072 , P.R. China
| | - Bi-Qing Li
- c Key Laboratory of Systems Biology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , P.R. China
| | - Tao Huang
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine , Shanghai 200031 , P.R. China.,d Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York , NY 10029 , USA
| | - Yu-Dong Cai
- e Institute of Systems Biology , Shanghai University , Shanghai 200444 , P.R. China
| | - Xiang-Yin Kong
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine , Shanghai 200031 , P.R. China
| |
Collapse
|
27
|
Comparative Analysis of the Effectiveness of C-terminal Cleavage Intein-Based Constructs in Producing a Recombinant Analog of Anophelin, an Anticoagulant from Anopheles albimanus. Appl Biochem Biotechnol 2014; 175:2468-88. [DOI: 10.1007/s12010-014-1400-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
|
28
|
Prediction of the determinants of thermal stability by linear discriminant analysis: the case of the glutamate dehydrogenase protein family. J Theor Biol 2014; 357:160-8. [PMID: 24853273 DOI: 10.1016/j.jtbi.2014.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/21/2022]
Abstract
Little is known about the determinants of thermal stability in individual protein families. Most of the knowledge on thermostability comes, in fact, from comparative analyses between large, and heterogeneous, sets of thermo- and mesophilic proteins. Here, we present a multivariate statistical approach aimed to detect signature sequences for thermostability in a single protein family. It was applied to the glutamate dehydrogenase (GDH) family, which is a good model for investigating this peculiar process. The structure of GDH consists of six subunits, each of them organized into two domains. Formation of ion-pair networks on the surface of the protein subunits, or increase in the inter-subunit hydrophobic interactions, have been suggested as important factors for explaining stability at high temperatures. However, identification of the amino acid changes that are involved in this process still remains elusive. Our approach consisted of a linear discriminant analysis on a set of GDH sequences from Archaea and Bacteria (33 thermo- and 36 mesophilic GDHs). It led to detection of 3 amino acid clusters as the putative determinants of thermal stability. They were localized at the subunit interface or in close proximity to the binding site of the NAD(P)(+) coenzyme. Analysis within the clusters led to prediction of 8 critical amino acid sites. This approach could have a wide utility, in the ligth of the notion that each protein family seems to adopt its own strategy for achieving thermostability.
Collapse
|
29
|
Chen W, Cotten ML. Expression, purification, and micelle reconstitution of antimicrobial piscidin 1 and piscidin 3 for NMR studies. Protein Expr Purif 2014; 102:63-8. [PMID: 25131859 DOI: 10.1016/j.pep.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/28/2022]
Abstract
Piscidin 1 and piscidin 3, which were discovered in the mast cells of hybrid striped sea bass, are homologous antimicrobial peptides that are active against drug-resistant bacteria. Piscidin 1, the more antimicrobial and hemolytic peptide, also has anti-HIV-1 and anti-cancer properties. To understand the reasons underlying the different biological activities of the two peptides and identify principles to design antimicrobial drugs with improved efficacy and lower toxicity, their atomic-level structures must be obtained under physiologically-relevant conditions. High-resolution backbone structures of both piscidins exist in the presence of hydrated phospholipid bilayers but full structures that include the side chains are missing. Here, the piscidins 1 and 3 genes were cloned into the TrpLE vector. The corresponding TrpLE-piscidin fusion partners were expressed in Escherichiacoli and recovered from inclusion bodies. Following steps that included Ni-NTA chromatography, cyanogen bromide cleavage of the fusion proteins, and reverse-phase HPLC, purified piscidins 1 and 3 were recovered in very good yield and characterized by NMR. High quality (15)N-(1)H HSQC spectra of piscidins 1 and 3 bound to SDS micelles were collected, demonstrating the feasibility of producing and purifying the isotopically-labeled piscidin peptides required to determine their full structures by multidimensional NMR spectroscopy.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Myriam L Cotten
- Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323, United States.
| |
Collapse
|
30
|
Groitl B, Jakob U. Thiol-based redox switches. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1335-43. [PMID: 24657586 PMCID: PMC4059413 DOI: 10.1016/j.bbapap.2014.03.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
Regulation of protein function through thiol-based redox switches plays an important role in the response and adaptation to local and global changes in the cellular levels of reactive oxygen species (ROS). Redox regulation is used by first responder proteins, such as ROS-specific transcriptional regulators, chaperones or metabolic enzymes to protect cells against mounting levels of oxidants, repair the damage and restore redox homeostasis. Redox regulation of phosphatases and kinases is used to control the activity of select eukaryotic signaling pathways, making reactive oxygen species important second messengers that regulate growth, development and differentiation. In this review we will compare different types of reversible protein thiol modifications, elaborate on their structural and functional consequences and discuss their role in oxidative stress response and ROS adaptation. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Bastian Groitl
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Lee YZ, Lee YT, Lin YJ, Chen YJ, Sue SC. A streamlined method for preparing split intein for NMR study. Protein Expr Purif 2014; 99:106-12. [PMID: 24751877 DOI: 10.1016/j.pep.2014.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/19/2014] [Accepted: 04/10/2014] [Indexed: 11/16/2022]
Abstract
A protein ligase, intein, mediates a protein-splicing reaction. It can be split into two complementary fragments and reconstituted as a whole intein scaffold to perform protein trans-splicing. To understand the association of intein fragments and the splicing mechanism, it is necessary to produce a large quantity of split intein for structural study. Conventionally, two fragments are prepared separately and assembled in solution, but severe aggregation of intein fragments occurs, and precise control of the relative concentration of each fragment is difficult. Here, we present a streamlined method to incorporate a circular permutation concept into the production of split intein. By circular permutation of the native split Nostoc punctiforme DnaE intein (NpuInt), a new backbone opening is relocated to the native split site at residue 102. As the protein splicing activity is preserved, the expressed NpuInt can immediately self-cleave into a two-piece split NpuInt. Because of a tight association between the two complementary fragments, split NpuInt can be purified in one step. The idea is simple and applicable to other split inteins. Employing the new preparation, we use NMR spectra to assign the backbone and side chain resonances for the native split NpuInt.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Tzai Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Jan Lin
- Graduate Institute of Natural Products and Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ju Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan.
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
32
|
Abstract
Inteins are nature's escape artists; they facilitate their excision from flanking polypeptides (exteins) concomitant with extein ligation to produce a mature host protein. Splicing requires sequential nucleophilic displacement reactions catalyzed by strategies similar to proteases and asparagine lyases. Inteins require precise reaction coordination rather than rapid turnover or tight substrate binding because they are single turnover enzymes with covalently linked substrates. This has allowed inteins to explore alternative mechanisms with different steps or to use different methods for activation and coordination of the steps. Pressing issues include understanding the underlying details of catalysis and how the splicing steps are controlled.
Collapse
Affiliation(s)
- Kenneth V Mills
- From the Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Margaret A Johnson
- the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | | |
Collapse
|
33
|
Novikova O, Topilina N, Belfort M. Enigmatic distribution, evolution, and function of inteins. J Biol Chem 2014; 289:14490-7. [PMID: 24695741 DOI: 10.1074/jbc.r114.548255] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inteins are mobile genetic elements capable of self-splicing post-translationally. They exist in all three domains of life including in viruses and bacteriophage, where they have a sporadic distribution even among very closely related species. In this review, we address this anomalous distribution from the point of view of the evolution of the host species as well as the intrinsic features of the inteins that contribute to their genetic mobility. We also discuss the incidence of inteins in functionally important sites of their host proteins. Finally, we describe instances of conditional protein splicing. These latter observations lead us to the hypothesis that some inteins have adapted to become sensors that play regulatory roles within their host protein, to the advantage of the organism in which they reside.
Collapse
Affiliation(s)
- Olga Novikova
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| | - Natalya Topilina
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| | - Marlene Belfort
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| |
Collapse
|
34
|
Topilina NI, Mills KV. Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 2014; 5:5. [PMID: 24490831 PMCID: PMC3922620 DOI: 10.1186/1759-8753-5-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/07/2014] [Indexed: 01/27/2023] Open
Abstract
Intein-mediated protein splicing has become an essential tool in modern biotechnology. Fundamental progress in the structure and catalytic strategies of cis- and trans-splicing inteins has led to the development of modified inteins that promote efficient protein purification, ligation, modification and cyclization. Recent work has extended these in vitro applications to the cell or to whole organisms. We review recent advances in intein-mediated protein expression and modification, post-translational processing and labeling, protein regulation by conditional protein splicing, biosensors, and expression of trans-genes.
Collapse
Affiliation(s)
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA 01610, USA.
| |
Collapse
|
35
|
Yang Q, Brüschweiler S, Chou JJ. Purification, crystallization and preliminary X-ray diffraction of the N-terminal calmodulin-like domain of the human mitochondrial ATP-Mg/Pi carrier SCaMC1. Acta Crystallogr F Struct Biol Commun 2014; 70:68-71. [PMID: 24419621 PMCID: PMC3943107 DOI: 10.1107/s2053230x1303241x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022] Open
Abstract
SCaMC is an ATP-Mg/Pi carrier protein located at the mitochondrial inner membrane. SCaMC has an unusual N-terminal Ca(2+)-binding domain (NTD) in addition to its characteristic six-helix transmembrane bundle. The NTD of human SCaMC1 (residues 1-193) was expressed and purified in order to study its role in Ca(2+)-regulated ATP-Mg/Pi transport mediated by its transmembrane domain. While Ca(2+)-bound NTD could be crystallized, the apo state resisted extensive crystallization trials. Selenomethionine-labeled Ca(2+)-bound NTD crystals, which belonged to space group P6(2)22 with one molecule per asymmetric unit, diffracted X-rays to 2.9 Å resolution.
Collapse
Affiliation(s)
- Qin Yang
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sven Brüschweiler
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Chou
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Nicastri MC, Xega K, Li L, Xie J, Wang C, Linhardt RJ, Reitter JN, Mills KV. Internal disulfide bond acts as a switch for intein activity. Biochemistry 2013; 52:5920-7. [PMID: 23906287 DOI: 10.1021/bi400736c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inteins are intervening polypeptides that catalyze their own removal from flanking exteins, concomitant to the ligation of the exteins. The intein that interrupts the DP2 (large) subunit of DNA polymerase II from Methanoculleus marisnigri (Mma) can promote protein splicing. However, protein splicing can be prevented or reduced by overexpression under nonreducing conditions because of the formation of a disulfide bond between two internal intein Cys residues. This redox sensitivity leads to differential activity in different strains of E. coli as well as in different cell compartments. The redox-dependent control of in vivo protein splicing in an intein derived from an anaerobe that can occupy multiple environments hints at a possible physiological role for protein splicing.
Collapse
Affiliation(s)
- Michael C Nicastri
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Guan D, Ramirez M, Chen Z. Split intein mediated ultra‐rapid purification of tagless protein (SIRP). Biotechnol Bioeng 2013; 110:2471-81. [DOI: 10.1002/bit.24913] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/15/2013] [Accepted: 03/22/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Dongli Guan
- Department of Chemical Engineering, 3122 TAMU, Artie McFerrinTexas A&M UniversityCollege StationTX 77843
| | - Miguel Ramirez
- Department of Chemical Engineering, 3122 TAMU, Artie McFerrinTexas A&M UniversityCollege StationTX 77843
| | - Zhilei Chen
- Department of Chemical Engineering, 3122 TAMU, Artie McFerrinTexas A&M UniversityCollege StationTX 77843
- Department of Microbial and Molecular PathogenesisTexas A&M Health Science CenterCollege StationTX
| |
Collapse
|
38
|
Bai S, Chen Q, Lu C, Lin JM. Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids. Anal Chim Acta 2013; 768:96-101. [DOI: 10.1016/j.aca.2013.01.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/16/2022]
|
39
|
Ramirez M, Valdes N, Guan D, Chen Z. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng Des Sel 2012; 26:215-23. [PMID: 23223807 DOI: 10.1093/protein/gzs097] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the engineering of a DnaE intein able to catalyze rapid C-terminal cleavage in the absence of N-terminal cleavage. A single mutation in DnaE intein from Nostoc punctiforme PCC73102 (NpuDnaE), Asp118Gly, was introduced based on sequence alignment with a previously engineered C-terminal cleaving intein mini-MtuRecA. This mutation was able to both suppress N-terminal cleavage and significantly elevate C-terminal cleavage efficiency. Molecular modeling suggests that in NpuDnaE Asp118 forms a hydrogen bond with the penultimate Asn, preventing its spontaneous cyclization prior to N-terminal cleavage. Mutation of Asp118 to Gly essentially abolishes this restriction leading to subsequent C-terminal cleavage in the absence of N-terminal cleavage. The Gly118 NpuDnaE mutant exhibits rapid thio-dependent C-terminal cleavage kinetics with 80% completion within 3 h at room temperature. We used this newly engineered intein to develop both column-free and chromatography-based protein purification methods utilizing the elastin-like-polypeptide and chitin-binding protein as removable purification tags, respectively. We demonstrate rapid target protein purification to electrophoretic purity at yields up to 84 mg per liter of Escherichia coli culture.
Collapse
Affiliation(s)
- Miguel Ramirez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|