1
|
Fan S, Liu X, Yao S, Xing G, Xu X, Shi G, Song Z, Feng G. Organic Luminescent Cocrystals Based on Benzotriazole Derivatives: Synthesis, Characterization, Crystal Structure and Fluorescence Behavior. Chemistry 2025; 31:e202403889. [PMID: 39821355 DOI: 10.1002/chem.202403889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/19/2025]
Abstract
Organic cocrystals have garnered significant research attention owing to their distinctive properties and promising applications. However, challenges in molecular structure design and control of intermolecular interactions continue to impede further advancements. In this study, two novel cocrystals were successfully formed from a series of synthesized benzotriazole derivatives. The resulting cocrystals exhibit bright green and yellow fluorescence under 365 nm light. To elucidate the microstructure of the obtained cocrystals, systematic characterization techniques such as solid-state fluorescence emission spectroscopy, Single-crystal X-ray diffraction (SCXRD), Power X-ray diffraction (PXRD) and density functional theory (DFT) were performed. These benzotriazole-based cocrystals demonstrate distinct fluorescent responses to alkaline and acidic environments, respectively. Additionally, preliminary tests for fingerprint recognition yielded satisfactory results. These findings suggest that the two cocrystals hold potential applications in acid-alkali sensing, anti-counterfeiting labels, and smart material development, while also providing valuable insights for the design and optimization of solid-state luminescent materials.
Collapse
Affiliation(s)
- Shengyu Fan
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Liu
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Shuzhi Yao
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Guangnan Xing
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaohui Xu
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Guanyu Shi
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
2
|
Song W, Shao X. Buckybowl-Based Fullerene Receptors. Chemistry 2025; 31:e202403383. [PMID: 39446344 DOI: 10.1002/chem.202403383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Buckybowls, bowl-shaped polyaromatic hydrocarbons, have received intensive interest owing to their multifaceted potentials in supramolecular chemistry and materials science. Buckybowls possess unique chemical and physical properties associated with their concave and convex faces. In view of the shape complementarity, which is one of the key factors for host-guest assembly, buckybowls are ideal receptors for fullerenes. In fact, the host-guest assembly between buckybowls and fullerenes is one of the most active topics in buckybowls chemistry, and the resulting supramolecular materials show promising applications in optoelectronics, biomaterials, and so forth. In this tutorial review, we present an overview for the progress on fullerene receptors based on buckybowls over the last decade.
Collapse
Affiliation(s)
- Wenru Song
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
3
|
Thilagar P, Nandi RP, Ghosh S. Heteroatom-Promoted Polyhexagonal Saddle-Shaped Molecular Structures and their Supramolecular Coassembly with C 60. Chemistry 2024; 30:e202400398. [PMID: 38549365 DOI: 10.1002/chem.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 05/15/2024]
Abstract
Molecules with curved architecture can exhibit unique optoelectronic properties due to the concave-convex π-surface. However, synthesizing negatively curved saddle-shaped aromatic systems has been challenging due to the internal structural strain. Herein, we report the facile synthesis of two polyhexagonal molecular systems, 1 and 2, with saddle shape geometry by judiciously varying the aromatic moiety, avoiding the harsh synthetic methods as that of heptagonal aromatic saddle systems. The unique geometry preferences of B, N, and S furnish suitable curvature to the molecules, featuring saddle shape. The saddle geometry also enables them to interact with fullerene C60 , and the supramolecular interactions of fullerene C60 with 1 and 2 modify their optoelectronic properties. Crystal structure analysis reveals that 1, with a small π-surface, forms a double columnar array of fullerenes in the solid state. In contrast, 2 with a large π-surface produces a supramolecular capsule entrapping two discrete fullerenes. The intermolecular interactions between B, N, S, and the aryl-π surface of the host and C60 guest are the stabilizing factors for creating these supramolecular structures. Comprehensive computational, optical, and Raman spectroscopic studies establish the charge transfer interactions between B-N doped heterocycle host and fullerene C60 guest.
Collapse
Affiliation(s)
- Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajendra Prasad Nandi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Subhajit Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
4
|
Mahdaoui D, Hirata C, Nagaoka K, Miyazawa K, Fujii K, Ando T, Abderrabba M, Ito O, Yagyu S, Liu Y, Nakajima Y, Tsukagoshi K, Wakahara T. Ambipolar to Unipolar Conversion in C 70/Ferrocene Nanosheet Field-Effect Transistors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2469. [PMID: 37686977 PMCID: PMC10490395 DOI: 10.3390/nano13172469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Organic cocrystals, which are assembled by noncovalent intermolecular interactions, have garnered intense interest due to their remarkable chemicophysical properties and practical applications. One notable feature, namely, the charge transfer (CT) interactions within the cocrystals, not only facilitates the formation of an ordered supramolecular network but also endows them with desirable semiconductor characteristics. Here, we present the intriguing ambipolar CT properties exhibited by nanosheets composed of single cocrystals of C70/ferrocene (C70/Fc). When heated to 150 °C, the initially ambipolar monoclinic C70/Fc nanosheet-based field-effect transistors (FETs) were transformed into n-type face-centered cubic (fcc) C70 nanosheet-based FETs owing to the elimination of Fc. This thermally induced alteration in the crystal structure was accompanied by an irreversible switching of the semiconducting behavior of the device; thus, the device transitions from ambipolar to unipolar. Importantly, the C70/Fc nanosheet-based FETs were also found to be much more thermally stable than the previously reported C60/Fc nanosheet-based FETs. Furthermore, we conducted visible/near-infrared diffuse reflectance and photoemission yield spectroscopies to investigate the crucial role played by Fc in modulating the CT characteristics. This study provides valuable insights into the overall functionality of these nanosheet structures.
Collapse
Affiliation(s)
- Dorra Mahdaoui
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
- Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, University of Carthage, B.P. 51, La Marsa 2075, Tunisia;
| | - Chika Hirata
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Kahori Nagaoka
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Kun’ichi Miyazawa
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan;
| | - Kazuko Fujii
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Toshihiro Ando
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Manef Abderrabba
- Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, University of Carthage, B.P. 51, La Marsa 2075, Tunisia;
| | - Osamu Ito
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Shinjiro Yagyu
- Nano Electronics Device Materials Group, Research Center for Electronic and Optical Materials, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
| | - Yubin Liu
- RIKEN KEIKI Co., Ltd., 2-7-6, Azusawa, Itabashi-ku, Tokyo 174-8744, Japan; (Y.L.); (Y.N.)
| | - Yoshiyuki Nakajima
- RIKEN KEIKI Co., Ltd., 2-7-6, Azusawa, Itabashi-ku, Tokyo 174-8744, Japan; (Y.L.); (Y.N.)
| | - Kazuhito Tsukagoshi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
| | - Takatsugu Wakahara
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| |
Collapse
|
5
|
Das R, Linseis M, Schupp SM, Gogesch FS, Schmidt-Mende L, Winter RF. Organic binary charge-transfer compounds of 2,2' : 6',2'' : 6'',6-trioxotriphenylamine and a pyrene-annulated azaacene as donors. RSC Adv 2023; 13:3652-3660. [PMID: 36756575 PMCID: PMC9890512 DOI: 10.1039/d2ra07322f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Three binary charge-transfer (CT) compounds resulting from the donor 2,2' : 6',2'' : 6'',6-trioxotriphenylamine (TOTA) and the acceptors F4TCNQ and F4BQ and of a pyrene-annulated azaacene (PAA) with the acceptor F4TCNQ are reported. The identity of these CT compounds are confirmed by single-crystal X-ray diffraction as well as by IR, UV-vis-NIR and EPR spectroscopy. X-ray diffraction analysis reveals a 1 : 1 stoichiometry for TOTA·F4TCNQ, a 2 : 1 donor : acceptor ratio in (TOTA)2·F4BQ, and a rare 4 : 1 stoichiometry in (PAA)4·F4TCNQ, respectively. Metrical parameters of the donor (D) and acceptor (A) constituents as well as IR spectra indicate full CT in TOTA·F4TCNQ, partial CT in (TOTA)2·F4BQ and only a very modest one in (PAA)4·F4TCNQ. Intricate packing motifs are present in the crystal lattice with encaged, π-stacked (F4TCNQ-)2 dimers in TOTA·F4TCNQ or mixed D/A stacks in the other two compounds. Their solid-state UV-vis-NIR spectra feature CT transitions. The CT compounds with F4TCNQ are electrical insulators, while (TOTA)2·F4BQ is weakly conducting.
Collapse
Affiliation(s)
- Rajorshi Das
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Stefan M Schupp
- Fachbereich Physik, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Franciska S Gogesch
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Lukas Schmidt-Mende
- Fachbereich Physik, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| |
Collapse
|
6
|
Bao L, Xu T, Guo K, Huang W, Lu X. Supramolecular Engineering of Crystalline Fullerene Micro-/Nano-Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200189. [PMID: 35213750 DOI: 10.1002/adma.202200189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Fullerenes are a molecular form of carbon allotrope and bear certain solubility, which allow the supramolecular assembly of fullerene molecules-also together with other complementary compound classes-via solution-based wet processes. By well-programmed organizing these building blocks and precisely modulating over the assembly process, supramolecularly assembled fullerene micro-/nano-architectures (FMNAs) are obtained. These FMNAs exhibit remarkably enhanced functions as well as tunable morphologies and dimensions at different size scales, leading to their applications in diverse fields. In this review, both traditional and newly developed assembly strategies are reviewed, with an emphasis on the morphological evolution mechanism of FMNAs. The discussion is then focused on how to precisely regulate the dimensions and morphologies to generate functional FMNAs through solvent engineering, co-crystallization, surfactant incorporation, or post-fabrication treatment. In addition to C60 -based FMNAs, this review particularly focuses on recently fabricated FMNAs comprising higher fullerenes (e.g., C70 ) and metallofullerenes. Meanwhile, an overview of the property modulation is presented and multidisciplinary applications of FMNAs in various fields are summarized, including sensors, optoelectronics, biomedicines, and energy. At the end, the prospects for future research, application opportunities, and challenges associated with FMNAs are proposed.
Collapse
Affiliation(s)
- Lipiao Bao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ting Xu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kun Guo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenhuan Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xing Lu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Li H, Han L, Zhu Y, Zheng N, Lai H, Fernández-Trillo P, He F. Morphological transition and transformation of 2D nanosheets by controlling the balance of π -π stacking interaction and crystalline driving forces. MATERIALS HORIZONS 2022; 9:2809-2817. [PMID: 36017717 DOI: 10.1039/d2mh00891b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoscale organic two-dimensional (2D) materials of block polymers (BCPs) have attracted interest on account of their wide potential applications in a range of fields. Herein, we design a new poly(p-phenylenevinylene) (PPV) based BCP that contains a triisopropylsilyl side chain and poly (2-vinyl pyridine) (P2VP) corona, which could assemble into a series of 2D square and rectangular micelles in isopropanol. The aspect ratios and the scales of the 2D micelles can be tuned in two ways, including altering the ratios of the P2VP and PPV-TIPS blocks and their concentrations. By precisely controlling the aspect ratios, micro-scale rod-like micelles are also obtained. From in depth studies of the morphology transition from rectangular micelles to rod-like or square micelles, it is found that the BCPs initially organize into fibers and then assemble into final micelles by the combined forces of π-π interactions and the crystalline force from TIPS side chains. Based on the balance of the two interactions, 2D circle-like micelles are also achieved by heterogenous co-assembly of two kinds of polymers with different cores.
Collapse
Affiliation(s)
- Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Chemistry, University of Birmingham, B15 2TT, UK
| | - Liang Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | | | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Wakahara T, Nagaoka K, Hirata C, Miyazawa K, Fujii K, Matsushita Y, Ito O, Takagi M, Shimazaki T, Tachikawa M, Wada Y, Yagyu S, Liu Y, Nakajima Y, Tsukagoshi K. Fullerene C 70/porphyrin hybrid nanoarchitectures: single-cocrystal nanoribbons with ambipolar charge transport properties. RSC Adv 2022; 12:19548-19553. [PMID: 35865602 PMCID: PMC9258400 DOI: 10.1039/d2ra02669d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, supramolecular cocrystals containing organic donors and acceptors have been explored as active components in organic field-effect transistors (FETs). Herein, we report the synthesis of novel single-cocrystal nanoribbons with ambipolar charge transport characteristics from C70 and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin (3,5-TPP) in a 3 : 2 ratio. The C70/3,5-TPP nanoribbons exhibited a new strong absorption band in the near-infrared region, indicating the presence of charge-transfer interactions between C70 and 3,5-TPP in the cocrystals. We elucidated the mechanism of the charge-transport properties of the nanoribbons using photoemission yield spectroscopy in air and theoretical calculations. A strong interaction between porphyrins in the one-dimensional porphyrin chains formed in C70/3,5-TPP nanoribbons, which was confirmed by single-crystal X-ray diffraction, plays a crucial role in their hole transport properties. The one-dimensional porphyrin chains in the cocrystal play a very important role in the hole transport properties of C70/porphyrin nanoribbons.![]()
Collapse
Affiliation(s)
- Takatsugu Wakahara
- Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kahori Nagaoka
- Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Chika Hirata
- Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kun'ichi Miyazawa
- Department of Chemical Sciences and Technology, Graduate School of Chemical Sciences and Technology, Tokyo University of Science 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585 Japan
| | - Kazuko Fujii
- Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division, National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Osamu Ito
- Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Makito Takagi
- Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama Kanagawa 236-0027 Japan
| | - Tomomi Shimazaki
- Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama Kanagawa 236-0027 Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama Kanagawa 236-0027 Japan
| | - Yoshiki Wada
- Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Shinjiro Yagyu
- Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yubin Liu
- RIKEN KEIKI Co., Ltd 2-7-6, Azusawa Itabashi-ku Tokyo 174-8744 Japan
| | | | - Kazuhito Tsukagoshi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
9
|
Fullerene Rosette: Two-Dimensional Interactive Nanoarchitectonics and Selective Vapor Sensing. Int J Mol Sci 2022; 23:ijms23105454. [PMID: 35628264 PMCID: PMC9141234 DOI: 10.3390/ijms23105454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
The simplicity of fullerenes as assembled components provides attractive opportunities for basic understanding in self-assembly research. We applied in situ reactive methods to the self-assembly process of C60 molecules with melamine/ethylenediamine components in solution, resulting in a novel type of fullerene assemblies, micron-sized two-dimensional, amorphous shape-regular objects, fullerene rosettes. ATR−FTIR spectra, XPS, and TGA results suggest that the melamine/ethylenediamine components strongly interact and/or are covalently linked with fullerenes in the fullerene rosettes. The broad peak for layer spacing in the XRD patterns of the fullerene rosettes corresponds roughly to the interdigitated fullerene bilayer or monolayer of modified fullerene molecules. The fullerene rosettes are made from the accumulation of bilayer/monolayer assemblies of hybridized fullerenes in low crystallinity. Prototype sensor systems were fabricated upon immobilization of the fullerene rosettes onto surfaces of a quartz crystal microbalance (QCM), and selective sensing of formic acid was demonstrated as preliminary results for social-demanded toxic material sensing. The QCM sensor with fullerene rosette is categorized as one of the large-response sensors among reported examples. In selectivity to formic acids against basic guests (formic acid/pyridine >30) or aromatic guests (formic acid/toluene >110), the fullerene rosette-based QCM sensor also showed superior performance.
Collapse
|
10
|
Ovchenkova EN, Bichan NG, Lomova TN. Photoinduced Absorption Spectra of Donor–Acceptor Systems Based on Cobalt(II) and Manganese(III) Phthalocyanine Complexes with Femtosecond Time Resolution. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Abstract
Ambipolar transistor properties have been observed in various small-molecule materials. Since a small energy gap is necessary, many types of molecular designs including extended π-skeletons as well as the incorporation of donor and acceptor units have been attempted. In addition to the energy levels, an inert passivation layer is important to observe ambipolar transistor properties. Ambipolar transport has been observed in extraordinary π-electron systems such as antiaromatic compounds, biradicals, radicals, metal complexes, and hydrogen-bonded materials. Several donor/acceptor cocrystals show ambipolar transport as well.
Collapse
Affiliation(s)
- Toshiki Higashino
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Takehiko Mori
- Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, 152-8552, Japan.
| |
Collapse
|
12
|
Jiang H, Ye J, Hu P, Zhu S, Liang Y, Cui Z, Kloc C, Hu W. Growth direction dependent separate-channel charge transport in the organic weak charge-transfer co-crystal of anthracene-DTTCNQ. MATERIALS HORIZONS 2022; 9:1057-1067. [PMID: 35048097 DOI: 10.1039/d1mh01767e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b']-dithiophene (DTTCNQ) single crystals as a template to study the crystal growth direction dependent charge transport properties and attempted to elucidate the mechanism by proposing a separate-channel charge transport model. Single-crystal anthracene-DTTCNQ field-effect transistors showed that ambipolar transport properties could be observed in all crystal growth directions. Furthermore, upon changing the measured crystal directions, the electronic properties experienced a weak change from n-type dominated ambipolar, balanced ambipolar, to p-type dominated ambipolar properties. The theoretical calculations at density functional theory (DFT) and higher theory levels suggested that the anthracene-DTTCNQ co-crystal motif was a weak charge-transfer complex, in line with the experiment. Furthermore, the detailed theoretical analysis also indicated that electron or hole transport properties originated from separated channels formed by DTTCNQ or anthracene molecules. We thus proposed a novel separate-channel transport mechanism to support additional theoretical analysis and calculations. The joint experimental and theoretical efforts in this work suggest that the engineering of co-crystallization of weak charge-transfer complexes can be a practical approach for achieving tuneable ambipolar charge transport properties by the rational choice of co-crystal formers.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jun Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Christian Kloc
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
13
|
Liu C, Yang W, Wang C, Liu K, Jiang J. Photophysical Behaviors of Shape-persistent Zinc Porphyrin Organic Cage. NEW J CHEM 2022. [DOI: 10.1039/d2nj00734g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair chiral metallic porphyrin cages, (R)/(S)-PTC-1(Zn), have been afforded by pure chiral cyclohexanediamine reacting with zinc 5,15-di[3',5'-diformyl-(1,1'-biphenyl)]porphyrin. Both their chiral tubular structures have been demonstrated with single crystal diffraction...
Collapse
|
14
|
Sun L, Zhu W, Zhang X, Li L, Dong H, Hu W. Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. J Am Chem Soc 2021; 143:19243-19256. [PMID: 34730972 DOI: 10.1021/jacs.1c07678] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic cocrystal engineering refers to two or more organic molecules stoichiometrically combined and held together by noncovalent intermolecular interactions, which differs from standard chemical synthesis involving covalent bond breakage and formation. Organic cocrystals have unique properties and offer a new strategy for creating enhanced organics. First, however, some key questions need to be addressed: How do diverse monomers affect the intermolecular interaction kinetics during cocrystallization? How do the intermolecular forces in cocrystals affect cocrystal functions? In this Perspective, the definition and advantages of organic cocrystal engineering, specifically in the construction of a reliable intermolecular interaction-stacking structure-performance relationship, are outlined. Additionally, recent developments in the field and the questions above are discussed. Finally, a brief conclusion and some hints on likely future developments are provided.
Collapse
Affiliation(s)
- Lingjie Sun
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Weigang Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science of Tianjin University, Tianjin 300072, China
| | - Liqiang Li
- Institute of Molecular Aggregation Science of Tianjin University, Tianjin 300072, China
| | - Huanli Dong
- Chinese Academy of Key Laboratory of Organic Solids, Institute of Chemistry Sciences, Beijing 100190, China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Chen G, Shrestha LK, Ariga K. Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene. Molecules 2021; 26:molecules26154636. [PMID: 34361787 PMCID: PMC8348140 DOI: 10.3390/molecules26154636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoarchitectonics of two-dimensional materials from zero-dimensional fullerenes is mainly introduced in this short review. Fullerenes are simple objects with mono-elemental (carbon) composition and zero-dimensional structure. However, fullerenes and their derivatives can create various types of two-dimensional materials. The exemplified approaches demonstrated fabrications of various two-dimensional materials including size-tunable hexagonal fullerene nanosheet, two-dimensional fullerene nano-mesh, van der Waals two-dimensional fullerene solid, fullerene/ferrocene hybrid hexagonal nanosheet, fullerene/cobalt porphyrin hybrid nanosheet, two-dimensional fullerene array in the supramolecular template, two-dimensional van der Waals supramolecular framework, supramolecular fullerene liquid crystal, frustrated layered self-assembly from two-dimensional nanosheet, and hierarchical zero-to-one-to-two dimensional fullerene assembly for cell culture.
Collapse
Affiliation(s)
- Guoping Chen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan;
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan;
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan;
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan;
- Correspondence:
| |
Collapse
|
17
|
Liu X, Wang W, Fan Z, Huang W, Luo L, Yang C, Zhang J, Zhao J, Zhang L, Huang W. Functional Carbazole-Fullerene Complexes: A New Perspective of Carbazoles Acting as Nano-Octopus to Capture Globular Fullerenes. Chemistry 2021; 27:10448-10455. [PMID: 34003527 DOI: 10.1002/chem.202101192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/09/2022]
Abstract
Fullerene host-guest constructs have attracted increasing attention owing to their molecular-level hybrid arrangements. However, the usage of simple carbazolic derivatives to bind with fullerenes is rare. In this research, three novel carbazolic derivatives, containing a tunable bridging linker and carbazole units for the capturing of fullerenes, are rationally designed. Unlike the general concave-convex interactions, fullerenes could interact with the planar carbazole subunits to form 2-dimensional hexagonal/quadrilateral cocrystals with alternating stacking patterns of 1 : 1 or 1 : 2 stoichiometry, as well as the controllable fullerene packing modes. At the meanwhile, good electron-transporting performances and significant photovoltaic effects were realized when a continuous C60⋅⋅⋅ C60 interaction channel existed. The results indicate that the introduction of such carbazolic system into fullerene receptor would provide new insights into novel fullerene host-guest architectures for versatile applications.
Collapse
Affiliation(s)
- Xitong Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Wang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhenqiang Fan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wanning Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lixing Luo
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Canglei Yang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jing Zhang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lei Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| |
Collapse
|
18
|
Yang S, Kang SY, Choi TL. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat Commun 2021; 12:2602. [PMID: 33972541 PMCID: PMC8110585 DOI: 10.1038/s41467-021-22879-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 11/11/2022] Open
Abstract
Semi-conducting two-dimensional (2D) nanoobjects, prepared by self-assembly of conjugated polymers, are promising materials for optoelectronic applications. However, no examples of self-assembled semi-conducting 2D nanosheets whose lengths and aspect ratios are controlled at the same time have been reported. Herein, we successfully prepared uniform semi-conducting 2D sheets using a conjugated poly(cyclopentenylene vinylene) homopolymer and its block copolymer by blending and heating. Using these as 2D seeds, living crystallization-driven self-assembly (CDSA) was achieved by adding the homopolymer as a unimer. Interestingly, unlike typical 2D CDSA examples showing radial growth, this homopolymer assembled only in one direction. Owing to this uniaxial growth, the lengths of the 2D nanosheets could be precisely tuned from 1.5 to 8.8 μm with narrow dispersity according to the unimer-to-seed ratio. We also studied the growth kinetics of the living 2D CDSA and confirmed first-order kinetics. Subsequently, we prepared several 2D block comicelles (BCMs), including penta-BCMs in a one-shot method.
Collapse
Affiliation(s)
- Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
19
|
Organic Semiconductor Micro/Nanocrystals for Laser Applications. Molecules 2021; 26:molecules26040958. [PMID: 33670286 PMCID: PMC7918292 DOI: 10.3390/molecules26040958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Organic semiconductor micro/nanocrystals (OSMCs) have attracted great attention due to their numerous advantages such us free grain boundaries, minimal defects and traps, molecular diversity, low cost, flexibility and solution processability. Due to all these characteristics, they are strong candidates for the next generation of electronic and optoelectronic devices. In this review, we present a comprehensive overview of these OSMCs, discussing molecular packing, the methods to control crystallization and their applications to the area of organic solid-state lasers. Special emphasis is given to OSMC lasers which self-assemble into geometrically defined optical resonators owing to their attractive prospects for tuning/control of light emission properties through geometrical resonator design. The most recent developments together with novel strategies for light emission tuning and effective light extraction are presented.
Collapse
|
20
|
Ovchenkova EN, Bichan NG, Gruzdev MS, Ksenofontov AA, Gostev FE, Shelaev IV, Nadtochenko VA, Lomova TN. Carbazole-functionalized cobalt( ii) porphyrin axially bonded with C 60/C 70 derivatives: synthesis and characterization. NEW J CHEM 2021. [DOI: 10.1039/d1nj00980j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Depending on the structure of the fullero[60]/[70]pyrrolidine, the carbazole-functionalized cobalt(ii) porphyrin forms donor–acceptor systems of different compositions.
Collapse
Affiliation(s)
- E. N. Ovchenkova
- G. A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences Akademicheskaya str
- 1
- Ivanovo
- Russia
| | - N. G. Bichan
- G. A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences Akademicheskaya str
- 1
- Ivanovo
- Russia
| | - M. S. Gruzdev
- G. A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences Akademicheskaya str
- 1
- Ivanovo
- Russia
| | - A. A. Ksenofontov
- G. A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences Akademicheskaya str
- 1
- Ivanovo
- Russia
| | - F. E. Gostev
- N. N. Semenov Federal Research Center for Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
| | - I. V. Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
| | - V. A. Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
| | - T. N. Lomova
- G. A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences Akademicheskaya str
- 1
- Ivanovo
- Russia
| |
Collapse
|
21
|
Abstract
Organic semiconductors are being pursued with vigor for the development of efficient and smart electronics. As a brief tutorial account, we traverse the fundamentals and advancements in the area and provide a crystal engineering perspective.
Collapse
Affiliation(s)
- Aijaz A. Dar
- Department of Chemistry, Inorganic Section, University of Kashmir, Hazratbal, Srinagar, J&K-190006, India
| | - Shahida Rashid
- Department of Chemistry, Inorganic Section, University of Kashmir, Hazratbal, Srinagar, J&K-190006, India
| |
Collapse
|
22
|
|
23
|
Wang W, Luo L, Sheng P, Zhang J, Zhang Q. Multifunctional Features of Organic Charge-Transfer Complexes: Advances and Perspectives. Chemistry 2020; 27:464-490. [PMID: 32627869 DOI: 10.1002/chem.202002640] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/13/2022]
Abstract
The recent progress of charge-transfer complexes (CTCs) for application in many fields, such as charge transport, light emission, nonlinear optics, photoelectric conversion, and external stimuli response, makes them promising candidates for practical utility in pharmaceuticals, electronics, photonics, luminescence, sensors, molecular electronics and so on. Multicomponent CTCs have been gradually designed and prepared as novel organic active semiconductors with ideal performance and stability compared to single components. In this review, we mainly focus on the recently reported development of various charge-transfer complexes and their performance in field-effect transistors, light-emitting devices, lasers, sensors, and stimuli-responsive behaviors.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials, Jiangsu National Synergetic Innovation, Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lixing Luo
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials, Jiangsu National Synergetic Innovation, Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Peng Sheng
- Material Laboratory of State Grid Corporation of China, State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, Beijing, 102211, China
| | - Jing Zhang
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials, Jiangsu National Synergetic Innovation, Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
24
|
Yu X, Wang B, Kim Y, Park J, Ghosh S, Dhara B, Mukhopadhyay RD, Koo J, Kim I, Kim S, Hwang IC, Seki S, Guldi DM, Baik MH, Kim K. Supramolecular Fullerene Tetramers Concocted with Porphyrin Boxes Enable Efficient Charge Separation and Delocalization. J Am Chem Soc 2020; 142:12596-12601. [DOI: 10.1021/jacs.0c05339] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiujun Yu
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Bingzhe Wang
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Younghoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Jiyong Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Samrat Ghosh
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 6158510, Japan
| | - Barun Dhara
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Rahul Dev Mukhopadhyay
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Jaehyoung Koo
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Ikjin Kim
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Seungha Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - In-Chul Hwang
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 6158510, Japan
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| |
Collapse
|
25
|
Wakahara T, Nagaoka K, Nakagawa A, Hirata C, Matsushita Y, Miyazawa K, Ito O, Wada Y, Takagi M, Ishimoto T, Tachikawa M, Tsukagoshi K. One-Dimensional Fullerene/Porphyrin Cocrystals: Near-Infrared Light Sensing through Component Interactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2878-2883. [PMID: 31845789 DOI: 10.1021/acsami.9b18784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recently, organic donor-acceptor (D-A) cocrystals have attracted special interest as functional materials because of their unique chemical and physical properties that are not exhibited by simple mixtures of their components. Herein, we report the preparation of one-dimensional novel D-A cocrystals from C60 and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin (3,5-TPP); these cocrystals have near-infrared (NIR) light-sensing abilities, despite each of their component molecule individually having no NIR light-sensing properties. Micrometer-sized rectangular columnar C60-3,5-TPP cocrystals were produced by a simple liquid-liquid interfacial precipitation method. The cocrystals exhibit a new strong transition in the NIR region indicative of the existence of charge-transfer interactions between C60 and 3,5-TPP in the cocrystals. The C60-3,5-TPP cocrystals showed n-type transport characteristics with NIR light-sensing properties when the cocrystals were incorporated in bottom-gate/bottom-contact organic phototransistors, revealing that organic cocrystals with suitable charge-transfer interaction are useful as functional materials for the creation of novel NIR-light-sensing devices.
Collapse
Affiliation(s)
- Takatsugu Wakahara
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Kahori Nagaoka
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Akari Nakagawa
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Chika Hirata
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division , National Institute for Materials Science , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan
| | - Kun'ichi Miyazawa
- Department of Industrial Chemistry, Faculty of Engineering , Tokyo University of Science , Tokyo 162-0826 , Japan
| | - Osamu Ito
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- CarbonPhotoScience Institute , Kita-Nakayama2-1-6 , Izumi-ku, Sendai 981-3215 , Japan
| | - Yoshiki Wada
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Makito Takagi
- Graduate School of Nanobioscience , Yokohama City University , 22-2 Seto , Kanazawa-ku, Yokohama , Kanagawa 236-0027 , Japan
| | - Takayoshi Ishimoto
- Graduate School of Nanobioscience , Yokohama City University , 22-2 Seto , Kanazawa-ku, Yokohama , Kanagawa 236-0027 , Japan
| | - Masanori Tachikawa
- Graduate School of Nanobioscience , Yokohama City University , 22-2 Seto , Kanazawa-ku, Yokohama , Kanagawa 236-0027 , Japan
| | - Kazuhito Tsukagoshi
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| |
Collapse
|
26
|
Jiang B, Tang Q, Zhao W, Sun J, An R, Niu T, Fuchs H, Ji Q. Tailoring structural features and functions of fullerene rod crystals by a ferrocene-modified fullerene derivative. CrystEngComm 2020. [DOI: 10.1039/d0ce01019g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effective functional intercalation and facile structural manipulation of fullerene crystals could be achieved by ferrocene-modified fullerene based on the liquid–liquid interfacial precipitation process.
Collapse
Affiliation(s)
- Bohong Jiang
- Herbert Gleiter Institute of Nanoscience
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Qin Tang
- Herbert Gleiter Institute of Nanoscience
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Wenli Zhao
- Herbert Gleiter Institute of Nanoscience
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Jiao Sun
- Herbert Gleiter Institute of Nanoscience
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Rong An
- Herbert Gleiter Institute of Nanoscience
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Tianchao Niu
- Herbert Gleiter Institute of Nanoscience
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Harald Fuchs
- Herbert Gleiter Institute of Nanoscience
- Nanjing University of Science & Technology
- Nanjing 210094
- China
- Center for Nanotechnology
| | - Qingmin Ji
- Herbert Gleiter Institute of Nanoscience
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| |
Collapse
|
27
|
Yang S, Kang SY, Choi TL. Morphologically Tunable Square and Rectangular Nanosheets of a Simple Conjugated Homopolymer by Changing Solvents. J Am Chem Soc 2019; 141:19138-19143. [DOI: 10.1021/jacs.9b10904] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Jiang H, Hu W. The Emergence of Organic Single-Crystal Electronics. Angew Chem Int Ed Engl 2019; 59:1408-1428. [PMID: 30927312 DOI: 10.1002/anie.201814439] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Organic semiconducting single crystals are perfect for both fundamental and application-oriented research due to the advantages of free grain boundaries, few defects, and minimal traps and impurities, as well as their low-temperature processability, high flexibility, and low cost. Carrier mobilities of greater than 10 cm2 V-1 s-1 in some organic single crystals indicate a promising application in electronic devices. The progress made, including the molecular structures and fabrication technologies of organic single crystals, is introduced and organic single-crystal electronic devices, including field-effect transistors, phototransistors, p-n heterojunctions, and circuits, are summarized. Organic two-dimensional single crystals, cocrystals, and large single crystals, together with some potential applications, are introduced. A state-of-the-art overview of organic single-crystal electronics, with their challenges and prospects, is also provided.
Collapse
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
29
|
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- School of Materials Science and Engineering Nanyang Technological University 639798 Singapore Singapur
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
30
|
Sun L, Wang Y, Yang F, Zhang X, Hu W. Cocrystal Engineering: A Collaborative Strategy toward Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902328. [PMID: 31322796 DOI: 10.1002/adma.201902328] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/27/2019] [Indexed: 05/25/2023]
Abstract
Cocrystal engineering with a noncovalent assembly feature by simple constituent units has inspired great interest and has emerged as an efficient and versatile route to construct functional materials, especially for the fabrication of novel and multifunctional materials, due to the collaborative strategy in the distinct constituent units. Meanwhile, the precise crystal architectures of organic cocrystals, with long-range order as well as free defects, offer the opportunity to unveil the structure-property and charge-transfer-property relationships, which are beneficial to provide some general rules in rational design and choice of functional materials. In this regard, an overview of organic cocrystals in terms of assembly, containing the intermolecular interactions and growth methods, two functionality-related factors including packing structure and charge-transfer nature, and those advanced and novel functionalities, is presented. An outlook of future research directions and challenges for organic cocrystal is also provided.
Collapse
Affiliation(s)
- Lingjie Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
31
|
Chen J, Yan M, Tang Y, Yu J, Xu W, Fu Y, Cao H, He Q, Cheng J. Rational Construction of Highly Tunable Organic Charge-Transfer Complexes for Chemiresistive Sensor Applications. ACS APPLIED BIO MATERIALS 2019; 2:3678-3685. [DOI: 10.1021/acsabm.9b00557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinming Chen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Mingzhu Yan
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yilong Tang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Jinping Yu
- ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wei Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Huimin Cao
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Qingguo He
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| |
Collapse
|
32
|
Huang Y, Wang Z, Chen Z, Zhang Q. Organic Cocrystals: Beyond Electrical Conductivities and Field‐Effect Transistors (FETs). Angew Chem Int Ed Engl 2019; 58:9696-9711. [DOI: 10.1002/anie.201900501] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yinjuan Huang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zongrui Wang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zhong Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
33
|
Liu H, Liu Z, Jiang W, Fu H. Tuning the charge transfer properties by optimized donor –acceptor cocrystal for FET applications: From P type to N type. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Huang Y, Wang Z, Chen Z, Zhang Q. Organic Cocrystals: Beyond Electrical Conductivities and Field‐Effect Transistors (FETs). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900501] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yinjuan Huang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zongrui Wang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zhong Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
35
|
Wang Y, Sun L, Wang C, Yang F, Ren X, Zhang X, Dong H, Hu W. Organic crystalline materials in flexible electronics. Chem Soc Rev 2019; 48:1492-1530. [PMID: 30283937 DOI: 10.1039/c8cs00406d] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flexible electronics have attracted considerable attention recently given their potential to revolutionize human lives. High-performance organic crystalline materials (OCMs) are considered strong candidates for next-generation flexible electronics such as displays, image sensors, and artificial skin. They not only have great advantages in terms of flexibility, molecular diversity, low-cost, solution processability, and inherent compatibility with flexible substrates, but also show less grain boundaries with minimal defects, ensuring excellent and uniform electronic characteristics. Meanwhile, OCMs also serve as a powerful tool to probe the intrinsic electronic and mechanical properties of organics and reveal the flexible device physics for further guidance for flexible materials and device design. While the past decades have witnessed huge advances in OCM-based flexible electronics, this review is intended to provide a timely overview of this fascinating field. First, the crystal packing, charge transport, and assembly protocols of OCMs are introduced. State-of-the-art construction strategies for aligned/patterned OCM on/into flexible substrates are then discussed in detail. Following this, advanced OCM-based flexible devices and their potential applications are highlighted. Finally, future directions and opportunities for this field are proposed, in the hope of providing guidance for future research.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang H, Li X, Li X, Feng X, Kang W, Xu X, Zhuang X, Cheng B. Self-Assembly DBS Nanofibrils on Solution-Blown Nanofibers as Hierarchical Ion-Conducting Pathway for Direct Methanol Fuel Cells. Polymers (Basel) 2018; 10:E1037. [PMID: 30960962 PMCID: PMC6403695 DOI: 10.3390/polym10091037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/13/2023] Open
Abstract
In this work, we reported a novel proton exchange membrane (PEM) with an ion-conducting pathway. The hierarchical nanofiber structure was prepared via in situ self-assembling 1,3:2,4-dibenzylidene-d-sorbitol (DBS) supramolecular fibrils on solution-blown, sulfonated poly (ether sulfone) (SPES) nanofiber, after which the composite PEM was prepared by incorporating hierarchical nanofiber into the chitosan polymer matrix. Then, the effects of incorporating the hierarchical nanofiber structure on the thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeability of the composite membranes were investigated. The results show that incorporation of hierarchical nanofiber improves the water uptake, proton conductivity, and methanol permeability of the membranes. Furthermore, the composite membrane with 50% hierarchical nanofibers exhibited the highest proton conductivity of 0.115 S cm-1 (80 °C), which was 69.12% higher than the values of pure chitosan membrane. The self-assembly allows us to generate hierarchical nanofiber among the interfiber voids, and this structure can provide potential benefits for the preparation of high-performance PEMs.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiangxiang Li
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiaojie Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xi Feng
- Department of Industrial Design, Yanshan University, Qinhuang Dao 066004, China.
| | - Weimin Kang
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xianlin Xu
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|
37
|
Cai ZF, Dong WL, Chen T, Yan HJ, Wang D, Xu W, Wan LJ. Directed assembly of fullerene on modified Au(111) electrodes. Chem Commun (Camb) 2018; 54:8052-8055. [PMID: 29971277 DOI: 10.1039/c8cc04284e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we show a conceptual approach to realize the scanning tunneling microscopy based induced-assembly of fullerene (C60) molecules on top of a buffer organic adlayer at room temperature in a solution environment. The realization of spatially-defined C60 assembly is attributed to the modulation of substrate-molecular interactions with the assistance of a buffer layer.
Collapse
Affiliation(s)
- Zhen-Feng Cai
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Dong R, Zhang T, Feng X. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chem Rev 2018; 118:6189-6235. [DOI: 10.1021/acs.chemrev.8b00056] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Renhao Dong
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Tao Zhang
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
39
|
Goudappagouda, Gedda M, Kulkarni GU, Babu SS. One-Dimensional Porphyrin-Fullerene (C60
) Assemblies: Role of Central Metal Ion in Enhancing Ambipolar Mobility. Chemistry 2018. [DOI: 10.1002/chem.201800197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Goudappagouda
- Organic Chemistry Division; National Chemical Laboratory (CSIR-NCL); Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| | - Murali Gedda
- Jawaharlal Nehru Centre for Advanced Scientific and Research (JNCASR); Jakkur P.O. Bangaluru 560 064 India
| | - Giridhar U. Kulkarni
- Jawaharlal Nehru Centre for Advanced Scientific and Research (JNCASR); Jakkur P.O. Bangaluru 560 064 India
- Current address: Centre for Nano and Soft Matter Sciences; Jalahalli Bangaluru 560 013 India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division; National Chemical Laboratory (CSIR-NCL); Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| |
Collapse
|
40
|
Huang W, Lin YH, Anthopoulos TD. High Speed Ultraviolet Phototransistors Based on an Ambipolar Fullerene Derivative. ACS APPLIED MATERIALS & INTERFACES 2018. [PMID: 29533061 DOI: 10.1021/acsami.8b00121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Combining high charge carrier mobility with ambipolar transport in light-absorbing organic semiconductors is highly desirable as it leads to enhanced charge photogeneration, and hence improved performance, in various optoelectronic devices including solar cells and photodetectors. Here we report the development of [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)-based ultraviolet (UV) phototransistors with balanced electron and hole transport characteristics. The latter is achieved by fine-tuning the source-drain electrode work function using a self-assembled monolayer. Opto/electrical characterization of as-prepared ambipolar PC61BM phototransistors reveals promising photoresponse, particularly in the UV-A region (315-400 nm), with a maximum photosensitivity and responsivity of 9 × 103 and 3 × 103 A/W, respectively. Finally, the temporal response of the PC61BM phototransistors is found to be high despite the long channel length (10 s of μm) with typical switching times of <2 ms.
Collapse
Affiliation(s)
- Wentao Huang
- Centre for Plastic Electronics and Department of Physics, Blackett Laboratory , Imperial College London , London SW7 2BW , U.K
| | - Yen-Hung Lin
- Centre for Plastic Electronics and Department of Physics, Blackett Laboratory , Imperial College London , London SW7 2BW , U.K
| | - Thomas D Anthopoulos
- Centre for Plastic Electronics and Department of Physics, Blackett Laboratory , Imperial College London , London SW7 2BW , U.K
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
41
|
Inam M, Jones JR, Pérez-Madrigal MM, Arno MC, Dove AP, O’Reilly RK. Controlling the Size of Two-Dimensional Polymer Platelets for Water-in-Water Emulsifiers. ACS CENTRAL SCIENCE 2018; 4:63-70. [PMID: 29392177 PMCID: PMC5785766 DOI: 10.1021/acscentsci.7b00436] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 05/30/2023]
Abstract
A wide range of biorelevant applications, particularly in pharmaceutical formulations and the food and cosmetic industries, require the stabilization of two water-soluble blended components which would otherwise form incompatible biphasic mixtures. Such water-in-water emulsions can be achieved using Pickering stabilization, where two-dimensional (2D) nanomaterials are particularly effective due to their high surface area. However, control over the shape and size of the 2D nanomaterials is challenging, where it has not yet been possible to examine chemically identical nanostructures with the same thickness but different surface areas to probe the size-effect on emulsion stabilization ability. Hence, the rationale design and realization of the full potential of Pickering water-in-water emulsion stabilization have not yet been achieved. Herein, we report for the first time 2D poly(lactide) platelets with tunable sizes (with varying coronal chemistry) and of uniform shape using a crystallization-driven self-assembly methodology. We have used this series of nanostructures to explore the effect of 2D platelet size and chemistry on the stabilization of a water-in-water emulsion of a poly(ethylene glycol) (PEG)/dextran mixture. We have demonstrated that cationic, zwitterionic, and neutral large platelets (ca. 3.7 × 106 nm2) all attain smaller droplet sizes and more stable emulsions than their respective smaller platelets (ca. 1.2 × 105 nm2). This series of 2D platelets of controlled dimensions provides an excellent exemplar system for the investigation of the effect of just the surface area on the potential effectiveness in a particular application.
Collapse
Affiliation(s)
- Maria Inam
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Joseph R. Jones
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Maria M. Pérez-Madrigal
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Maria C. Arno
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Andrew P. Dove
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Rachel K. O’Reilly
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
42
|
Sun L, Zhu W, Yang F, Li B, Ren X, Zhang X, Hu W. Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Phys Chem Chem Phys 2018; 20:6009-6023. [DOI: 10.1039/c7cp07167a] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This perspective article primarily focuses on the research work related to optoelectronic properties of organic charge transfer cocrystals.
Collapse
Affiliation(s)
- Lingjie Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry
- School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- China
| | - Weigang Zhu
- Institute of Chemistry
- Chinese Academy of Science (ICCAS)
- Beijing 100190
- China
| | - Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry
- School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- China
| | - Baili Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry
- School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- China
| | - Xiaochen Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry
- School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry
- School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry
- School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- China
| |
Collapse
|
43
|
Abstract
A comprehensive overview of organic semiconductor crystals is provided, including the physicochemical features, the control of crystallization and the device physics.
Collapse
Affiliation(s)
- Chengliang Wang
- School of Optical and Electronic Information
- Huazhong University of Science and Technology
- Wuhan 430074
- China
- Wuhan National Laboratory for Optoelectronics (WNLO)
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Wenping Hu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| |
Collapse
|
44
|
Zieleniewska A, Lodermeyer F, Roth A, Guldi DM. Fullerenes – how 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chem Soc Rev 2018; 47:702-714. [DOI: 10.1039/c7cs00728k] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over 25 years research in charge transfer chemistry are highlighted in terms of interfacial interactions between fullerenes and porphyrins in electron donor–acceptor systems.
Collapse
Affiliation(s)
- A. Zieleniewska
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-University Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - F. Lodermeyer
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-University Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - A. Roth
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-University Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - D. M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-University Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| |
Collapse
|
45
|
Bairi P, Minami K, Hill JP, Ariga K, Shrestha LK. Intentional Closing/Opening of "Hole-in-Cube" Fullerene Crystals with Microscopic Recognition Properties. ACS NANO 2017; 11:7790-7796. [PMID: 28742325 DOI: 10.1021/acsnano.7b01569] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report production of highly crystalline fullerene C70 cubes possessing an open-hole structure at the center of each of their faces using a solution-based self-assembly strategy. The holes are isolated with a solid core at the interiors of the cubes. The open-hole structure of the cubes can be intentionally closed by introducing additional C70 and reopened by applying electron beam irradiation. The open-hole cubes exhibit preferential recognition of graphitic carbon particles over polymeric resin particles of similar dimensions due to the cubes' sp2-rich carboniferous nature.
Collapse
Affiliation(s)
- Partha Bairi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kosuke Minami
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Science, The University of Tokyo , Kashiwa, Chiba 277-0827, Japan
| | - Lok Kumar Shrestha
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
46
|
Wu J, Li Q, Xue G, Chen H, Li H. Preparation of Single-Crystalline Heterojunctions for Organic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606101. [PMID: 28234418 DOI: 10.1002/adma.201606101] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/31/2016] [Indexed: 06/06/2023]
Abstract
Organic single-crystalline heterojunctions are composed of different single crystals interfaced together. The intrinsic highly ordered heterostructure in these multicomponent solids holds the capacity for multifunctions, as well as superior charge-transporting properties, promising high-performance electronic applications such as ambipolar transistors and solar cells. However, this kind of heterojunction is not easily available and the preparation methods need to be developed. Recent advances in the efficient strategies that have emerged in yielding high-quality single-crystalline heterojunctions are highlighted here. The advantages and limitations of each strategy are also discussed. The obtained single-crystalline heterojunctions have started to exhibit rich physical properties, including metallic conduction, photovoltaic effects, and so on. Further structural optimization of the heterojunctions to accommodate the electronic device configuration is necessary to significantly advance this research direction.
Collapse
Affiliation(s)
- Jiake Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qinfen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guobiao Xue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
47
|
Zhuo W, Li Y, Zhang R, Huang R, Zhou J, Tong Z, Jiang G. Single crystals of crystalline block copolymers formed in n
-hexanol and methanol/DMF solutions: A comparative study. J Appl Polym Sci 2017. [DOI: 10.1002/app.45089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wangqian Zhuo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University; Hangzhou 310018 People's Republic of China
| | - Yanming Li
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University; Hangzhou 310018 People's Republic of China
| | - Runke Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University; Hangzhou 310018 People's Republic of China
| | - Runsheng Huang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University; Hangzhou 310018 People's Republic of China
| | - Jie Zhou
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University; Hangzhou 310018 People's Republic of China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University; Hangzhou 310018 People's Republic of China
| | - Guohua Jiang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University; Hangzhou 310018 People's Republic of China
| |
Collapse
|
48
|
Hu P, Li H, Li Y, Jiang H, Kloc C. Single-crystal growth, structures, charge transfer and transport properties of anthracene-F4TCNQ and tetracene-F4TCNQ charge-transfer compounds. CrystEngComm 2017. [DOI: 10.1039/c6ce02116f] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Zhu L, Geng H, Yi Y, Wei Z. Charge transport in organic donor–acceptor mixed-stack crystals: the role of nonlocal electron–phonon couplings. Phys Chem Chem Phys 2017; 19:4418-4425. [DOI: 10.1039/c6cp07417k] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of nonlocal electron–phonon couplings on charge transport is found to be very small in organic donor–acceptor mixed-stack crystals.
Collapse
Affiliation(s)
- Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Naoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Hua Geng
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Naoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
50
|
Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Top Curr Chem (Cham) 2016; 374:83. [PMID: 27885589 DOI: 10.1007/s41061-016-0081-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Organic cocrystals that are composed of two or more components usually exhibit novel, unpredictable, and even unique properties rather than a simple combination of the properties of their components, such as white-light emission, ambipolar charge transport, nonlinear optics, and ferroelectricity. Since cocrystal engineering represents a novel strategy for synthesizing multifunctional materials, which opens the door for molecular collaborative innovation, it has aroused much attention in recent years. However, as it is also a relatively new research field, it is only in its early stages of development. In order to provide readers with an understanding of the future design of cocrystals for potential applications, a brief review of organic cocrystals is presented here, including an introduction to organic cocrystals as well as discussions of cocrystal preparation, methods and techniques of characterization, and multifunctional applications of cocrystals. Moreover, the outlook for further studies and applications of cocrystal engineering is considered.
Collapse
|