1
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Yin L, Zhao B, Zhou J, Huang Y, Ma H, Zhou T, Mou J, Min P, Chen J, Ge G, Qian X, Luo X, Yang Y. A Carbon-Caged Rhodamine Generating Nitrosoperoxycarbonate for Photoimmunotherapy. Angew Chem Int Ed Engl 2024; 63:e202402949. [PMID: 38644342 DOI: 10.1002/anie.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Photoimmunotherapy is a promising cancer treatment modality. While potent 1-e- oxidative species are known to induce immunogenic cell death (ICD), they are also associated with unspecific oxidation and collateral tissue damage. This difficulty may be addressed by post-generation radical reinforcement. Namely, non-oxidative radicals are first generated and subsequently activated into powerful oxidative radicals to induce ICD. Here, we developed a photo-triggered molecular donor (NPCD565) of nitrosoperoxycarbonate (ONOOCO2 -), the first of its class to our knowledge, and further evaluated its feasibility for immunotherapy. Upon irradiation of NPCD565 by light within a broad spectral region from ultraviolet to red, ONOOCO2 - is released along with a bright rhodamine dye (RD565), whose fluorescence is a reliable and convenient build-in reporter for the localization, kinetics, and dose of ONOOCO2 - generation. Upon photolysis of NPCD565 in 4T1 cells, damage-associated molecular patterns (DAMPs) indicative of ICD were observed and confirmed to exhibit immunogenicity by induced maturation of dendritic cells. In vivo studies with a bilateral tumor-bearing mouse model showcased the potent tumor-killing capability of NPCD565 of the primary tumors and growth suppression of the distant tumors. This work unveils the potent immunogenicity of ONOOCO2 -, and its donor (NPCD565) has broad potential for photo-immunotherapy of cancer.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yunxia Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ting Zhou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Wang X, Martínez-Fernández L, Zhang Y, Wu P, Kohler B, Improta R, Chen J. Ultrafast Formation of a Delocalized Triplet-Excited State in an Epigenetically Modified DNA Duplex under Direct UV Excitation. J Am Chem Soc 2024; 146:1839-1848. [PMID: 38194423 DOI: 10.1021/jacs.3c04567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Epigenetic modifications impart important functionality to nucleic acids during gene expression but may increase the risk of photoinduced gene mutations. Thus, it is crucial to understand how these modifications affect the photostability of duplex DNA. In this work, the ultrafast formation (<20 ps) of a delocalized triplet charge transfer (CT) state spreading over two stacked neighboring nucleobases after direct UV excitation is demonstrated in a DNA duplex, d(G5fC)9•d(G5fC)9, made of alternating guanine (G) and 5-formylcytosine (5fC) nucleobases. The triplet yield is estimated to be 8 ± 3%, and the lifetime of the triplet CT state is 256 ± 22 ns, indicating that epigenetic modifications dramatically alter the excited state dynamics of duplex DNA and may enhance triplet state-induced photochemistry.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, Madrid 28049, Spain
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini CNR, Via De Amicis 95, Napoli I-80145, Italy
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
| |
Collapse
|
4
|
Wen T, Kermarrec M, Dumont E, Gillet N, Greenberg MM. DNA-Histone Cross-Link Formation via Hole Trapping in Nucleosome Core Particles. J Am Chem Soc 2023; 145:23702-23714. [PMID: 37856159 PMCID: PMC10652223 DOI: 10.1021/jacs.3c08135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical cations (holes) produced in DNA by ionizing radiation and other oxidants yield DNA-protein cross-links (DPCs). Detailed studies of DPC formation in chromatin via this process are lacking. We describe here a comprehensive examination of DPC formation within nucleosome core particles (NCPs), which are the monomeric component of chromatin. DNA holes are introduced at defined sites within NCPs that are constructed from the bottom-up. DPCs form at DNA holes in yields comparable to those of alkali-labile DNA lesions that result from water trapping. DPC-forming efficiency and site preference within the NCP are dependent on translational and rotational positioning. Mass spectrometry and the use of mutant histones reveal that lysine residues in histone N-terminal tails and amino termini are responsible for the DPC formation. These studies are corroborated by computational simulation at the microsecond time scale, showing a wide range of interactions that can precede DPC formation. Three consecutive dGs, which are pervasive in the human genome, including G-quadruplex-forming sequences, are sufficient to produce DPCs that could impact gene expression.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Maxime Kermarrec
- Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, ENS de Lyon, CNRS, F-69342 Lyon, France
| | - Elise Dumont
- Institut de Chimie de Nice UMR 7272, Université Côte d'Azur, CNRS, 06108 Nice, France
- Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| | - Natacha Gillet
- Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, ENS de Lyon, CNRS, F-69342 Lyon, France
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Masi A, Capobianco A, Bobrowski K, Peluso A, Chatgilialoglu C. Hydroxyl Radical vs. One-Electron Oxidation Reactivities in an Alternating GC Double-Stranded Oligonucleotide: A New Type Electron Hole Stabilization. Biomolecules 2023; 13:1493. [PMID: 37892175 PMCID: PMC10605094 DOI: 10.3390/biom13101493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
We examined the reaction of hydroxyl radicals (HO•) and sulfate radical anions (SO4•-), which is generated by ionizing radiation in aqueous solutions under anoxic conditions, with an alternating GC doubled-stranded oligodeoxynucleotide (ds-ODN), i.e., the palindromic 5'-d(GCGCGC)-3'. In particular, the optical spectra of the intermediate species and associated kinetic data in the range of ns to ms were obtained via pulse radiolysis. Computational studies by means of density functional theory (DFT) for structural and time-dependent DFT for spectroscopic features were performed on 5'-d(GCGC)-3'. Comprehensively, our results suggest the addition of HO• to the G:C pair moiety, affording the [8-HO-G:C]• detectable adduct. The previous reported spectra of one-electron oxidation of a variety of ds-ODN were assigned to [G(-H+):C]• after deprotonation. Regarding 5'-d(GCGCGC)-3' ds-ODN, the spectrum at 800 ns has a completely different spectral shape and kinetic behavior. By means of calculations, we assigned the species to [G:C/C:G]•+, in which the electron hole is predicted to be delocalized on the two stacked base pairs. This transient species was further hydrated to afford the [8-HO-G:C]• detectable adduct. These remarkable findings suggest that the double-stranded alternating GC sequences allow for a new type of electron hole stabilization via delocalization over the whole sequence or part of it.
Collapse
Affiliation(s)
- Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, 84084 Fisciano, Italy; (A.C.); (A.P.)
| | - Krzysztof Bobrowski
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, 84084 Fisciano, Italy; (A.C.); (A.P.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Robert G, Wagner JR, Cadet J. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals. Free Radic Biol Med 2023; 196:22-36. [PMID: 36603668 DOI: 10.1016/j.freeradbiomed.2022.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Molecular oxygen sensitizes DNA to damage induced by ionizing radiation, Fenton-like reactions, and other free radical-mediated reactions. It rapidly converts carbon-centered radicals within DNA into peroxyl radicals, giving rise to a plethora of oxidized products consisting of nucleobase and 2-deoxyribose modifications, strand breaks and abasic sites. The mechanism of formation of single oxidation products has been extensively studied and reviewed. However, much evidence shows that reactive peroxyl radicals can propagate damage to vicinal components in DNA strands. These intramolecular reactions lead to the dual alteration of two adjacent nucleotides, designated as tandem or double lesions. Herein, current knowledge about the formation and biological implications of oxidatively generated DNA tandem lesions is reviewed. Thus far, most reported tandem lesions have been shown to arise from peroxyl radicals initially generated at pyrimidine bases, notably thymine, followed by reaction with 5'-flanking bases, especially guanine, although contiguous thymine lesions have also been characterized. Proper biomolecular processing is impaired by several tandem lesions making them refractory to base excision repair and potentially more mutagenic.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Jean Cadet
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
7
|
Chabot MB, Fleming AM, Burrows CJ. Identification of the Major Product of Guanine Oxidation in DNA by Ozone. Chem Res Toxicol 2022; 35:1809-1813. [PMID: 35642826 DOI: 10.1021/acs.chemrestox.2c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ozonolysis of guanosine formed the 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) nucleoside along with trace spiroiminodihydantoin (Sp). On the basis of literature precedent, we propose an unconventional ozone mechanism involving incorporation of only one oxygen atom of O3 to form 2Ih with evolution of singlet oxygen responsible for Sp formation. The increased yield of Sp in the buffered 1O2-stabilizing solvent D2O, formation of 2Ih in a short oligodeoxynucleotide, and 18O-isotope labeling provided evidence to support this mechanism. The elusiveness and challenges of working with 2Ih are described in a series of studies on the significant context effects on the half-life of the 2Ih glycosidic bond.
Collapse
Affiliation(s)
- Michael B Chabot
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
8
|
Razskazovskiy Y, Campbell EB, Cutright ZD, Thomas CS, Roginskaya M. One-electron oxidation of guanine derivatives: Detection of 2,5-diaminoimidazolone and novel guanine-guanine cross-links as major end products. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Fleming AM, Burrows CJ. Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences. Int J Radiat Biol 2022; 98:452-460. [PMID: 34747670 PMCID: PMC8881305 DOI: 10.1080/09553002.2021.2003464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE One outcome of DNA damage from hydroxyl radical generated by ionizing radiation (IR) or by the Fenton reaction is oxidation of the nucleobases, especially guanine (G). While 8-oxo-7,8-dihydroguanine (OG) is a commonly studied oxidized lesion, several others are formed in high abundance, including 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), a prevalent product in in vitro chemistry that is challenging to study from cellular sources. In this short review, we have a goal of explaining new insights into hydroxyl radical-induced oxidation chemistry of G in DNA and comparing it to endogenous DNA damage, as well as commenting on the biological outcomes of DNA base damage. CONCLUSIONS Pathways of oxidation of G are discussed and a comparison is made between IR (hydroxyl radical chemistry) and endogenous oxidative stress that largely forms carbonate radical anion as a reactive intermediate. These pathways overlap with the formation of OG and 2Ih, but other guanine-derived lesions are more pathway specific. The biological consequences of guanine oxidation include both mutagenesis and epigenetics; a new mechanism of gene regulation via the base excision repair pathway is described for OG, whereas the impact of IR in forming guanine modifications may be to confound this process in addition to introduction of mutagenic sites.
Collapse
|
10
|
Zhou W, Liu J. Reaction mechanism and dynamics for C8-hydroxylation of 9-methylguanine radical cation by water molecules. Phys Chem Chem Phys 2021; 23:24464-24477. [PMID: 34698322 DOI: 10.1039/d1cp03884b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to their spontaneous deprotonation in aqueous solution, reactions of guanine and guanosine radical cations with water in the gas phase are exclusively initiated by hydration of the radical cations as reported in recent work (Y. Sun et al., Phys. Chem. Chem. Phys., 2018, 20, 27510). As gas-phase hydration reactions closely mimic the actual scenario for guanine radical cations in double-stranded DNA, exploration of subsequent reactions within their water complexes can provide an insight into the resulting oxidative damage to nucleosides. Herein guided-ion beam mass spectrometry experiment and direct dynamics trajectory simulations were carried out to examine prototype complexes of the 9-methylguanine radical cation with one and two water ligands (i.e., 9MG˙+·(H2O)1-2) in the gas phase, wherein the complexes were activated by collisional activation in the experiment and by thermal excitation at high temperatures in the simulations. Guided by mass spectroscopic measurements, trajectory results and reaction potential energy surface, three reaction pathways were identified. The first two reaction pathways start with H-atom abstraction from water by the O6 and N7 atoms in 9MG˙+ and are referred to as HAO6 and HAN7, respectively. The primary products of HAO6 and HAN7 reactions, including [9MG + HO6]+/[9MG + HN7]+ and ˙OH, react further to either form [8OH-9MG + HO6]˙+ and [8OH-9MG + HN7]˙+via C8-hydroxylation or form radical cations of 6-enol-guanine (6-enol-G˙+) and 7H-guanine (7HG˙+) via SN2-type methanol elimination. The third reaction pathway corresponds to the formation of 8OH-9MG+ by H elimination from the complex, referred to as HE. Among these product channels, [8OH-9MG + HN7]˙+ has the most favorable formation probability, especially in the presence of additional water molecules. This product may serve as a preceding structure to the 8-oxo-7,8-dihydroguanine lesion in DNA and has implications for health effects of radiation exposure and radiation therapy.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
11
|
Estébanez S, Rivera AM, Neyra Recky JR, Thomas AH, Lhiaubet-Vallet V, Lorente C. Pterin-photosensitization of thymine under anaerobic conditions in the presence of guanine. Free Radic Biol Med 2021; 174:321-328. [PMID: 34339797 DOI: 10.1016/j.freeradbiomed.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 01/20/2023]
Abstract
Pterin (Ptr) is a model photosensitizer that acts mainly through type I mechanism and is able to photoinduce the one-electron oxidation of purine and pyrimidine nucleobases. However, under anaerobic conditions Ptr reacts with thymine (T) to form photoadducts (Ptr-T) but does not lead to the photodegradation of guanine (G), which is the nucleobase with the lowest ionization potential. Accordingly, G is thermodynamically able to reduce the radicals of the other nucleobases and has been described in this sense as the "hole sink" of the DNA double helix. Here we analyze by steady-state and time-resolved studies the effect of G in the anaerobic photosensitization of T by Ptr, using nucleotides and oligonucleotides of different sequences. We demonstrated that G is able to reduce T radicals but does not prevent the formation of Ptr-T adducts. Our results suggest that after the encounter between the excited Ptr and T, and completion of the electron transfer step, part of the radicals escape from the solvent cage, to further react with other species. However, a proportion of radicals do not escape and evolve to photoadducts before separation. We provide new evidence that contributes to understand the photosensitizing properties of Ptr in the absence of O2, the mechanism of formation of photoadducts in the DNA and the protective role of G towards the photodamage in other nucleobases.
Collapse
Affiliation(s)
- Sandra Estébanez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Ana M Rivera
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Jael R Neyra Recky
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Carolina Lorente
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina.
| |
Collapse
|
12
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
13
|
Peng H, Jie J, Mortimer IP, Ma Z, Su H, Greenberg MM. Reactivity and DNA Damage by Independently Generated 2'-Deoxycytidin- N4-yl Radical. J Am Chem Soc 2021; 143:14738-14747. [PMID: 34467764 DOI: 10.1021/jacs.1c06425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oxidative stress produces a variety of radicals in DNA, including pyrimidine nucleobase radicals. The nitrogen-centered DNA radical 2'-deoxycytidin-N4-yl radical (dC·) plays a role in DNA damage mediated by one electron oxidants, such as HOCl and ionizing radiation. However, the reactivity of dC· is not well understood. To reduce this knowledge gap, we photochemically generated dC· from a nitrophenyl oxime nucleoside and within chemically synthesized oligonucleotides from the same precursor. dC· formation is confirmed by transient UV-absorption spectroscopy in laser flash photolysis (LFP) experiments. LFP and duplex DNA cleavage experiments indicate that dC· oxidizes dG. Transient formation of the dG radical cation (dG+•) is observed in LFP experiments. Oxidation of the opposing dG in DNA results in hole transfer when the opposing dG is part of a dGGG sequence. The sequence dependence is attributed to a competition between rapid proton transfer from dG+• to the opposing dC anion formed and hole transfer. Enhanced hole transfer when less acidic O6-methyl-2'-deoxyguanosine is opposite dC· supports this proposal. dC· produces tandem lesions in sequences containing thymidine at the 5'-position by abstracting a hydrogen atom from the thymine methyl group. The corresponding thymidine peroxyl radical completes tandem lesion formation by reacting with the 5'-adjacent nucleotide. As dC· is reduced to dC, its role in the process is traceless and is only detectable because of the ability to independently generate it from a stable precursor. These experiments reveal that dC· oxidizes neighboring nucleotides, resulting in deleterious tandem lesions and hole transfer in appropriate sequences.
Collapse
Affiliation(s)
- Haihui Peng
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ifor P Mortimer
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Zehan Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
A model to understand type I oxidations of biomolecules photosensitized by pterins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
The Two Faces of the Guanyl Radical: Molecular Context and Behavior. Molecules 2021; 26:molecules26123511. [PMID: 34207639 PMCID: PMC8227002 DOI: 10.3390/molecules26123511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
The guanyl radical or neutral guanine radical G(-H)• results from the loss of a hydrogen atom (H•) or an electron/proton (e–/H+) couple from the guanine structures (G). The guanyl radical exists in two tautomeric forms. As the modes of formation of the two tautomers, their relationship and reactivity at the nucleoside level are subjects of intense research and are discussed in a holistic manner, including time-resolved spectroscopies, product studies, and relevant theoretical calculations. Particular attention is given to the one-electron oxidation of the GC pair and the complex mechanism of the deprotonation vs. hydration step of GC•+ pair. The role of the two G(-H)• tautomers in single- and double-stranded oligonucleotides and the G-quadruplex, the supramolecular arrangement that attracts interest for its biological consequences, are considered. The importance of biomarkers of guanine DNA damage is also addressed.
Collapse
|
16
|
Bull GD, Thompson KC. The oxidation of guanine by photoionized 2-aminopurine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Fleming AM, Burrows CJ. Iron Fenton oxidation of 2'-deoxyguanosine in physiological bicarbonate buffer yields products consistent with the reactive oxygen species carbonate radical anion not the hydroxyl radical. Chem Commun (Camb) 2021; 56:9779-9782. [PMID: 32716425 DOI: 10.1039/d0cc04138f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Product analysis from the iron Fenton oxidation of 2'-deoxyguanosine found reactions in bicarbonate buffer yield 8-oxo-2'-deoxyguanosine and spiroiminodihyantoin consistent with CO3˙-. Reactions in phosphate buffer furnished high yields of sugar oxidation products consistent with HO˙. These observations change the view of DNA oxidation products from the iron-Fenton reaction.
Collapse
Affiliation(s)
- Aaron M Fleming
- Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | - Cynthia J Burrows
- Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| |
Collapse
|
18
|
Excision of Oxidatively Generated Guanine Lesions by Competitive DNA Repair Pathways. Int J Mol Sci 2021; 22:ijms22052698. [PMID: 33800059 PMCID: PMC7962115 DOI: 10.3390/ijms22052698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.
Collapse
|
19
|
Chatgilialoglu C, Ferreri C, Krokidis MG, Masi A, Terzidis MA. On the relevance of hydroxyl radical to purine DNA damage. Free Radic Res 2021; 55:384-404. [PMID: 33494618 DOI: 10.1080/10715762.2021.1876855] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxyl radical (HO•) is the most reactive toward DNA among the reactive oxygen species (ROS) generated in aerobic organisms by cellular metabolisms. HO• is generated also by exogenous sources such as ionizing radiations. In this review we focus on the purine DNA damage by HO• radicals. In particular, emphasis is given on mechanistic aspects for the various lesion formation and their interconnections. Although the majority of the purine DNA lesions like 8-oxo-purine (8-oxo-Pu) are generated by various ROS (including HO•), the formation of 5',8-cyclopurine (cPu) lesions in vitro and in vivo relies exclusively on the HO• attack. Methodologies generally utilized for the purine lesions quantification in biological samples are reported and critically discussed. Recent results on cPu and 8-oxo-Pu lesions quantification in various types of biological specimens associated with the cellular repair efficiency as well as with distinct pathologies are presented, providing some insights on their biological significance.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
| | - Michael A Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| |
Collapse
|
20
|
Wei S, Zhang Z, Liu S, Wang Y. Theoretical insight into 7,8-dihydrogen-8-oxoguanine radical cation deprotonation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01653a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pKa values of reactive protons in 8-oxoG˙+ and potential energy profiles for 8-oxoG radical cation deprotonation reaction (N1–H and N7–H) were firstly calculated.
Collapse
Affiliation(s)
- Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry
- Shaanxi University of Chinese Medicine
- Xianyang 712083
- China
| | - Zhenhua Zhang
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- China
| | - Shijun Liu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry
- Shaanxi University of Chinese Medicine
- Xianyang 712083
- China
| | - Yinghui Wang
- College of Science
- Chang’an University
- Xi’an 710064
- China
| |
Collapse
|
21
|
Min SJ, Kim JG, Baek K. Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123083. [PMID: 32947731 DOI: 10.1016/j.jhazmat.2020.123083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
In-situ chemical oxidation (ISCO) requires an injection of oxidants into a contaminated site. However, the oxidants decompose and react with contaminants during transport to the contaminated region, which causes oxidant over-consumption. In-situ oxidant generation can solve this problem, and electrochemical methods can be applied to achieve this. Electrochemical oxidation is highly dependent on electrode material type. In this study, we evaluated graphite and carbon fiber as candidates for electrochemical oxidant generation and phenol as the model compound. The carbon fiber anode oxidized the phenol more effectively than graphite, with removal proportional to the applied current. Carbonate electrolytes were more effective at oxidizing phenols than sulfate electrolytes. The faster carbon fiber anode phenol oxidation is due to its large surface area. Carbonate radicals in the carbonate electrolyte contribute to phenol oxidation as well as further intermediate oxidation. The carbon fiber cathode was not an effective phenol oxidizer even though it generated more hydrogen peroxide. This is because there was no catalyst to transform the hydrogen peroxide into hydroxyl radicals. Results indicate that electrochemical oxidation using carbon fiber is an effective method for treating phenol found in groundwater with high concentrations of (bi)carbonate.
Collapse
Affiliation(s)
- Su-Jin Min
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, 567 Baekie-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea
| | - Jong-Gook Kim
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, 567 Baekie-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea
| | - Kitae Baek
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, 567 Baekie-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea.
| |
Collapse
|
22
|
A theoretical study towards understanding the origin of DNA oxidation products. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Sobek J, Schlapbach R. Dependence of Fluorescence Quenching of CY3 Oligonucleotide Conjugates on the Oxidation Potential of the Stacking Base Pair. Molecules 2020; 25:molecules25225369. [PMID: 33212871 PMCID: PMC7698394 DOI: 10.3390/molecules25225369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
To understand the complex fluorescence properties of astraphloxin (CY3)-labelled oligonucleotides, it is necessary to take into account the redox properties of the nucleobases. In oligonucleotide hybrids, we observed a dependence of the fluorescence intensity on the oxidation potential of the neighbouring base pair. For the series I < A < G < 8-oxoG, the extent of fluorescence quenching follows the trend of decreasing oxidation potentials. In a series of 7 nt hybrids, stacking interactions of CY3 with perfect match and mismatch base pairs were found to stabilise the hybrid by 7–8 kJ/mol. The fluorescence measurements can be explained by complex formation resulting in fluorescence quenching that prevails over the steric effect of a reduced excited state trans-cis isomerisation, which was expected to increase the fluorescence efficiency of the dye when stacking to a base pair. This can be explained by the fact that, in a double strand, base pairing and stacking cause a dramatic change in the oxidation potential of the nucleobases. In single-molecule fluorescence measurements, the oxidation of G to 8-oxoG was observed as a result of photoinduced electron transfer and subsequent chemical reactions. Our results demonstrate that covalently linked CY3 is a potent oxidant towards dsDNA. Sulfonated derivatives should be used instead.
Collapse
|
24
|
Fleming AM, Burrows CJ. On the irrelevancy of hydroxyl radical to DNA damage from oxidative stress and implications for epigenetics. Chem Soc Rev 2020; 49:6524-6528. [PMID: 32785348 PMCID: PMC7522918 DOI: 10.1039/d0cs00579g] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Contrary to frequent reports in the literature, hydroxyl radical is not a key species participating in endogenous oxidative DNA damage. Instead, carbonate radical anion is formed from the Fenton reaction under cellular conditions and from decomposition of nitrosoperoxycarbonate generated during inflammation. Carbonate radical anion is a potent one-electron oxidant capable of generating base radical cations that can migrate over long distances in duplex DNA, ultimately generating 8-oxo-7,8-dihydroguanine at a redox-sensitive sequence such as GGG. Such a mechanism enables G-quadruplex-forming sequences to act as long-range sensors of oxidative stress, impacting gene expression via the DNA repair mechanism that reads and ultimately erases the oxidized base. With a writing, reading and erasing mechanism in place, oxidative 'damage' to DNA might be relabeled as 'epigenetic' modifications.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA.
| |
Collapse
|
25
|
Thomas CS, Pollard HC, Razskazovskiy Y, Roginskaya M. Sources of 2,5-diaminoimidazolone lesions in DNA damage initiated by hydroxyl radical attack. Free Radic Res 2020; 54:517-524. [DOI: 10.1080/10715762.2020.1808632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Yuriy Razskazovskiy
- Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN, USA
| | - Marina Roginskaya
- Department of Chemistry, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
26
|
Zheng L, Dai X, Su H, Greenberg MM. Independent Generation and Time-Resolved Detection of 2'-Deoxyguanosin-N2-yl Radicals. Angew Chem Int Ed Engl 2020; 59:13406-13413. [PMID: 32365264 PMCID: PMC7395871 DOI: 10.1002/anie.202005300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/01/2020] [Indexed: 12/25/2022]
Abstract
Guanine radicals are important reactive intermediates in DNA damage. Hydroxyl radical (HO. ) has long been believed to react with 2'-deoxyguanosine (dG) generating 2'-deoxyguanosin-N1-yl radical (dG(N1-H). ) via addition to the nucleobase π-system and subsequent dehydration. This basic tenet was challenged by an alternative mechanism, in which the major reaction of HO. with dG was proposed to involve hydrogen atom abstraction from the N2-amine. The 2'-deoxyguanosin-N2-yl radical (dG(N2-H). ) formed was proposed to rapidly tautomerize to dG(N1-H). . We report the first independent generation of dG(N2-H). in high yield via photolysis of 1. dG(N2-H). is directly observed upon nanosecond laser flash photolysis (LFP) of 1. The absorption spectrum of dG(N2-H). is corroborated by DFT studies, and anti- and syn-dG(N2-H). are resolved for the first time. The LFP experiments showed no evidence for tautomerization of dG(N2-H). to dG(N1-H). within hundreds of microseconds. This observation suggests that the generation of dG(N1-H). via dG(N2-H). following hydrogen atom abstraction from dG is unlikely to be a major pathway when HO. reacts with dG.
Collapse
Affiliation(s)
- Liwei Zheng
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Xiaojuan Dai
- Department of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hongmei Su
- Department of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| |
Collapse
|
27
|
Zheng L, Dai X, Su H, Greenberg MM. Independent Generation and Time‐Resolved Detection of 2′‐Deoxyguanosin‐
N2
‐yl Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liwei Zheng
- Department of Chemistry Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Xiaojuan Dai
- Department of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Hongmei Su
- Department of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Marc M. Greenberg
- Department of Chemistry Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| |
Collapse
|
28
|
Zhang X, Jie J, Song D, Su H. Deprotonation of Guanine Radical Cation G •+ Mediated by the Protonated Water Cluster. J Phys Chem A 2020; 124:6076-6083. [PMID: 32585092 DOI: 10.1021/acs.jpca.0c03748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proton transfer is regarded as a fundamental process in chemical reactions of DNA molecules and continues to be an active research theme due to the connection with charge transport and oxidation damage of DNA. For the guanine radical cation (G•+) derived from one-electron oxidation, experiments suggest a facile proton transfer within the G•+:C base pair, and a rapid deprotonation from N1 in free base or single-strand DNA. To address the deprotonation mechanism, we perform a thorough investigation on deprotonation of G•+ in free G base by combining density functional theory (DFT) and laser flash photolysis spectroscopy. Experimentally, kinetics of deprotonation is monitored at temperatures varying from 280 to 298 K, from which the activation energy of 15.1 ± 1.5 kJ/mol is determined for the first time. Theoretically, four solvation models incorporating explicit waters and the polarized continuum model (PCM), i.e., 3H2O-PCM, 4H2O-PCM, 5H2O-PCM, and 7H2O-PCM models are used to calculate deprotonation potential energy profile, and the barriers of 5.5, 13.4, 14.4, and 13.7 kJ/mol are obtained, respectively. It is shown that at least four explicit waters are required for properly simulating the deprotonation reaction, where the participation of protonated water cluster plays key roles in facilitating the proton release from G•+.
Collapse
Affiliation(s)
- Xianwang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100048, P. R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
29
|
Zheng L, Greenberg MM. Independent Generation and Reactivity of 2'-Deoxyguanosin- N1-yl Radical. J Org Chem 2020; 85:8665-8672. [PMID: 32525316 DOI: 10.1021/acs.joc.0c01095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
2'-Deoxyguanosin-N1-yl radical (dG(N1-H)•) is the thermodynamically favored one-electron oxidation product of 2'-deoxyguanosine (dG), the most readily oxidized native nucleoside. dG(N1-H)• is produced by the formal dehydration of a hydroxyl radical adduct of dG as well as by deprotonation of the corresponding radical cation. dG(N1-H)• were formed as a result of the indirect and direct effects of ionizing radiation, among other DNA damaging agents. dG(N1-H)• was generated photochemically (λmax = 350 nm) from an N-aryloxy-naphthalimide precursor (3). The quantum yield for photochemical conversion of 3 is ∼0.03 and decreases significantly in the presence O2, suggesting that bond scission occurs from a triplet excited state. dG is formed quantitatively in the presence of excess β-mercaptoethanol. In the absence of a reducing agent, dG(N1-H)• oxidizes 3, decreasing the dG yield to ∼50%. Addition of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) as a sacrificial reductant results in a quantitative yield of dG and two-electron oxidation products of 8-oxodGuo. N-Aryloxy-naphthalimide 3 is an efficient and high-yielding photochemical precursor of dG(N1-H)• that will facilitate mechanistic studies on the reactivity of this important reactive intermediate involved in DNA damage.
Collapse
Affiliation(s)
- Liwei Zheng
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
30
|
Jie J, Xia Y, Huang CH, Zhao H, Yang C, Liu K, Song D, Zhu BZ, Su H. Sulfur-centered hemi-bond radicals as active intermediates in S-DNA phosphorothioate oxidation. Nucleic Acids Res 2020; 47:11514-11526. [PMID: 31724721 PMCID: PMC7145531 DOI: 10.1093/nar/gkz987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorothioate (PS) modifications naturally appear in bacteria and archaea genome and are widely used as antisense strategy in gene therapy. But the chemical effects of PS introduction as a redox active site into DNA (S-DNA) is still poorly understood. Herein, we perform time-resolved spectroscopy to examine the underlying mechanisms and dynamics of the PS oxidation by potent radicals in free model, in dinucleotide, and in S-oligomer. The crucial sulphur-centered hemi-bonded intermediates -P–S∴S–P- were observed and found to play critical roles leading to the stable adducts of -P–S–S–P-, which are backbone DNA lesion products. Moreover, the oxidation of the PS moiety in dinucleotides d[GPSG], d[APSA], d[GPSA], d[APSG] and in S-oligomers was monitored in real-time, showing that PS oxidation can compete with adenine but not with guanine. Significantly, hole transfer process from A+• to PS and concomitant -P–S∴S–P- formation was observed, demonstrating the base-to-backbone hole transfer unique to S-DNA, which is different from the normally adopted backbone-to-base hole transfer in native DNA. These findings reveal the distinct backbone lesion pathway brought by the PS modification and also imply an alternative -P–S∴S–P-/-P–S–S–P- pathway accounting for the interesting protective role of PS as an oxidation sacrifice in bacterial genome.
Collapse
Affiliation(s)
- Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ye Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chun-Hua Huang
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kunhui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ben-Zhan Zhu
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Kolbanovskiy M, Shim Y, Min JH, Geacintov NE, Shafirovich V. Inhibition of Excision of Oxidatively Generated Hydantoin DNA Lesions by NEIL1 by the Competitive Binding of the Nucleotide Excision Repair Factor XPC-RAD23B. Biochemistry 2020; 59:1728-1736. [PMID: 32302101 DOI: 10.1021/acs.biochem.0c00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interplay between nucleotide excision repair (NER) and base excision repair (BER) of nonbulky, oxidatively generated DNA lesions has long been a subject of significant interest. The hydantoin oxidation products of 8-oxoguanine, spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh), are substrates of both BER and NER in HeLa cell extracts and human cells [Shafirovich, V., et al. (2019) Chem. Res. Toxicol. 32, 753-761]. The primary factor that recognizes DNA lesions is the DNA damage-sensing factor XPC-RAD23B (XPC), while the glycosylase NEIL1 is known to remove Gh and Sp lesions from double-stranded DNA. It is shown here that in aqueous solutions containing nanomolar concentrations of proteins, XPC and NEIL1 compete for binding to 147-mer oligonucleotide duplexes that contain single Gh or Sp lesions under conditions of [protein] ≫ [DNA], thus inhibiting the rate of BER catalyzed by NEIL1. The non-covalently bound NEIL1 molecules can be displaced by XPC at concentration ratios R = [XPC]/[NEIL1] > 0.2, while full displacement of NEIL1 is observed at R ≥ 0.5. In the absence of XPC and under single-turnover conditions, only the burst phase is observable. However, with a progressive increase in the XPC concentration, the amplitude of the burst phase decreases gradually, and a slower time-dependent phase of incision product formation manifests itself with rate constants of 3.0 × 10-3 s-1 (Gh) and 0.90 × 10-3 s-1 (Sp). These slow kinetics are attributed to the dissociation of XPC-DNA complexes that allow for the rebinding of NEIL1 to the temporarily exposed Gh or Sp lesions, and the incisions observed under these steady-state conditions.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Yoonjung Shim
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Nicholas E Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| |
Collapse
|
32
|
Hebert SP, Schlegel HB. Computational Investigation into the Oxidation of Guanine to Form Imidazolone (Iz) and Related Degradation Products. Chem Res Toxicol 2020; 33:1010-1027. [PMID: 32119534 DOI: 10.1021/acs.chemrestox.0c00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imidazolone (Iz) is one of the many products resulting from oxidative damage to DNA. Three pathways for the formation of Iz and related degradation products have been studied by density functional theory using the ωB97XD functional with the 6-31+G(d,p) basis set and SMD implicit water solvation plus a small number of explicit water molecules positioned to help stabilize charged species and facilitate reaction steps. The first pathway starts with guanine radical and the addition of superoxide at C5. Endoperoxide formation was calculated to have slightly lower barriers than diol formation. The next steps are pyrimidine ring opening and decarboxylation. Ring migration then proceeds via an acyclic intermediate rather than a bicyclic intermediate and is followed by formamide loss to yield Iz. The second pathway starts with 8oxoG and proceeds via C5 superoxide addition and diol formation to a relatively stable intermediate, oxidized guanidinohydantoin (Ghox). The barriers for hydroxide ion addition to Ghox are much lower than for water addition and should yield more Iz and parabanic acid at higher pH. The third pathway starts with 8-hydroxy guanine radical formed by hydroxyl radical addition to C8 of guanine or water addition to C8 of guanine radical. Superoxide addition at C5 is followed by diol formation, ring opening and decarboxylation similar to pathways 1 and 2, subsequently leading to Iz formation. The calculated pathways are in good agreement with experimental observations.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
33
|
Zhou Q, Wang Y, Dai X, Yang C, Jie J, Su H. One-electron oxidation of TAT-motif triplex DNA and the ensuing Hoogsteen hydrogen-bonding dissociation. J Chem Phys 2020; 152:035101. [PMID: 31968979 DOI: 10.1063/1.5135769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One-electron oxidation of adenine (A) leads initially to the formation of adenine radical cation (A•+). Subsequent deprotonation of A•+ can provoke deoxyribonucleic acid (DNA) damage, which further causes senescence, cancer formation, and even cell death. However, compared with considerable reports on A•+ reactions in free deoxyadenosine (dA) and duplex DNA, studies in non-B-form DNA that play critical biological roles are rare at present. It is thus of vital importance to explore non-B-form DNA, among which the triplex is an emerging topic. Herein, we investigate the deprotonation behavior of A•+ in the TAT triplex with continuous A bases by time-resolved laser flash photolysis. The rate constants for the one-oxidation of triplex 8.4 × 108 M-1 s-1 and A•+ deprotonation 1.3 × 107 s-1 are obtained. The kinetic isotope effect of A•+ deprotonation in the TAT triplex is 1.8, which is characteristic of a direct release of the proton into the solvent similar to free base dA. It is thus elucidated that the A•+ proton bound with the third strand is most likely to be released into the solvent because of the weaker Hoogsteen H-bonding interaction and the presence of the highly mobile hydration waters within the third strand. Additionally, it is confirmed through Fourier transform infrared spectroscopy that the deprotonation of A•+ results in the dissociation of the third strand and disruption of the secondary structure of the triplex. These results provide valuable kinetic data and in-depth mechanistic insights for understanding the adenine oxidative DNA damage in the triplex.
Collapse
Affiliation(s)
- Qian Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yinghui Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaojuan Dai
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
34
|
Wang Y, An P, Li S, Zhou L. The oxidation mechanism and kinetics of 2′-deoxyguanosine by carbonate radical anion. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020; 29:101398. [PMID: 31926624 PMCID: PMC6926346 DOI: 10.1016/j.redox.2019.101398] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Chemical modifications of DNA and RNA regulate genome functions or trigger mutagenesis resulting in aging or cancer. Oxidations of macromolecules, including DNA, are common reactions in biological systems and often part of regulatory circuits rather than accidental events. DNA alterations are particularly relevant since the unique role of nuclear and mitochondrial genome is coding enduring and inheritable information. Therefore, an alteration in DNA may represent a relevant problem given its transmission to daughter cells. At the same time, the regulation of gene expression allows cells to continuously adapt to the environmental changes that occur throughout the life of the organism to ultimately maintain cellular homeostasis. Here we review the multiple ways that lead to DNA oxidation and the regulation of mechanisms activated by cells to repair this damage. Moreover, we present the recent evidence suggesting that DNA damage caused by physiological metabolism acts as epigenetic signal for regulation of gene expression. In particular, the predisposition of guanine to oxidation might reflect an adaptation to improve the genome plasticity to redox changes.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Niccolo' Roda
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Safaeipour M, Jauregui J, Castillo S, Bekarian M, Esparza D, Sanchez M, Stemp EDA. Glutathione Directly Intercepts DNA Radicals To Inhibit Oxidative DNA–Protein Cross-Linking Induced by the One-Electron Oxidation of Guanine. Biochemistry 2019; 58:4621-4631. [DOI: 10.1021/acs.biochem.9b00697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mary Safaeipour
- Department of Physical Sciences and Mathematics, Mount St. Mary’s University, Los Angeles, California 90049, United States
| | - Juliette Jauregui
- Department of Physical Sciences and Mathematics, Mount St. Mary’s University, Los Angeles, California 90049, United States
| | - Sarah Castillo
- Department of Physical Sciences and Mathematics, Mount St. Mary’s University, Los Angeles, California 90049, United States
| | - Mary Bekarian
- Department of Physical Sciences and Mathematics, Mount St. Mary’s University, Los Angeles, California 90049, United States
| | - Diana Esparza
- Department of Physical Sciences and Mathematics, Mount St. Mary’s University, Los Angeles, California 90049, United States
| | - Maritza Sanchez
- Department of Physical Sciences and Mathematics, Mount St. Mary’s University, Los Angeles, California 90049, United States
| | - Eric D. A. Stemp
- Department of Physical Sciences and Mathematics, Mount St. Mary’s University, Los Angeles, California 90049, United States
| |
Collapse
|
37
|
Cercola R, Uleanya KO, Dessent CEH. Electron detachment dynamics of the iodide-guanine cluster: does ionization occur from the iodide or from guanine? Mol Phys 2019. [DOI: 10.1080/00268976.2019.1679402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Hebert SP, Schlegel HB. Computational Study of the Oxidation of Guanine To Form 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih). Chem Res Toxicol 2019; 32:2295-2304. [PMID: 31571479 DOI: 10.1021/acs.chemrestox.9b00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative damage to DNA leads to a number of two-electron oxidation products of guanine such as 8-oxo-7,8-dihydroguanine (8oxoG). 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih) is another two-electron oxidation product that forms in competition with 8oxoG. The pathways for the formation of 2Ih have been studied by density functional theory using the ωB97XD functional with the 6-31+G(d,p) basis set and SMD implicit water solvation plus a small number of explicit water molecules positioned to help stabilize charged species and facilitate reaction steps. For oxidative conditions that produce hydroxyl radical, such as Fenton chemistry, hydroxy radical can add at C4, C5, or C8. Addition at C4 or C5 followed by loss of H2O produces guanine radical. Guanine radical can also be produced directly by oxidation of guanine by reactive oxygen species (ROS). A C5-OH intermediate can be formed by addition of superoxide to C5 of guanine radical followed by reduction. Alternatively, the C5-OH intermediate can be formed by hydroxy radical addition at C5 and oxidation by 3O2. The competition between oxidative and reductive pathways depends on the reaction conditions. Acyl migration of the C5-OH intermediate yields reduced spiroiminodihydantoin (Spred). Subsequent water addition at C8 of Spred and N7-C8 ring opening produces 2Ih. Hydroxy radical addition at C8 can lead to a number of products. Oxidation and tautomerization produces 8oxoG. Alternatively, addition of superoxide at C5 and reduction results in a C5, C8 dihydroxy intermediate. For this species, the low energy pathway to 2Ih is N7-C8 ring opening followed by acyl migration. Ring opening occurs more easily at C8-N9 but leads to a higher energy analogue of 2Ih. Thus, the dominant pathway for the production of 2Ih depends on the nature of the reactive oxygen species and on the presence or absence of reducing agents.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - H Bernhard Schlegel
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
39
|
Fleming AM, Zhu J, Howpay Manage SA, Burrows CJ. Human NEIL3 Gene Expression Regulated by Epigenetic-Like Oxidative DNA Modification. J Am Chem Soc 2019; 141:11036-11049. [PMID: 31241930 PMCID: PMC6640110 DOI: 10.1021/jacs.9b01847] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The NEIL3 DNA repair gene is induced in cells
or animal models experiencing oxidative or inflammatory stress along
with oxidation of guanine (G) to 8-oxo-7,8-dihydroguanine (OG) in
the genome. We hypothesize that a G-rich promoter element that is
a potential G-quadruplex-forming sequence (PQS) in NEIL3 is a site for introduction of OG with epigenetic-like potential
for gene regulation. Activation occurs when OG is formed in the NEIL3 PQS located near the transcription start site. Oxidative
stress either introduced by TNFα or synthetically incorporated
into precise locations focuses the base excision repair process to
read and catalyze removal of OG via OG-glycosylase I (OGG1), yielding
an abasic site (AP). Thermodynamic studies showed that AP destabilizes
the duplex, enabling a structural transition of the sequence to a
G-quadruplex (G4) fold that positions the AP in a loop facilitated
by the NEIL3 PQS having five G runs in which the
four unmodified runs adopt a stable G4. This presents AP to apurinic/apyrimidinic
endonuclease 1 (APE1) that poorly cleaves the AP backbone in this
context according to in vitro studies, allowing the protein to function
as a trans activator of transcription. The proposal is supported by
chemical studies in cellulo and in vitro. Activation of NEIL3 expression via the proposed mechanism allows cells to respond to
mutagenic DNA damage removed by NEIL3 associated with oxidative or
inflammatory stress. Lastly, inspection of many mammalian genomes
identified conservation of the NEIL3 PQS, suggesting
this sequence was favorably selected to function as a redox switch
with OG as the epigenetic-like regulatory modification.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Judy Zhu
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Shereen A Howpay Manage
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
40
|
Balanikas E, Banyasz A, Baldacchino G, Markovitsi D. Populations and Dynamics of Guanine Radicals in DNA strands-Direct versus Indirect Generation. Molecules 2019; 24:molecules24132347. [PMID: 31247883 PMCID: PMC6651618 DOI: 10.3390/molecules24132347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
Guanine radicals, known to be involved in the damage of the genetic code and aging, are studied by nanosecond transient absorption spectroscopy. They are generated in single, double and four-stranded structures (G-quadruplexes) by one and two-photon ionization at 266 nm, corresponding to a photon energy lower than the ionization potential of nucleobases. The quantum yield of the one-photon process determined for telomeric G-quadruplexes (TEL25/Na+) is (5.2 ± 0.3) × 10−3, significantly higher than that found for duplexes containing in their structure GGG and GG sequences, (2.1 ± 0.4) × 10−3. The radical population is quantified in respect of the ejected electrons. Deprotonation of radical cations gives rise to (G-H1)• and (G-H2)• radicals for duplexes and G-quadruplexes, respectively. The lifetimes of deprotonated radicals determined for a given secondary structure strongly depend on the base sequence. The multiscale non-exponential dynamics of these radicals are discussed in terms of inhomogeneity of the reaction space and continuous conformational motions. The deviation from classical kinetic models developed for homogeneous reaction conditions could also be one reason for discrepancies between the results obtained by photoionization and indirect oxidation, involving a bi-molecular reaction between an oxidant and the nucleic acid.
Collapse
Affiliation(s)
| | - Akos Banyasz
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France.
| | - Gérard Baldacchino
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| |
Collapse
|
41
|
Thapa B, Hebert SP, Munk BH, Burrows CJ, Schlegel HB. Computational Study of the Formation of C8, C5, and C4 Guanine:Lysine Adducts via Oxidation of Guanine by Sulfate Radical Anion. J Phys Chem A 2019; 123:5150-5163. [DOI: 10.1021/acs.jpca.9b03598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bishnu Thapa
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sebastien P. Hebert
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Barbara H. Munk
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
42
|
Shafirovich V, Kropachev K, Kolbanovskiy M, Geacintov NE. Excision of Oxidatively Generated Guanine Lesions by Competing Base and Nucleotide Excision Repair Mechanisms in Human Cells. Chem Res Toxicol 2019; 32:753-761. [PMID: 30688445 PMCID: PMC6465092 DOI: 10.1021/acs.chemrestox.8b00411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interchange between different repair mechanisms in human cells has long been a subject of interest. Here, we provide a direct demonstration that the oxidatively generated guanine lesions spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) embedded in double-stranded DNA are substrates of both base excision repair (BER) and nucleotide excision repair (NER) mechanisms in intact human cells. Site-specifically modified, 32P-internally labeled double-stranded DNA substrates were transfected into fibroblasts or HeLa cells, and the BER and/or NER mono- and dual incision products were quantitatively recovered after 2-8 h incubation periods and lysis of the cells. DNA duplexes bearing single benzo[ a]pyrene-derived guanine adduct were employed as positive controls of NER. The NER activities, but not the BER activities, were abolished in XPA-/- cells, while the BER yields were strongly reduced in NEIL1-/- cells. Co-transfecting different concentrations of analogous DNA sequences bearing the BER substrates 5-hydroxyuracil diminish the BER yields of Sp lesions and enhance the yields of NER products. These results are consistent with a model based on the local availability of BER and NER factors in human cells and their competitive binding to the same Sp or Gh BER/NER substrates.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | - Konstantin Kropachev
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | - Marina Kolbanovskiy
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | - Nicholas E. Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| |
Collapse
|
43
|
Wang Y, Zhao H, Zhou Q, Dai X, Liu K, Song D, Su H. Monitoring the Structure-Dependent Reaction Pathways of Guanine Radical Cations in Triplex DNA: Deprotonation Versus Hydration. J Phys Chem B 2019; 123:2853-2863. [PMID: 30834754 DOI: 10.1021/acs.jpcb.9b00608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure of DNA to one-electron oxidants leads initially to the formation of guanine radical cations (G•+), which may degrade by deprotonation or hydration and ultimately cause strand breaks or 8-oxoG lesions. As the structure is dramatically changed by binding of the third strand in the major groove of the target duplex, it makes the triplex an interesting DNA structure to be examined and compared with the duplex on the G•+ degradation pathways. Here, we report for the first time the time-resolved spectroscopy study on the G•+ reaction dynamics in triplex DNA together with the Fourier transform infrared characterization of steady-state products, from which structural effects on the reactivity of G•+ are unraveled. For an antiparallel triplex-containing GGC motif, G•+ mainly suffers from fast deprotonation (9.8 ± 0.2) × 106 s-1, featuring release of both N1-H and N2-H of G in the third strand directly into bulk water. The much faster and distinct deprotonation behavior compared to the duplex should be related to long-resident water spines in the third strand. The G•+ hydration product 8-oxoG is negligible for an antiparallel triplex; instead, the 5-HOO-(G-H) hydroperoxide formed after G•+ deprotonation is identified by its vibrational marker band. In contrast, in a parallel triplex (C+GC), the deprotonation of G•+ occurs slowly (6.0 ± 0.3) × 105 s-1 with the release of N1-H, while G•+ hydration becomes the major pathway with yields of 8-oxoG larger than in the duplex. The increased positive charge brought by the third strand makes the G radical in the parallel triplex sustain more cation character and prone for hydration. These results indicate that non-B DNA (triplex) plays an important role in DNA damage formation and provide mechanistic insights to rationalize why triplex structures might become hot spots for mutagenesis.
Collapse
Affiliation(s)
- Yinghui Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Qian Zhou
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Xiaojuan Dai
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Kunhui Liu
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Di Song
- Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Hongmei Su
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
44
|
Kobierski J, Lipiec E. DNA structure change induced by guanosine radicals – A theoretical and spectroscopic study of proton radiation damage. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Hebert SP, Schlegel HB. Computational Study of the pH-Dependent Competition between Carbonate and Thymine Addition to the Guanine Radical. Chem Res Toxicol 2019; 32:195-210. [PMID: 30592213 DOI: 10.1021/acs.chemrestox.8b00302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When oligonucleotides are oxidized by carbonate radical, thymine and carbonate can add to guanine radical, yielding either a guanine-thymine cross-link product (G∧T) or 8-oxo-7,8-dehydroguanine (8oxoG) and its further oxidation products such as spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). The ratio of thymine addition to carbonate addition depends strongly on the pH. Details of the mechanism have been explored by density functional calculations using the ωB97XD/6-31+G(d,p) level of theory with the SMD implicit solvation method, augmented with a few explicit waters. Free energies of intermediates and transition states in aqueous solution have been calculated along the pathways for addition of thymine, CO32-/HCO3- and carbonate radical to guanine radical. The pH dependence was examined by using appropriate explicit proton donors/acceptors as computational models for buffers at pH 2.5, 7, and 10. Deprotonation of thymine is required for nucleophilic addition at C8 of guanine radical, and thus is favored at higher pH. The barrier for carbonate radical addition is lower than for bicarbonate or carbonate dianion addition; however, for low concentrations of carbonate radical, the reaction may proceed by addition of bicarbonate/carbonate dianion to guanine radical. Thymine and bicarbonate/carbonate dianion addition are followed by oxidation by O2, loss of a proton from C8 and decarboxylation of the carbonate adduct. At pH 2.5, guanine radical cation can be formed by oxidization with sulfate radical. Water addition to guanine radical cation is the preferred path for forming 8oxoG at pH 2.5.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - H Bernhard Schlegel
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
46
|
Wang Y, Zhao H, Yang C, Jie J, Dai X, Zhou Q, Liu K, Song D, Su H. Degradation of Cytosine Radical Cations in 2′-Deoxycytidine and in i-Motif DNA: Hydrogen-Bonding Guided Pathways. J Am Chem Soc 2019; 141:1970-1979. [DOI: 10.1021/jacs.8b10743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yinghui Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaojuan Dai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qian Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Kunhui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Di Song
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
47
|
Sun H, Zheng L, Greenberg MM. Independent Generation of Reactive Intermediates Leads to an Alternative Mechanism for Strand Damage Induced by Hole Transfer in Poly(dA-T) Sequences. J Am Chem Soc 2018; 140:11308-11316. [PMID: 30169029 DOI: 10.1021/jacs.8b05484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Purine radical cations (dA•+ and dG•+) are the primary hole carriers of DNA hole migration due to their favorable oxidation potential. Much less is known about the reactivity of higher energy pyrimidine radical cations. The thymidine radical cation (T•+) was produced at a defined position in DNA from a photochemical precursor for the first time. T•+ initiates hole transfer to dGGG triplets in DNA. Hole localization in a dGGG sequence accounts for ∼26% of T•+ formed under aerobic conditions in 9. Reduction to yield thymidine is also quantified. 5-Formyl-2'-deoxyuridine is formed in low yield in DNA when T•+ is independently generated. This is inconsistent with mechanistic proposals concerning product formation from electron transfer in poly(dA-T) sequences, following hole injection by a photoexcited anthraquinone. Additional evidence that is inconsistent with the original mechanism was obtained using hole injection by a photoexcited anthraquinone in DNA. Instead of requiring the intermediacy of T•+, the strand damage patterns observed in those studies, in which thymidine is oxidized, are reproduced by independent generation of 2'-deoxyadenosin- N6-yl radical (dA•). Tandem lesion formation by dA• provides the basis for an alternative mechanism for thymidine oxidation ascribed to hole migration in poly(dA-T) sequences. Overall, these experiments indicate that the final products formed following DNA hole transfer in poly(dA-T) sequences do not result from deprotonation or hydration of T•+, but rather from deprotonation of the more stable dA•+, to form dA•, which produces tandem lesions in which 5'-flanking thymidines are oxidized.
Collapse
Affiliation(s)
- Huabing Sun
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Liwei Zheng
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
48
|
Merta TJ, Geacintov NE, Shafirovich V. Generation of 8-oxo-7,8-dihydroguanine in G-Quadruplexes Models of Human Telomere Sequences by One-electron Oxidation. Photochem Photobiol 2018; 95:244-251. [PMID: 29679477 PMCID: PMC6196120 DOI: 10.1111/php.12926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
The mechanistic aspects of one-electron oxidation of G-quadruplexes in the basket (Na+ ions) and hybrid (K+ ions) conformations were investigated by transient absorption laser kinetic spectroscopy and HPLC detection of the 8-oxo-7,8-dihydroguanine (8-oxoG) oxidation product. The photo-induced one-electron abstraction from G-quadruplexes was initiated by sulfate radical anions (SO4 ˙- ) derived from the photolysis of persulfate ions by 308 nm excimer laser pulses. In neutral aqueous solutions (pH 7.0), the transient absorbance of neutral guanine radicals, G(-H)˙, is observed following the complete decay of SO4 ˙- radicals (~10 μs after the actinic laser flash). In both basket and hybrid conformations, the G(-H)˙ decay is biphasic with one component decaying with a lifetime of ~0.1 ms, and the other with a lifetime of 20-30 ms. The fast decay component (~0.1 ms) in G-quadruplexes is correlated with the formation of 8-oxoG lesions. We propose that in G-quadruplexes, G(-H)˙ radicals retain radical cation character by sharing the N1-proton with the O6 -atom of G in the [G˙+ : G] Hoogsteen base pair; this [G(-H)˙: H+ G <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>⇄</mml:mo></mml:math> G˙+ : G] leads to the hydration of G˙+ radical cation within the millisecond time domain, and is followed by the formation of the 8-oxoG lesions.
Collapse
Affiliation(s)
- Tomasz J Merta
- Chemistry Program, NYU Shanghai, Pudong Xinqu, Shanghai Shi, China
| | - Nicholas E Geacintov
- Chemistry Program, NYU Shanghai, Pudong Xinqu, Shanghai Shi, China.,Chemistry Department, New York University, New York, NY
| | | |
Collapse
|
49
|
Matter B, Seiler CL, Murphy K, Ming X, Zhao J, Lindgren B, Jones R, Tretyakova N. Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species. Free Radic Biol Med 2018; 121:180-189. [PMID: 29702150 PMCID: PMC6858621 DOI: 10.1016/j.freeradbiomed.2018.04.561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene. A novel isotope labeling strategy developed in our laboratory was used to accurately map the formation of 2,2-diamino-4-[(2-deoxy-β-D-erythropentofuranosyl)amino]- 5(2 H)-oxazolone (Z), 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG), and 8-nitroguanine (8-NO2-G) lesions along DNA duplexes following photooxidation in the presence of riboflavin, treatment with nitrosoperoxycarbonate, and oxidation in the presence of hydroxyl radicals. Riboflavin-mediated photooxidation preferentially induced OG lesions at 5' guanines within GG repeats, while treatment with nitrosoperoxycarbonate targeted 3'-guanines within GG and AG dinucleotides. Little sequence selectivity was observed following hydroxyl radical-mediated oxidation. However, Z and 8-NO2-G adducts were overproduced at duplex ends, irrespective of oxidant identity. Overall, our results indicate that the patterns of Z, OG, and 8-NO2-G adduct formation in the genome are distinct and are influenced by oxidant identity and the secondary structure of DNA.
Collapse
Affiliation(s)
- Brock Matter
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Seiler
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xun Ming
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianwei Zhao
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Bruce Lindgren
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roger Jones
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
50
|
Yang Y, Yang W, Su H, Fang W, Chen X. Mechanistic insights into the photogeneration and quenching of guanine radical cation via one-electron oxidation of G-quadruplex DNA. Phys Chem Chem Phys 2018; 20:13598-13606. [DOI: 10.1039/c8cp01718b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Selectivity of activation site for the photogeneration and quenching of guanine radical cation was elucidated by the analysis of the relaxation paths of one-electron oxidation of G-quadruplex DNA.
Collapse
Affiliation(s)
- Yumei Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Wenjing Yang
- College of Material Science & Engineering
- Taiyuan University of Technology
- People's Republic of China
| | - Hongmei Su
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| |
Collapse
|