1
|
Guo S, Zhan WW, Yang FL, Zhou J, Duan YH, Zhang D, Yang Y. Enantiopure trigonal bipyramidal coordination cages templated by in situ self-organized D 2h-symmetric anions. Nat Commun 2024; 15:5628. [PMID: 38965215 PMCID: PMC11224320 DOI: 10.1038/s41467-024-49964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The control of a molecule's geometry, chirality, and physical properties has long been a challenging pursuit. Our study introduces a dependable method for assembling D3-symmetric trigonal bipyramidal coordination cages. Specifically, D2h-symmetric anions, like oxalate and chloranilic anions, self-organize around a metal ion to form chiral-at-metal anionic complexes, which template the formation of D3-symmetric trigonal bipyramidal coordination cages. The chirality of the trigonal bipyramid is determined by the point chirality of chiral amines used in forming the ligands. Additionally, these cages exhibit chiral selectivity for the included chiral-at-metal anionic template. Our method is broadly applicable to various ligand systems, enabling the construction of larger cages when larger D2h-symmetric anions, like chloranilic anions, are employed. Furthermore, we successfully produce enantiopure trigonal bipyramidal cages with anthracene-containing backbones using this approach, which would be otherwise infeasible. These cages exhibit circularly polarized luminescence, which is modulable through the reversible photo-oxygenation of the anthracenes.
Collapse
Affiliation(s)
- Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Wen Zhan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng-Lei Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Hao Duan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
2
|
Pal SC, Mukherjee D, Oruganti Y, Lee BG, Lim DW, Pramanik B, Manna AK, Das MC. Room-Temperature Superprotonic Conductivity beyond 10 -1 S cm -1 in a Co(II) Coordination Polymer. J Am Chem Soc 2024; 146:14546-14557. [PMID: 38748181 DOI: 10.1021/jacs.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An efficient design of crystalline solid-state proton conductors (SSPCs) is crucial for the progress of clean energy applications. Developing such materials to make them work at room temperature with a conductivity of ≥10-1 S cm-1 is of significant interest in terms of technical and commercial aspects. Utilizing the recently highlighted "coordinated-water-driven proton conduction" approach, herein, we have rationally synthesized two highly stable and scalable 1D Co(II) coordination polymers (CPs) as SSPCs, PCM-2 {[Co(bpy)(H2O)2(NO3)2]·H2O}n and PCM-3 {[Co2(bpy)2(SO4)2(H2O)6].4H2O}n, with distinct alignments in coordinated water and coordinated oxo-anions (nitrate and sulfate, respectively). The acidity of the metal-bound water molecules in PCM-2 is further enhanced through cooperative long-range continuous H bonds with coordinated Brønsted basic nitrates (proton acceptors), leading to ultrahigh superprotonic conductivities even at 25 °C (1.03 × 10-1 S cm-1 under 95% RH), and reached a maximum of 2.99 × 10-1 S cm-1 at 85 °C (95% RH). The conductivity at 25 °C is even higher than that of commercial Nafion 117 (6.74 × 10-2 S cm-1 at 100% RH). The absence of such an H-bonding interaction in PCM-3 (closed loops) resulted in a lesser conductivity of 5.87 × 10-5 S cm-1 (95% RH, 85 °C). PCM-2 represents the first example of SSPC exhibiting conductivity in the order 10-1 S cm-1 at ambient temperature (25 °C) with excellent recyclability.
Collapse
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Yasaswini Oruganti
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Byoung Gwan Lee
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Dae-Woon Lim
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Bikram Pramanik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
3
|
Chen J, Li M, Yang Y, Liu H, Zhao B, Ozaki Y, Song W. In-situ surface enhanced Raman spectroscopy revealing the role of metal-organic frameworks on photocatalytic reaction selectivity on highly sensitive and durable Cu-CuBr substrate. J Colloid Interface Sci 2024; 660:669-680. [PMID: 38271803 DOI: 10.1016/j.jcis.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Photocatalytic reactions using copper-based nanomaterials have emerged as a new paradigm in green technology. Selective photocatalysis is very important for improving energy utilization efficiency, and in order to directional improve catalytic selectivity, it is necessary to understand the mechanism of interfacial reactions at the molecular level. Therefore, a unique bifunctional Cu-CuBr substrate is first fabricated via an electrochemical method, which overcomes the instability of traditional copper-based materials and endows high surface-enhanced Raman spectroscopy (SERS) sensitivity and photocatalytic performance and can be stored stably for more than a year. Further modification of the surface with Metal-Organic Frameworks (MOFs) containing carboxyl functional groups can significantly tune the surface properties of the substrate. This increases the adsorption of cationic dyes to improve the SERS effect, and 10-10 M methylene blue can easily be detected with this substrate. Surprisingly, in-situ SERS monitoring of the interfacial photocatalytic dehalogenation reaction of aromatic halides through its intrinsic SERS effect reveal two competing selective reaction pathways, self-coupling and hydrogenation. Typically, the SERS spectra reveal that the latter's selectivity was greatly enhanced after MOFs modification, and the yield rate of the hydrogenated product increased from 27.6 % to 46.9 % (selectivity increased from 32.7 % to 51.5 %). This proves that the surface properties of catalysts, especially the affinity for reaction intermediates, can effectively regulate catalytic selectivity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
4
|
Hirata K, Akasaka K, Dopfer O, Ishiuchi SI, Fujii M. Transition from vehicle to Grotthuss proton transfer in a nanosized flask: cryogenic ion spectroscopy of protonated p-aminobenzoic acid solvated with D 2O. Chem Sci 2024; 15:2725-2730. [PMID: 38404372 PMCID: PMC10882521 DOI: 10.1039/d3sc05455a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Proton transfer (PT) is one of the most ubiquitous reactions in chemistry and life science. The unique nature of PT has been rationalized not by the transport of a solvated proton (vehicle mechanism) but by the Grotthuss mechanism in which a proton is transported to the nearest proton acceptor along a hydrogen-bonded network. However, clear experimental evidence of the Grotthuss mechanism has not been reported yet. Herein we show by infrared spectroscopy that a vehicle-type PT occurs in the penta- and hexahydrated clusters of protonated p-aminobenzoic acid, while Grotthuss-type PT is observed in heptahydrated clusters, indicating a change in the PT mechanism depending on the degree of hydration. These findings emphasize the importance of the usually ignored vehicle mechanism as well as the degree of hydration. It highlights the possibility of controlling the PT mechanism by the number of water molecules in chemical and biological environments.
Collapse
Affiliation(s)
- Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Kyota Akasaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Otto Dopfer
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Institut für Optik und Atomare Physik, Technische Universität Berlin Hardenbergstrasse 36 10623 Berlin Germany
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
5
|
Li J, Liu L, Tang X, Bai X, Liu Y, Wang D, Tao S, Liu R, Jiang D. Covalent Organic Frameworks: Reversible 3D Coalesce via Interlocked Skeleton-Pore Actions and Impacts on π Electronic Structures. J Am Chem Soc 2023; 145:26383-26392. [PMID: 37983008 DOI: 10.1021/jacs.3c10280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Covalent organic frameworks (COFs) create extended two-dimensional (2D) skeletons and aligned one-dimensional (1D) channels, constituting a class of novel π architectures with predesignable structural ordering. A distinct feature is that stacks of π building units in skeletons shape the pore walls, onto which a diversity of different units can be assembled to form various pore interfaces, opening a great potential to trigger a strong structural correlation between the skeleton and the pore. However, such a possibility has not yet been explored. Herein, we report reversible three-dimensional (3D) coalescence and interlocked actions between the skeleton and pore in COFs by controlling hydrogen-bonding networks in the pores. Introducing carboxylic acid units to the pore walls develops COFs that can confine water molecular networks, which are locked by the surface carboxylic acid units on the pore walls via multipoint, multichain, and multidirectional hydrogen-bonding interactions. As a result, the skeleton undergoes an interlocked action with pores to shrink over the x-y plane and to stack closer along the z direction upon water uptake. Remarkably, this interlocked action between the skeleton and pore is reversibly driven by water adsorption and desorption and triggers profound effects on π electronic structures and functions, including band gap, light absorption, and emission.
Collapse
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Lili Liu
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Xi Bai
- Pharmaceutical Department, Changzhi Medical College, Changzhi 046000, China
| | - Yukun Liu
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Dongsheng Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
6
|
Zhu SD, Zhou YL, Liu F, Lei Y, Liu SJ, Wen HR, Shi B, Zhang SY, Liu CM, Lu YB. A Pair of Multifunctional Cu(II)-Dy(III) Enantiomers with Zero-Field Single-Molecule Magnet Behaviors, Proton Conduction Properties and Magneto-Optical Faraday Effects. Molecules 2023; 28:7506. [PMID: 38005227 PMCID: PMC10673516 DOI: 10.3390/molecules28227506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multifunctional materials with a coexistence of proton conduction properties, single-molecule magnet (SMM) behaviors and magneto-optical Faraday effects have rarely been reported. Herein, a new pair of Cu(II)-Dy(III) enantiomers, [DyCu2(RR/SS-H2L)2(H2O)4(NO3)2]·(NO3)·(H2O) (R-1 and S-1) (H4L = [RR/SS] -N,N'-bis [3-hydroxysalicylidene] -1,2-cyclohexanediamine), has been designed and prepared using homochiral Schiff-base ligands. R-1 and S-1 contain linear Cu(II)-Dy(III)-Cu(II) trinuclear units and possess 1D stacking channels within their supramolecular networks. R-1 and S-1 display chiral optical activity and strong magneto-optical Faraday effects. Moreover, R-1 shows a zero-field SMM behavior. In addition, R-1 demonstrates humidity- and temperature-dependent proton conductivity with optimal values of 1.34 × 10-4 S·cm-1 under 50 °C and 98% relative humidity (RH), which is related to a 1D extended H-bonded chain constructed by water molecules, nitrate and phenol groups of the RR-H2L ligand.
Collapse
Affiliation(s)
- Shui-Dong Zhu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu-Lin Zhou
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu Lei
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Bin Shi
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Shi-Yong Zhang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Bing Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| |
Collapse
|
7
|
Lozančić A, Renka S, Barišić D, Burazer S, Molčanov K, Pajić D, Jurić M. High Proton Conductivity of Magnetically Ordered 2D Oxalate-Bridged [Mn IICr III] Coordination Polymers with Irregular Topology. Inorg Chem 2023. [PMID: 37290133 DOI: 10.1021/acs.inorgchem.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two heterometallic coordination polymers {[NH(CH3)2(C2H5)]8[Mn4Cl4Cr4(C2O4)12]}n (1) and {[NH(CH3)-(C2H5)2]8[Mn4Cl4Cr4(C2O4)12]}n (2) were obtained by slow evaporation of an aqueous solution containing the building block [A]3[Cr(C2O4)3] [A = (CH3)2(C2H5)NH+ or (CH3)(C2H5)2NH+] and MnCl2·2H2O. The isostructural compounds comprise irregular two-dimensional (2D) oxalate-bridged anionic layers [Mn4Cl4Cr4(C2O4)12]n8n- with a Shubnikov plane net fes topology designated as (4·82), interleaved by the hydrogen-bonded templating cations (CH3)2(C2H5)NH+ (1) or (CH3)(C2H5)2NH+ (2). They exhibit remarkable humidity-sensing properties and very high proton conductivity at room temperature [1.60 × 10-3 (Ω·cm)-1 at 90% relative humidity (RH) of 1 and 9.6 × 10-4 (Ω·cm)-1 at 94% RH of 2]. The layered structure facilitates the uptake of water molecules, which contributes to the enhancement of proton conductivity at high RH. The better proton transport observed in 1 compared to that in 2 can be tentatively attributed to the higher hydrophilicity of the cations (CH3)2(C2H5)NH+, which is closely related to their affinity for water molecules. The original topology of the anionic networks in both compounds leads to the development of interesting magnetic phases upon cooling. The magnetically ordered ground state can be described as the coupling of ferromagnetic spin chains in which Mn2+ and Cr3+ ions are bridged by bis(bidentate) oxalate groups into antiferromagnetic planes through monodentate-bidentate oxalate bridges in the layers, which are triggered to long-range order below temperature 4.45 K via weaker interlayer interactions.
Collapse
Affiliation(s)
- Ana Lozančić
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Sanja Renka
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Dario Barišić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, Zagreb 10000, Croatia
| | - Sanja Burazer
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | | | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, Zagreb 10000, Croatia
| | - Marijana Jurić
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| |
Collapse
|
8
|
Zhang KM, Ji MF, Zhou XY, Xuan F, Duan BY, Yuan Y, Liu GX, Duan HB, Zhao HR. The proton conduction behavior of two 1D open-framework metal phosphates with similar crystal structures and different hydrogen bond networks. RSC Adv 2023; 13:12703-12711. [PMID: 37197361 PMCID: PMC10183717 DOI: 10.1039/d3ra01130e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 05/19/2023] Open
Abstract
Two open-framework zinc phosphates [C3N2H12][Zn(HPO4)2] (1) and [C6N4H22]0.5[Zn(HPO4)2] (2) were synthesized via hydrothermal reaction and characterized by powder X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. Both compounds have a similar crystal structure and macroscopic morphology. However, the difference in equilibrium cations, in which the propylene diamine is for 1 and the triethylenetetramine is for 2, results in a significant distinction in the dense hydrogen grid. The diprotonated propylene diamine molecule in 1 is more favorable for forming a hydrogen-bond network in three dimensions than in 2, in which the twisted triethylenetetramine forms a hydrogen bond grid with the inorganic framework only in two dimensions owing to its large steric effect. This distinction further leads to a disparity in the proton conductivity of both compounds. The proton conductivity of 1 can reach 1.00 × 10-3 S cm-1 under ambient conditions (303 K and 75% RH) and then increase to 1.11 × 10-2 S cm-1 at 333 K and 99% RH, which is the highest value among the open-framework metal phosphate proton conductors operated in the same conduction. In contrast, the proton conductivity of 2 is four orders of magnitude smaller than 1 at 303 K and 75% RH and two orders smaller than 1 at 333 K and 99% RH.
Collapse
Affiliation(s)
- Kai-Ming Zhang
- Department of Material Science and Engineering, Nanjing Institute of Technology Nanjing 211167 P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology 1 Hongjing Road Nanjing 211167 P. R. China
| | - Min-Fang Ji
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 210009 P. R +86 25 13914700426
| | - Xue-Yi Zhou
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 210009 P. R +86 25 13914700426
| | - Fang Xuan
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 210009 P. R +86 25 13914700426
| | - Bo-Yuan Duan
- Department of Material Science and Engineering, Nanjing Institute of Technology Nanjing 211167 P. R. China
| | - Yuan Yuan
- Department of Material Science and Engineering, Nanjing Institute of Technology Nanjing 211167 P. R. China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 210009 P. R +86 25 13914700426
| | - Hai-Bao Duan
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 210009 P. R +86 25 13914700426
| | - Hai-Rong Zhao
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 210009 P. R +86 25 13914700426
| |
Collapse
|
9
|
Satheesh Kumar B, Roshith K, Unnikrishnan G, K.S SK. Metal organic framework enroutes to mechanically stable and high proton conductive polybenzimidazole membranes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Sharma A, Lim J, Lah MS. Strategies for designing metal–organic frameworks with superprotonic conductivity. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Park KC, Kittikhunnatham P, Lim J, Thaggard GC, Liu Y, Martin CR, Leith GA, Toler DJ, Ta AT, Birkner N, Lehman-Andino I, Hernandez-Jimenez A, Morrison G, Amoroso JW, Zur Loye HC, DiPrete DP, Smith MD, Brinkman KS, Phillpot SR, Shustova NB. f-block MOFs: A Pathway to Heterometallic Transuranics. Angew Chem Int Ed Engl 2023; 62:e202216349. [PMID: 36450099 DOI: 10.1002/anie.202216349] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238 U/239 Pu-metal-organic frameworks (MOFs) and a novel monometallic 239 Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Nancy Birkner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | | | | | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.,Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Dave P DiPrete
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
12
|
Xu J, Chen X, Ju M, Ren J, Zhao P, Meng L, Lei J, Shi Q, Wang Z. Sulfonated poly (ether ketone sulfone) composite membranes containing ZIF-67 coordinate graphene oxide showing high proton conductivity and improved physicochemical properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Lu YB, Huang J, Liao YQ, Lin XL, Huang SY, Liu CM, Wen HR, Liu SJ, Wang FY, Zhu SD. Multifunctional Dinuclear Dy-Based Coordination Complex Showing Visible Photoluminescence, Single-Molecule Magnet Behavior, and Proton Conduction. Inorg Chem 2022; 61:18545-18553. [DOI: 10.1021/acs.inorgchem.2c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying-Bing Lu
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Jing Huang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Ya-Qing Liao
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Xue-Lian Lin
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Si-Yu Huang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - He-Rui Wen
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 Jiangxi Province, PR China
| | - Sui-Jun Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 Jiangxi Province, PR China
| | - Fei-Yang Wang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Shui-Dong Zhu
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| |
Collapse
|
14
|
Preparation, crystal structure and proton conductive properties of a water-stable ferrocenyl carboxylate framework. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
2D conjugated metal-organic framework as a proton-electron dual conductor. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Metal–Organic Frameworks for Ion Conduction. Angew Chem Int Ed Engl 2022; 61:e202206512. [DOI: 10.1002/anie.202206512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/07/2022]
|
17
|
Zou M, Dong M, Zhao T. Advances in Metal-Organic Frameworks MIL-101(Cr). Int J Mol Sci 2022; 23:ijms23169396. [PMID: 36012661 PMCID: PMC9409302 DOI: 10.3390/ijms23169396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
MIL-101(Cr) is one of the most well-studied chromium-based metal-organic frameworks, which consists of metal chromium ion and terephthalic acid ligand. It has an ultra-high specific surface area, large pore size, good thermal/chemical/water stability, and contains unsaturated Lewis acid sites in its structure. Due to the physicochemical properties and structural characteristics, MIL-101(Cr) has a wide range of applications in aqueous phase adsorption, gas storage and separation, and catalysis. In this review, the latest synthesis of MIL-101(Cr) and its research progress in adsorption and catalysis are reviewed.
Collapse
|
18
|
Gil-Hernández B, Millan S, Gruber I, Quirós M, Marrero-López D, Janiak C, Sanchiz J. Improvement of the Proton Conduction of Copper(II)-Mesoxalate Metal-Organic Frameworks by Strategic Selection of the Counterions. Inorg Chem 2022; 61:11651-11666. [PMID: 35838657 PMCID: PMC9377511 DOI: 10.1021/acs.inorgchem.2c01241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Three copper(II)/mesoxalate-based MOFs with formulas
(H3O)[Cu9(Hmesox)6(H2O)6Cl]·8H2O (1), (NH2Me2)0.4(H3O)0.6[Cu9(Hmesox)6(H2O)6Cl]·8H2O (2), and (enH2)0.25(enH)1.5[Cu6(Hmesox)3(mesox)(H2O)6Cl0.5]Cl0.5·5.25H2O (3) were synthesized (H4mesox = mesoxalic
acid = 2,2-dihydroxypropanedioic acid, en = ethylenediamine). Essentially,
all of the compounds display the same anionic network with a different
arrangement of the cations, which have a remarkable effect on the
proton conduction of the materials, ranging from 1.16 × 10–4 S cm–1 for 1 to 1.87
× 10–3 S cm–1 for 3 (at 80 °C and 95% RH). These compounds also display antiferromagnetic
coupling among the copper(II) ions through both the carboxylate and
alkoxido bridges. The values of the principal magnetic coupling constants
were calculated by density functional theory (DFT), leading to congruent
values that confirm the predominant antiferromagnetic nature of the
interactions. Three copper(II)-mesoxalate
metal−organic frameworks
were synthesized in the presence of three different cations: hydronium,
dimethylammonium, and ethylenediammonium, which neutralize the charge
of the anionic networks. Besides the crystallographic characterization
and the investigation of the magnetic properties, the compounds show
varying proton conductivities depending on the included cations. The
proton conductivity increases 1 order of magnitude in the case of
compound 3 (1.87 × 10−3 S cm−1 at 80 °C and 95% RH), which contains ethylenediammonium
cations.
Collapse
Affiliation(s)
- Beatriz Gil-Hernández
- Departamento de Química, Facultad de Ciencias, Sección Química, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain.,Institute of Materials and Nanotechnology, Universidad de La Laguna, P.O. Box 456, La Laguna E-38200, Tenerife, Spain
| | - Simon Millan
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Irina Gruber
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Miguel Quirós
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - David Marrero-López
- Departamento de Física Aplicada I, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Joaquín Sanchiz
- Departamento de Química, Facultad de Ciencias, Sección Química, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain.,Institute of Materials and Nanotechnology, Universidad de La Laguna, P.O. Box 456, La Laguna E-38200, Tenerife, Spain
| |
Collapse
|
19
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Xue W, Sewell CD, Zou Q, Lin Z. Metal‐organic frameworks for ion conduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wendan Xue
- Nankai University Key Laboratory of Pollution Processes and Environmental Criteria CHINA
| | | | - Qixing Zou
- Nankai University Key Laboratory of Pollution Processes and Environmental Criteria CHINA
| | - Zhiqun Lin
- Georgia Institute of Technology School of Materials Science and Engineering 771 Ferst Dr., NW3100K, Molecular Science & Engineering Bldg. 30332 Atlanta UNITED STATES
| |
Collapse
|
21
|
Kumar K, Stefanczyk O, Chorazy S, Nakabayashi K, Ohkoshi SI. Ratiometric and Colorimetric Optical Thermometers Using Emissive Dimeric and Trimeric {[Au(SCN) 2 ] - } n Moieties Generated in d-f Heterometallic Assemblies. Angew Chem Int Ed Engl 2022; 61:e202201265. [PMID: 35182087 DOI: 10.1002/anie.202201265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/09/2022]
Abstract
Gold complexes can generate excimers ([Au2 ]→[Au2 ]*) and exciplexes ([Au3 ]→[Au3 ]*) with light excitation. Four GdIII and YIII complexes were assembled with dimeric {[Au(SCN)2 ]- }2 and trimeric {[Au(SCN)2 ]- }3 bis(thiocyanato)gold(I) counterions. The vibrational signature associated with the Au⋅⋅⋅Au vibrational mode was probed with ultralow frequency (ULF) Raman spectroscopy as a function of temperature. Emission spectroscopy was used to explore photophysical properties. Two broad features in the high- and low-energy regions were associated with the fluorescence and phosphorescence of the gold entities, respectively. Temperature-dependent luminescence measurements showed that the emission color can be tuned from blue to green via cyan and white. Hence, these complexes can act as colorimetric thermometers. Additionally, a ratiometric thermal sensing ability was incorporated with high sensitivity up to 5 % K-1 in the cryogenic temperature range.
Collapse
Affiliation(s)
- Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Hong AN, Kusumoputro E, Wang Y, Yang H, Chen Y, Bu X, Feng P. Simultaneous Control of Pore-Space Partition and Charge Distribution in Multi-Modular Metal-Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202116064. [PMID: 35098623 DOI: 10.1002/anie.202116064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 01/30/2023]
Abstract
We report here a strategy for making anionic pacs type porous materials by combining pore space partition with charge reallocation. The method uses the first negatively charged pore partition ligand (2,5,8-tri-(4-pyridyl)-1,3,4,6,7,9-hexaazaphenalene, H-tph) that simultaneously enables pore partition and charge reallocation. Over two dozen anionic pacs materials have been made to demonstrate their excellent chemical stability and a high degree of tunability. Notably, Ni3 -bdt-tph (bdt=1,4-benzeneditetrazolate) exhibits month-long water stability, while CoV-bdt-tph sets a new benchmark for C2 H2 storage capacity under ambient conditions for ionic MOFs. In addition to tunable in-framework modules, we show feasibility to tune the type and concentration of extra-framework counter cations and their influence on both stability and capability to separate industrial C3 H8 /C3 H6 and C6 H6 /C6 H12 mixtures.
Collapse
Affiliation(s)
- Anh N Hong
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Emily Kusumoputro
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yanxiang Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Huajun Yang
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
23
|
Huang B, Tan Z. Significantly lowered activation energy in proton conductor by Mg substitution in a layered Ni metal-organic framework. Dalton Trans 2022; 51:5203-5207. [PMID: 35275158 DOI: 10.1039/d2dt00288d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designs and developments of proton conductors are highly important in chemistry and energy fields. In this study, a novel metal-organic framework H2DAB-MgNi(ox)3 was synthesized. X-ray powder diffraction, scanning transmission electron microscopy, and scanning transmission electron microscopy-energy-dispersive X-ray mapping measurements demonstrated that the H2DAB-MgNi(ox)3 had a solid-solution structure, with the homogeneous distribution of Mg and Ni elements. The proton conductivity of H2DAB-MgNi(ox)3 was enhanced from that of H2DAB-Ni2(ox)3 at 95% relative humidity by Mg substitution.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, Innovation Harbour, Xi-xian New District, Xi'an 712000, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhe Tan
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, Innovation Harbour, Xi-xian New District, Xi'an 712000, China.
| |
Collapse
|
24
|
Ge J, Ohata Y, Ohnishi T, Moteki T, Ogura M. Highly Dispersed Co/Zn-Doped Zeolitic Imidazolate Framework-Derived Carbon Nanoparticles with High NO Adsorption Capacity at Low Operating Temperature. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiachen Ge
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Yusuke Ohata
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Takeshi Ohnishi
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Takahiko Moteki
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Masaru Ogura
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
25
|
Feng J, Li J, Sun Z, Li G. Water-assisted proton conduction in a highly stable 3D lead(II) MOF constructed by imidazole dicarboxylate and oxalate ligands. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Li XM, Wang Y, Mu Y, Liu J, Zeng L, Lan YQ. Superprotonic Conductivity of a Functionalized Metal-Organic Framework at Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9264-9271. [PMID: 35138786 DOI: 10.1021/acsami.2c00500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seeking fast proton transport pathways at ambient conditions is desirable but challenging. Here, we report a strategy to synthesize a composite material with a polyoxometalate (POM) and an ionic liquid (IL) confined in stable metal-organic framework (MOF) channels through electrostatic interaction. The obtained SO3H-IL-PMo12@MIL-101 possesses fast proton transfer, and its proton conductivity can reach 1.33 × 10-2 S cm-1 at ambient conditions (30 °C, 70% relative humidity (RH)), which is the highest value among the MOF-based proton conductors operated in an ambient environment. Therefore, it has the potential of becoming a room-temperature proton conductor without a humidifier. Importantly, the composite material is further fabricated into a composite membrane for proton-exchange membrane fuel cells (PEMFCs), which can deliver a power density of 0.93 mW cm-2 at 30 °C and 98% RH. This result can lay a fundamental basis for the application of MOF-based proton conductors in the area of electrochemical energy conversion.
Collapse
Affiliation(s)
- Xiao-Min Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yameng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
27
|
Kumar K, Stefanczyk O, Chorazy S, Nakabayashi K, Ohkoshi SI. Ratiometric and Colorimetric Optical Thermometers Using Emissive Dimeric and Trimeric {Au(SCN)2]‐}n Moieties Generated in d–f Heterometallic Assemblies. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kunal Kumar
- The University of Tokyo: Tokyo Daigaku Department of Chemistry, School of Science 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo JAPAN
| | - Olaf Stefanczyk
- The University of Tokyo: Tokyo Daigaku Department of Chemistry, School of Science 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo JAPAN
| | - Szymon Chorazy
- Jagiellonian University: Uniwersytet Jagiellonski w Krakowie Faculty of Chemistry Gronostajowa 2 30-387 Krakow POLAND
| | - Koji Nakabayashi
- The University of Tokyo: Tokyo Daigaku Department of Chemistry, School of Science 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo JAPAN
| | - Shin-ichi Ohkoshi
- The University of Tokyo Department of Chemistry 7-3-1, Hongo, Bunkyo-ku 113-0033 Tokyo JAPAN
| |
Collapse
|
28
|
Hong AN, Kusumoputro E, Wang Y, Yang H, Chen Y, Bu X, Feng P. Simultaneous Control of Pore‐Space Partition and Charge Distribution in Multi‐Modular Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anh N. Hong
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Emily Kusumoputro
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yanxiang Wang
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Huajun Yang
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Yichong Chen
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Pingyun Feng
- Department of Chemistry University of California Riverside CA 92521 USA
| |
Collapse
|
29
|
Sorption and Magnetic Properties of Oxalato-Based Trimetallic Open Framework Stabilized by Charge-Assisted Hydrogen Bonds. Int J Mol Sci 2022; 23:ijms23031556. [PMID: 35163480 PMCID: PMC8835875 DOI: 10.3390/ijms23031556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
We report a new structure of {[Co(bpy)2(ox)][{Cu2(bpy)2(ox)}Fe(ox)3]}n·8.5nH2O NCU-1 presenting a rare ladder topology among oxalate-based coordination polymers with anionic chains composed of alternately arranged [Cu2(bpy)2(ox)]2+ and [Fe(ox)3]3− moieties. Along the a axis, they are separated by Co(III) units to give porous material with voids of 963.7 Å3 (16.9% of cell volume). The stability of this structure is assured by a network of stacking interactions and charge-assisted C-H…O hydrogen bonds formed between adjacent chains, adjacent cobalt(III) units, and alternately arranged cobalt(III) and chain motifs. The soaking experiment with acetonitrile and bromobenzene showed that water molecules (8.5 water molecules dispersed over 15 positions) are bonded tightly, despite partial occupancy. Water adsorption experiments are described by a D’arcy and Watt model being the sum of Langmuir and Dubinin–Serpinski isotherms. The amount of primary adsorption sites calculated from this model is equal 8.2 mol H2O/mol, being very close to the value obtained from the XRD experiments and indicates that water was adsorbed mainly on the primary sites. The antiferromagnetic properties could be only approximately described with the simple CuII-ox-CuII dimer using H = −J·S1·S2, thus, considering non-trivial topology of the whole Cu-Fe chain, we developed our own general approach, based on the semiclassical model (SC) and molecular field (MF) model, to describe precisely the magnetic superexchange interactions in NCU-1. We established that Cu(II)-Cu(II) coupling dominates over multiple Cu(II)-Fe(III) interactions, with JCuCu = −275(29) and JCuFe = −3.8(1.6) cm−1 and discussed the obtained values against the literature data.
Collapse
|
30
|
Guo X, Li Z, Chen X, Liang D, Li C, Li G, Wang L, Shi Z, Feng S. Stable isomeric layered indium coordination polymers for high proton conduction. CrystEngComm 2022. [DOI: 10.1039/d1ce01107c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable isomeric layered indium coordination polymers with different coordinated anionic sites for high proton conduction.
Collapse
Affiliation(s)
- Xiuli Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhenhua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaobo Chen
- School of Engineering, RMIT University, Carlton, VIC 3053, Australia
| | - Dadong Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li Wang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
31
|
Liu KL, Luo MB, Zhou X, Lin Q. Cationic complex directed thiostannate layers with excellent proton conduction and photocatalysis properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00043a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three isostructural thiostannates SnS-M (M = Fe, Mn and Zn) have been fabricated using metal-amine complex cations as structure-directing agents. These thiostannates are composed of typical two-dimensional lamellar [Sn3S7]n2n- anionic...
Collapse
|
32
|
Zhang S, Xie Y, Yang M, Zhu D. Porosity regulation of metal-organic frameworks for high proton conductivity by rational ligand design: mono- versus disulfonyl-4,4′-biphenyldicarboxylic acid. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01610e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous crystalline metal-organic frameworks (MOFs) bearing sulfonic groups (–SO3H) are receiving increasing attention as solid-state proton-conductors because the –SO3H group can not only enhance the proton concentration but also form...
Collapse
|
33
|
Du Y, Zhang K, Liu Z, Liu S, Huang G, Huang Y, Qin Q, Luo J, Xu B, Zhang G. Encapsulating NH 4Br in a metal organic framework: achieving remarkable proton conduction in a wide relative humidity range. Dalton Trans 2021; 50:15321-15326. [PMID: 34636376 DOI: 10.1039/d1dt02253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-conducting materials are key components for constructing high-energy-density electronic devices. In this work, by accumulating NH4Br into the nanospace of the classical metal organic framework MIL-101-Cr, a proton conductivity as high as 1.53 × 10-1 S cm-1 was achieved at 363 K and 100% RH. The proton conduction of NH4Br@MIL-101-Cr was also high even at lower relative humidity; for instance, it was ∼10-2 S cm-1 at 75% RH. The activation energy was calculated to be 0.11 eV for NH4Br@MIL-101-Cr, indicative of tight H-bond networks and a low barrier to proton transfer, and confirming the occurrence of pure proton conduction as well.
Collapse
Affiliation(s)
- Yihan Du
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Kun Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Ziya Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Shaoxian Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China
| | - Guoji Huang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qianqian Qin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Jiaxin Luo
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Bingqing Xu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Gen Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
34
|
Biswas S, Neugebauer P. Lanthanide‐Based Metal‐Organic‐Frameworks for Proton Conduction and Magnetic Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Soumava Biswas
- CEITEC BUT Brno University of Technology Purkyňova 123 Brno 61200 Czech Republic
| | - Petr Neugebauer
- CEITEC BUT Brno University of Technology Purkyňova 123 Brno 61200 Czech Republic
| |
Collapse
|
35
|
Haraguchi T, Otsubo K, Sakata O, Fujiwara A, Kitagawa H. Strain-Controlled Spin Transition in Heterostructured Metal-Organic Framework Thin Film. J Am Chem Soc 2021; 143:16128-16135. [PMID: 34514790 DOI: 10.1021/jacs.1c06662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Metal-organic framework (MOF) thin films have recently attracted much attention as a new platform for surface/interface research, where unconventional structural and physical properties emerge. Among the many MOFs as candidates for fabrication of thin films, Hofmann-type MOFs {Fe(pz)[M(CN)4]} [pz = pyrazine; M = Ni (Nipz), M = Pt (Ptpz)] are attractive, because they undergo spin transitions with concomitant structural changes. Here, we demonstrate the first example of a strain-controlled spin transition in heterostructured MOF thin films. The spin transition temperature of Ptpz can be controlled in the temperature range of 300-380 K by fabricating a nanometer-sized heterostructured thin film with a Nipz buffer layer, where the smaller lattice of Nipz causes epitaxial compressive strain to the Ptpz layer. The fabricated heterostructured thin film exhibited a remarkable increase in spin transition temperature with a dynamic structural transformation, confirmed by variable-temperature (VT) X-ray diffraction and VT Raman spectroscopy. By verifying interfacial strain in a heterostructured thin film, we can rationally control the characteristics of MOFs-not only spin transition but also various physical properties such as gas storage, catalysis, sensing, proton conductivity, and electrical properties, among others.
Collapse
Affiliation(s)
- Tomoyuki Haraguchi
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Sinjuku-ku, Tokyo 162-8601, Japan.,Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuya Otsubo
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Osami Sakata
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Akihiko Fujiwara
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
36
|
Burazer S, Molčanov K, Šantić A, Klaser T, Wenger E, Pajić D, Jagličić Z, Popović J, Jurić M. Humidity-Sensing Properties of an 1D Antiferromagnetic Oxalate-Bridged Coordination Polymer of Iron(III) and Its Temperature-Induced Structural Flexibility. MATERIALS 2021; 14:ma14195543. [PMID: 34639934 PMCID: PMC8509436 DOI: 10.3390/ma14195543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022]
Abstract
A novel one-dimensional (1D) oxalate-bridged coordination polymer of iron(III), {[NH(CH3)(C2H5)2][FeCl2(C2O4)]}n (1), exhibits remarkable humidity-sensing properties and very high proton conductivity at room temperature (2.70 × 10−4 (Ω·cm)−1 at 298 K under 93% relative humidity), in addition to the independent antiferromagnetic spin chains of iron(III) ions bridged by oxalate groups (J = −7.58(9) cm−1). Moreover, the time-dependent measurements show that 1 could maintain a stable proton conductivity for at least 12 h. Charge transport and magnetic properties were investigated by impedance spectroscopy and magnetization measurements, respectively. Compound 1 consists of infinite anionic zig-zag chains [FeCl2(C2O4)]nn− and interposed diethylmethylammonium cations (C2H5)2(CH3)NH+, which act as hydrogen bond donors toward carbonyl oxygen atoms. Extraordinarily, the studied coordination polymer exhibits two reversible phase transitions: from the high-temperature phase HT to the mid-temperature phase MT at T ~213 K and from the mid-temperature phase MT to the low-temperature phase LT at T ~120 K, as revealed by in situ powder and single-crystal X-ray diffraction. All three polymorphs show large linear thermal expansion coefficients.
Collapse
Affiliation(s)
- Sanja Burazer
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.); (K.M.); (A.Š.); (J.P.)
| | - Krešimir Molčanov
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.); (K.M.); (A.Š.); (J.P.)
| | - Ana Šantić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.); (K.M.); (A.Š.); (J.P.)
| | - Teodoro Klaser
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia; (T.K.); (D.P.)
| | - Emmanuel Wenger
- CRM2 CNRS, UMR 7036, Institut Jean Barriol, Université de Lorraine, BP 70239 Vandoeuvre-lès-Nancy, France;
| | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia; (T.K.); (D.P.)
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia; or
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia
| | - Jasminka Popović
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.); (K.M.); (A.Š.); (J.P.)
| | - Marijana Jurić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.); (K.M.); (A.Š.); (J.P.)
- Correspondence: ; Tel.: +385-1-456-1189
| |
Collapse
|
37
|
Miyatsu S, Kofu M, Shigematsu A, Yamada T, Kitagawa H, Lohstroh W, Simeoni G, Tyagi M, Yamamuro O. Quasielastic neutron scattering study on proton dynamics assisted by water and ammonia molecules confined in MIL-53. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:054501. [PMID: 34660845 PMCID: PMC8514252 DOI: 10.1063/4.0000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Dynamics of water and other small molecules confined in nanoporous materials is one of the current topics in condensed matter physics. One popular host material is a benzenedicarboxylate-bridging metal (III) complex abbreviated to MIL-53, whose chemical formula is M(OH)[C6H2(CO2)2R2] where M = Cr, Al, Fe and R = H, OH, NH2, COOH. These materials absorb not only water but also ammonia molecules. We have measured the quasi-elastic neutron scattering of MIL-53(Fe)-(COOH)2·2H2O and MIL-53(Fe)-(COOH)2·3NH3 which have full guest occupancy and exhibit the highest proton conductivity in the MIL-53 family. In a wide relaxation time region (τ = 10-12-10-8 s), two relaxations with Arrhenius temperature dependence were found in each sample. It is of interest that their activation energies are smaller than those of bulk H2O and NH3 liquids. The momentum transfer dependence of the relaxation time and the temperature dependence of the relaxation intensity suggest that the proton conduction is due to the Grotthuss mechanism with thermally excited H2O and NH3 molecules.
Collapse
Affiliation(s)
- Satoshi Miyatsu
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Maiko Kofu
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Akihito Shigematsu
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teppei Yamada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85747 Garching, Germany
| | - Giovanna Simeoni
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85747 Garching, Germany
| | | | - Osamu Yamamuro
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
38
|
Zhou CC, Liu HT, Ding L, Lu J, Wang SN, Li YW. Single-crystal-to-single-crystal transformations among three Mn-MOFs containing different water molecules induced by reaction time: crystal structures and proton conductivities. Dalton Trans 2021; 50:11077-11090. [PMID: 34328488 DOI: 10.1039/d1dt01163d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three Mn-MOFs {[Mn3(μ4-L)2(H2O)7]·4H2O}n (1), {[Mn3(μ5-L)2(H2O)6]·4H2O}n (2) and {[Mn3(μ7-L)2(H2O)2]}n (3) (H3L = 5-(6-carboxypyridin-3-yl)isophthalic acid) were obtained under different reaction times and temperatures. Interestingly, induced by reaction time, compound 1 can lose one water molecule and SC-SC transform into compound 2. Similarly, compound 2 can also SC-SC transform into 3. Studies on two SC-SC transformation processes were carried out and the transformation mechanisms were deduced, which were verified by TG analyses. Different numbers of water molecules in the three compounds resulted in different coordination environments of the metal cation, coordination modes of the L3- ligand, continuities of hydrogen bonds, dimensions of framework and porosities. The AC impendence spectra studies revealed that compounds 1-3 can enhance the proton conductivities of the Nafion composite membrane to about 47.77%, 36.88% and 21.28%, respectively. It is speculated that the highest proton conductivity of compound 1 may be due to its continuous hydrogen bond chain and highest water uptake, which were mainly decided by the number of water molecules.
Collapse
Affiliation(s)
- Chuan-Cong Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | | | | | | | | | | |
Collapse
|
39
|
Kuzniak-Glanowska E, Konieczny P, Pełka R, Muzioł TM, Kozieł M, Podgajny R. Engineering of the XY Magnetic Layered System with Adeninium Cations: Monocrystalline Angle-Resolved Studies of Nonlinear Magnetic Susceptibility. Inorg Chem 2021; 60:10186-10198. [PMID: 34232628 PMCID: PMC8388120 DOI: 10.1021/acs.inorgchem.1c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An original example of modular crystal engineering involving molecular magnetic {CuII[WV(CN)8]}- bilayers and adeninium cations (AdeH+) toward the new layered molecular magnet (AdeH){CuII[WV(CN)8]}·2H2O (1) is presented. 1 crystallizes within the monoclinic C2 space group (a = 41.3174(12), b = 7.0727(3), c = 7.3180(2) Å, β = 93.119(3)°, and V = 2135 Å3). The bilayer topology is based on a stereochemical matching between the square pyramidal shape of CuII moiety and the bicapped trigonal prismatic shape of [WV(μ-CN)5(CN)3], and the separation between bilayers is significantly increased (by ∼50%; from ca. 9.5 to ca. 14.5 Å) compared to several former analogues in this family. This was achieved via a unique combination of (i) a 1D ribbonlike hydrogen bond system {AdeH+···H2O···AdeH+···}∞ exploiting planar water-assisted Hoogsteen···Sugar synthons with (ii) parallel 1D π-π stacks {AdeH+···AdeH+}∞. In-plane 2D XY magnetism is characterized by a Tc close to 33 K, Hc,in-plane = 60 Oe, and Hc,out-of-plane = 750 Oe, high values of in-plane γ critical exponents (γb = 2.34(6) for H||b and γc = 2.16(5) for H||c), and a Berezinskii-Kosterlitz-Thouless (BKT) topological phase transition, deduced from crystal-orientation-dependent scaling analysis. The obtained values of in-plane ν critical exponents, νb = 0.48(5) for H||b and νc = 0.49(3) for H||c, confirm the BKT transition (νBKT = 0.5). Full-range angle-resolved monocrystalline magnetic measurements supported by dedicated calculations indicated the occurrence of nonlinear susceptibility performance within the easy plane in a magnetically ordered state. We refer the occurrence of this phenomenon to spontaneous resolution in the C2 space group, a tandem not observed in studies on previous analogues and rarely reported in the field of molecular materials. The above magneto-supramolecular strategy may provide a novel means for the design of 2D molecular magnetic networks and help to uncover the inherent phenomena.
Collapse
Affiliation(s)
| | - Piotr Konieczny
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Robert Pełka
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Tadeusz M Muzioł
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Marcin Kozieł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
40
|
Li J, Yi M, Zhang L, You Z, Liu X, Li* B. Energy related ion transports in coordination polymers. NANO SELECT 2021. [DOI: 10.1002/nano.202100164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jinli Li
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Mao Yi
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Laiyu Zhang
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Zifeng You
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Xiongli Liu
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Baiyan Li*
- College of Materials Science and Engineering Nankai University Tianjin China
| |
Collapse
|
41
|
Superprotonic conductivity of a 3D anionic metal-organic framework by synergistic effect of guest [Me2NH2]+ cations, water molecules and host carboxylates. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Sharma A, Lim J, Jeong S, Won S, Seong J, Lee S, Kim YS, Baek SB, Lah MS. Superprotonic Conductivity of MOF‐808 Achieved by Controlling the Binding Mode of Grafted Sulfamate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amitosh Sharma
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jaewoong Lim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seok Jeong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Somi Won
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Junmo Seong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seonghwan Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seung Bin Baek
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Myoung Soo Lah
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
43
|
Otake KI, Kitagawa H. Control of Proton-Conductive Behavior with Nanoenvironment within Metal-Organic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006189. [PMID: 33733595 DOI: 10.1002/smll.202006189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Solid-state proton-conductive materials have been of great interest for several decades due to their promising application as electrolytes in fuel cells and electrochemical devices. Metal-organic materials (MOMs) have recently been intensively investigated as a new type of proton-conductive materials. The highly crystalline nature and structural designability of MOMs make them advantageous over conventional noncrystalline proton-conductive materials-the detailed investigation of the structure-property relationship is feasible on MOM-based proton conductors. This review aims to summarize and examine the fundamental principles and various design strategies on proton-conductive MOMs, and shed light on the nanoconfinement effects as well as the importance of hydrophobicity on specific occasions, which have been often disregarded. Besides, challenges and future prospects on this field are presented.
Collapse
Affiliation(s)
- Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
44
|
Sharma A, Lim J, Jeong S, Won S, Seong J, Lee S, Kim YS, Baek SB, Lah MS. Superprotonic Conductivity of MOF‐808 Achieved by Controlling the Binding Mode of Grafted Sulfamate. Angew Chem Int Ed Engl 2021; 60:14334-14338. [DOI: 10.1002/anie.202103191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Amitosh Sharma
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jaewoong Lim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seok Jeong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Somi Won
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Junmo Seong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seonghwan Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seung Bin Baek
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Myoung Soo Lah
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
45
|
Palacios-Corella M, García-López V, Sánchez-Sánchez C, Clemente-Juan JM, Clemente-León M, Coronado E. Insertion of single-ion magnets based on mononuclear Co(II) complexes into ferromagnetic oxalate-based networks. Dalton Trans 2021; 50:5931-5942. [PMID: 33949535 DOI: 10.1039/d1dt00595b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 1 : 2 and 1 : 1 Co(ii) complexes of the L ligand (L = 6-(3,5-diamino-2,4,6-triazinyl)2,2'-bipyridine) with formulas [CoII(L)2](ClO4)2·0.5MeCN·Et2O (1) and [CoII(L)(CH3CN)2(H2O)](ClO4)2·MeCN (2) have been prepared. The structural and magnetic characterization of the two compounds shows that they contain octahedral high-spin Co(ii) and present a field-induced slow relaxation of the magnetization. 1 has been inserted into a bimetallic oxalate-based network leading to a novel achiral 3D compound of formula [CoII(L)2][MnIICrIII(ox)3]2·(solvate) (3) exhibiting ferromagnetic ordering below 4.6 K. EPR measurements suggest a weak magnetic coupling between the two sublattices.
Collapse
Affiliation(s)
- M Palacios-Corella
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - V García-López
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - C Sánchez-Sánchez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - J M Clemente-Juan
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - M Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - E Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| |
Collapse
|
46
|
Abstract
Metal-organic frameworks (MOFs) have emerged as a new class of ionic conductors because of their tuneable and highly ordered microporous structures. The ionic conduction of various ionic carriers, such as a proton (H+), hydroxide ion (OH-), lithium ion (Li+), sodium ion (Na+), and magnesium ion (Mg2+), in the pores of MOFs has been widely investigated over the past decade. Reports reveal that the porous or channel structures of MOFs are fundamentally suitable as ion-conducting pathways. There are clear differences in the basic designs of ion-conductive MOFs, i.e., the introduction of ionic carriers and construction of efficient ion-conducting pathways, depending on the ionic carriers. We summarize the examples and fundamental design of highly ion-conductive MOFs with various types of ionic carriers.
Collapse
Affiliation(s)
- Masaaki Sadakiyo
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | | |
Collapse
|
47
|
Chakraborty G, Park IH, Medishetty R, Vittal JJ. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem Rev 2021; 121:3751-3891. [PMID: 33630582 DOI: 10.1021/acs.chemrev.0c01049] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gouri Chakraborty
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | | | - Jagadese J. Vittal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
48
|
Wu WY, Tang TH, Li Y, Xu S. Versatile oxalato-bridging modes: a novel three-dimensional framework structure of manganese(ii) oxalate complex [MnC 2O 4]·0.5H 2O and the relationship with other manganese(ii) oxalates. Dalton Trans 2021; 50:485-489. [PMID: 33367351 DOI: 10.1039/d0dt03765f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unknown manganese(ii) oxalate complex [MnC2O4]·0.5H2O (1) was discovered with a novel three-dimensional structure, exhibiting versatile bridging modes of the oxalate ligand. The thermal and magnetic behaviors of this complex were studied and the relationship with four other manganese(ii) oxalates is also discussed.
Collapse
Affiliation(s)
- Wen-Yuan Wu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Tie-Huan Tang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Yi Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Shuang Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China.
| |
Collapse
|
49
|
Lim DW, Kitagawa H. Rational strategies for proton-conductive metal-organic frameworks. Chem Soc Rev 2021; 50:6349-6368. [PMID: 33870975 DOI: 10.1039/d1cs00004g] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the transition of energy platforms, proton-conducting materials have played a significant role in broad applications for electrochemical devices. In particular, solid-state proton conductors (SSPCs) are emerging as the electrolyte in fuel cells (FC), a promising power generation technology, because of their high performance and safety for operating in a wide range of temperatures. In recent years, proton-conductive porous metal-organic frameworks (MOFs) exhibiting high proton-conducting properties (>10-2 S cm-1) have been extensively investigated due to their potential application in solid-state electrolytes. Their structural designability, crystallinity, and porosity are beneficial to fabricate a new type of proton conductor, providing a comprehensive conduction mechanism. For the proton-conductive MOFs, each component, such as the metal centres, organic linkers, and pore space, is manipulated by a judicious predesign strategy or post-synthetic modification to improve the mobile proton concentration with an efficient conducting pathway. In this review, we highlight rational design strategies for highly proton-conductive MOFs in terms of MOF components, with representative examples from recent years. Subsequently, we discuss the challenges and future directions for the design of proton-conductive MOFs.
Collapse
Affiliation(s)
- Dae-Woon Lim
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493, Republic of Korea.
| | | |
Collapse
|
50
|
Sarkar A, Jana AK, Natarajan S. Aliphatic amine mediated assembly of [M 6( mna) 6] (M = Cu/Ag) into extended two-dimensional structures: synthesis, structure and Lewis acid catalytic studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj00544h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New aliphatic amine directed two-dimensional cadmium coordination polymers were shown to exhibit Lewis-acid catalytic activity for the cyanation of imines.
Collapse
Affiliation(s)
- Anupam Sarkar
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Ajay Kumar Jana
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Srinivasan Natarajan
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|