1
|
Otroshchenko T, Sharapa DI, Fedorova EA, Zhao D, Kondratenko EV. Highly Efficient Low-loaded PdO x/AlSiO x Catalyst for Ethylene Dimerization. Angew Chem Int Ed Engl 2024; 63:e202410646. [PMID: 38972838 DOI: 10.1002/anie.202410646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
Ethylene dimerization is an industrial process that is currently carried out using homogeneous catalysts. Here we present a highly active heterogeneous catalyst containing minute amounts of atomically dispersed Pd. It requires no co-catalyst(s) or activator(s) and significantly outperforms previously reported catalysts tested under similar reaction conditions. The selectivity to C4- and C6-hydrocarbons was about 80 % and 10 % at 42 % ethylene conversion at 200 °C using an industrially relevant feed containing 50 vol % ethylene, respectively. Our kinetic and catalyst characterization experiments complemented by density functional theory calculations provide molecular insights into the local environment of isolated Pd(II)Ox species and their role in achieving high activity in the target reaction. When the developed catalyst was rationally integrated with a Mo-containing olefin metathesis catalyst in the same reactor, the formed butenes reacted with ethylene to propylene with a selectivity of 98 % at about 24 % ethylene conversion.
Collapse
Affiliation(s)
- Tatiana Otroshchenko
- Department of Advanced Methods for Applied Catalysis, Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, D-18059, Rostock, Germany
| | - Dmitry I Sharapa
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Elizaveta A Fedorova
- Department of Advanced Methods for Applied Catalysis, Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, D-18059, Rostock, Germany
| | - Dan Zhao
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Evgenii V Kondratenko
- Department of Advanced Methods for Applied Catalysis, Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, D-18059, Rostock, Germany
| |
Collapse
|
2
|
Maji M, Sousa-Silva A, Solans-Monfort X, Schrock RR, Conley MP, Farias P, Carta V. Thermal Formation of Metathesis-Active Tungsten Alkylidene Complexes from Cyclohexene. J Am Chem Soc 2024; 146:18661-18671. [PMID: 38917446 DOI: 10.1021/jacs.4c05256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A 7-tungstabicyclo[4.3.0]nonane complex forms slowly upon addition of cyclohexene to the ethylene complex, W(NAr)(OSiPh3)2(C2H4), at 22 °C. A single-crystal X-ray study showed its structure to be closest to a square pyramid (τ = 0.23). At 22 °C, loss of cyclohexene or ring contraction of the 7-tungstabicyclo[4.3.0]nonane complex is slow. Above ∼80 °C, cyclohexene is ejected to give W(NAr)(OSiPh3)2(C2H4), but a sufficient amount of 7-tungstabicyclo[4.3.0]nonane complex remains in the presence of cyclohexene and the ring contracts to yield methylenecyclohexane and a methylidene complex or ethylene and a cyclohexylidene complex. Other complexes that have been observed include an 8-tungstabicyclo[4.3.0]nonane complex formed from 1,7-octadiene, a 7-tungstabicyclo[4.2.0]octane complex (formed from a methylidene complex and cyclohexene), and a methylenecyclohexane complex. 13C-Labeling studies show that the exo-methylene group in methylenecyclohexane and the α positions in the 8-tungstabicyclo[4.3.0]nonane come from ethylene. An alternative ring contraction of a tungstacyclopentane made from two molecules of cyclohexene cannot be excluded when concentrations of ethylene are low. A cyclohexylidene complex could also form from two cyclohexenes via a newly proposed "alkyl/allyl" mechanism. The results reported here are the first experimental confirmations that a tungstacyclopentane can ring-contract thermally at a substituted WCα position to form a tungstacyclobutane and therefore metathesis-active alkylidenes.
Collapse
Affiliation(s)
- Milan Maji
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | | | | | - Richard R Schrock
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Phillip Farias
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Veronica Carta
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
3
|
Skoda D, Zhu R, Hanulikova B, Styskalik A, Vykoukal V, Machac P, Simonikova L, Kuritka I, Poleunis C, Debecker DP, Román-Leshkov Y. Propylene Metathesis over Molybdenum Silicate Microspheres with Dispersed Active Sites. ACS Catal 2023; 13:12970-12982. [PMID: 37822857 PMCID: PMC10563125 DOI: 10.1021/acscatal.3c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/31/2023] [Indexed: 10/13/2023]
Abstract
In this work, we demonstrate that amorphous and porous molybdenum silicate microspheres are highly active catalysts for heterogeneous propylene metathesis. Homogeneous molybdenum silicate microspheres and aluminum-doped molybdenum silicate microspheres were synthesized via a nonaqueous condensation of a hybrid molybdenum biphenyldicarboxylate-based precursor solution with (3-aminopropyl)triethoxysilane. The as-prepared hybrid metallosilicate products were calcined at 500 °C to obtain amorphous and porous molybdenum silicate and aluminum-doped molybdenum silicate microspheres with highly dispersed molybdate species inserted into the silicate matrix. These catalysts contain mainly highly dispersed MoOx species, which possess high catalytic activity in heterogeneous propylene metathesis to ethylene and butene. Compared to conventional silica-supported MoOx catalysts prepared via incipient wetness impregnation (MoIWI), the microspheres with low Mo content (1.5-3.6 wt %) exhibited nearly 2 orders of magnitude higher steady-state propylene metathesis rates at 200 °C, approaching site time yields of 0.11 s-1.
Collapse
Affiliation(s)
- David Skoda
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, tr. Tomase Bati 5678, Zlin CZ-76001, Czech Republic
| | - Ran Zhu
- Department
of Chemical Engineering, Massachusetts Institute
of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Barbora Hanulikova
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, tr. Tomase Bati 5678, Zlin CZ-76001, Czech Republic
| | - Ales Styskalik
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska
2, Brno CZ-61137, Czech Republic
| | - Vit Vykoukal
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska
2, Brno CZ-61137, Czech Republic
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, Brno CZ 62500, Czech Republic
| | - Petr Machac
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska
2, Brno CZ-61137, Czech Republic
| | - Lucie Simonikova
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska
2, Brno CZ-61137, Czech Republic
| | - Ivo Kuritka
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, tr. Tomase Bati 5678, Zlin CZ-76001, Czech Republic
| | - Claude Poleunis
- Institute
of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Damien P. Debecker
- Institute
of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Zhang Q, Xiao T, Liu C, Otroshchenko T, Kondratenko EV. Performance Descriptors for Catalysts Based on Molybdenum, Tungsten, or Rhenium Oxides for Metathesis of Ethylene with 2-Butenes to Propene. Angew Chem Int Ed Engl 2023; 62:e202308872. [PMID: 37427552 DOI: 10.1002/anie.202308872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
The metathesis of ethylene with 2-butenes to propene is an established large-scale process. However, the fundamentals behind in situ transformation of supported WOx , MoOx , or ReOx species into catalytically active metal-carbenes and the intrinsic activity of the latter as well as the role of metathesis-inactive cocatalysts are still unsolved. This is detrimental for catalyst development and process optimization. In this study, we provide the required essentials derived from steady-state isotopic transient kinetic analysis. For the first time, the steady-state concentration, the lifetime, and the intrinsic reactivity of metal carbenes were determined. The obtained results can be directly used for the design and the preparation of metathesis-active catalysts and cocatalysts, thereby opening up possibilities for optimizing propene productivity.
Collapse
Affiliation(s)
- Qiyang Zhang
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Tianci Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Tatiana Otroshchenko
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Evgenii V Kondratenko
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
5
|
Berkson ZJ, Zhu R, Ehinger C, Lätsch L, Schmid SP, Nater D, Pollitt S, Safonova OV, Björgvinsdóttir S, Barnes AB, Román-Leshkov Y, Price GA, Sunley GJ, Copéret C. Active Site Descriptors from 95Mo NMR Signatures of Silica-Supported Mo-Based Olefin Metathesis Catalysts. J Am Chem Soc 2023. [PMID: 37256723 DOI: 10.1021/jacs.3c02201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The olefin metathesis activity of silica-supported molybdenum oxides depends strongly on metal loading and preparation conditions, indicating that the nature and/or amounts of the active sites vary across compositionally similar catalysts. This is illustrated by comparing Mo-based (pre)catalysts prepared by impregnation (2.5-15.6 wt % Mo) and a model material (2.3 wt % Mo) synthesized via surface organometallic chemistry (SOMC). Analyses of FTIR, UV-vis, and Mo K-edge X-ray absorption spectra show that these (pre)catalysts are composed predominantly of similar isolated Mo dioxo sites. However, they exhibit different reaction properties in both liquid and gas-phase olefin metathesis with the SOMC-derived catalyst outperforming a classical catalyst of a similar Mo loading by ×1.5-2.0. Notably, solid-state 95Mo NMR analyses leveraging state-of-the-art high-field (28.2 T) measurement conditions resolve four distinct surface Mo dioxo sites with distributions that depend on the (pre)catalyst preparation methods. The intensity of a specific deshielded 95Mo NMR signal, which is most prominent in the SOMC-derived catalyst, is linked to reducibility and catalytic activity. First-principles calculations show that 95Mo NMR parameters directly manifest the local strain and coordination environment: acute (SiO-Mo(O)2-OSi) angles and low coordination numbers at Mo lead to highly deshielded 95Mo chemical shifts and small quadrupolar coupling constants, respectively. Natural chemical shift analyses relate the 95Mo NMR signature of strained species to low LUMO energies, which is consistent with their high reducibility and corresponding reactivity. The 95Mo chemical shifts of supported Mo dioxo sites are thus linked to their specific electronic structures, providing a powerful descriptor for their propensity toward reduction and formation of active sites.
Collapse
Affiliation(s)
- Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Ran Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christian Ehinger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Lukas Lätsch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Stefan P Schmid
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Darryl Nater
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Stephan Pollitt
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- PSI, CH-5232 Villigen, Switzerland
| | | | - Snædís Björgvinsdóttir
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Alexander B Barnes
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gregory A Price
- Applied Sciences, bp Innovation & Engineering, BP plc, Saltend, Hull HU12 8DS, U.K
| | - Glenn J Sunley
- Applied Sciences, bp Innovation & Engineering, BP plc, Saltend, Hull HU12 8DS, U.K
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
6
|
Gani TZH, Berkson ZJ, Zhu R, Kang JH, Di Iorio JR, Chan KW, Consoli DF, Shaikh SK, Copéret C, Román-Leshkov Y. Promoting active site renewal in heterogeneous olefin metathesis catalysts. Nature 2023; 617:524-528. [PMID: 37198312 DOI: 10.1038/s41586-023-05897-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/28/2023] [Indexed: 05/19/2023]
Abstract
As an atom-efficient strategy for the large-scale interconversion of olefins, heterogeneously catalysed olefin metathesis sees commercial applications in the petrochemical, polymer and speciality chemical industries1. Notably, the thermoneutral and highly selective cross-metathesis of ethylene and 2-butenes1 offers an appealing route for the on-purpose production of propylene to address the C3 shortfall caused by using shale gas as a feedstock in steam crackers2,3. However, key mechanistic details have remained ambiguous for decades, hindering process development and adversely affecting economic viability4 relative to other propylene production technologies2,5. Here, from rigorous kinetic measurements and spectroscopic studies of propylene metathesis over model and industrial WOx/SiO2 catalysts, we identify a hitherto unknown dynamic site renewal and decay cycle, mediated by proton transfers involving proximal Brønsted acidic OH groups, which operates concurrently with the classical Chauvin cycle. We show how this cycle can be manipulated using small quantities of promoter olefins to drastically increase steady-state propylene metathesis rates by up to 30-fold at 250 °C with negligible promoter consumption. The increase in activity and considerable reduction of operating temperature requirements were also observed on MoOx/SiO2 catalysts, showing that this strategy is possibly applicable to other reactions and can address major roadblocks associated with industrial metathesis processes.
Collapse
Affiliation(s)
- Terry Z H Gani
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Ran Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jong Hun Kang
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - John R Di Iorio
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Ka Wing Chan
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel F Consoli
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Sohel K Shaikh
- Research & Development Center, Saudi Aramco, Dhahran, Saudi Arabia
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
7
|
Foppa L, Rüther F, Geske M, Koch G, Girgsdies F, Kube P, Carey SJ, Hävecker M, Timpe O, Tarasov AV, Scheffler M, Rosowski F, Schlögl R, Trunschke A. Data-Centric Heterogeneous Catalysis: Identifying Rules and Materials Genes of Alkane Selective Oxidation. J Am Chem Soc 2023; 145:3427-3442. [PMID: 36745555 PMCID: PMC9936587 DOI: 10.1021/jacs.2c11117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) can accelerate catalyst design by identifying key physicochemical descriptive parameters correlated with the underlying processes triggering, favoring, or hindering the performance. In analogy to genes in biology, these parameters might be called "materials genes" of heterogeneous catalysis. However, widely used AI methods require big data, and only the smallest part of the available data meets the quality requirement for data-efficient AI. Here, we use rigorous experimental procedures, designed to consistently take into account the kinetics of the catalyst active states formation, to measure 55 physicochemical parameters as well as the reactivity of 12 catalysts toward ethane, propane, and n-butane oxidation reactions. These materials are based on vanadium or manganese redox-active elements and present diverse phase compositions, crystallinities, and catalytic behaviors. By applying the sure-independence-screening-and-sparsifying-operator symbolic-regression approach to the consistent data set, we identify nonlinear property-function relationships depending on several key parameters and reflecting the intricate interplay of processes that govern the formation of olefins and oxygenates: local transport, site isolation, surface redox activity, adsorption, and the material dynamical restructuring under reaction conditions. These processes are captured by parameters derived from N2 adsorption, X-ray photoelectron spectroscopy (XPS), and near-ambient-pressure in situ XPS. The data-centric approach indicates the most relevant characterization techniques to be used for catalyst design and provides "rules" on how the catalyst properties may be tuned in order to achieve the desired performance.
Collapse
Affiliation(s)
- Lucas Foppa
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195 Berlin, Germany,
| | - Frederik Rüther
- BasCat
- UniCat BASF JointLab, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Michael Geske
- BasCat
- UniCat BASF JointLab, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Gregor Koch
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Frank Girgsdies
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Pierre Kube
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Spencer J. Carey
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Michael Hävecker
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany,Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim, Germany
| | - Olaf Timpe
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Andrey V. Tarasov
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Matthias Scheffler
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Frank Rosowski
- BasCat
- UniCat BASF JointLab, Hardenbergstraße 36, D-10623 Berlin, Germany,BASF
SE, Catalysis Research, Carl-Bosch-Straße 38, D-67065 Ludwigshafen, Germany
| | - Robert Schlögl
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Annette Trunschke
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
of the Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany,
| |
Collapse
|
8
|
Karpova TR, Lavrenov AV, Buluchevskii EA, Leontieva NN. Polyfunctional catalysis in conversion of light alkenes. Russ Chem Bull 2023; 72:379-392. [PMID: 37073400 PMCID: PMC10092927 DOI: 10.1007/s11172-023-3806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 04/20/2023]
Abstract
Light alkenes are among the main petrochemical intermediate products, the consumption of which is steadily growing. Using ethylene as an example, the possibilities of using polyfunctional heterogeneous catalysts for carrying out practically important reactions of its oligomerization, alkylation, and metathesis were considered. Particular attention was paid to catalysts for the conversion of ethylene to propylene.
Collapse
Affiliation(s)
- T. R. Karpova
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - A. V. Lavrenov
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - E. A. Buluchevskii
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - N. N. Leontieva
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| |
Collapse
|
9
|
Promoting effect of MoO3/Al2O3 catalysts fluorination on their reactivity in propylene metathesis. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Li G, Yoskamtorn T, Chen W, Foo C, Zheng J, Tang C, Day S, Zheng A, Li MM, Tsang SCE. Thermal Alteration in Adsorption Sites over SAPO-34 Zeolite. Angew Chem Int Ed Engl 2022; 61:e202204500. [PMID: 35471635 PMCID: PMC9322573 DOI: 10.1002/anie.202204500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/08/2022]
Abstract
Zeolites have found tremendous applications in the chemical industry. However, the dynamic nature of their active sites under the flow of adsorbate molecules for adsorption and catalysis is unclear, especially in operando conditions, which could be different from the as-synthesized structures. In the present study, we report a structural transformation of the adsorptive active sites in SAPO-34 zeolite by using acetone as a probe molecule under various temperatures. The combination of solid-state nuclear magnetic resonance, in situ variable-temperature synchrotron X-ray diffraction, and in situ diffuse-reflectance infrared Fourier-transform spectroscopy allow a clear identification and quantification that the chemisorption of acetone can convert the classical Brønsted acid site adsorption mode to an induced Frustrated Lewis Pairs adsorption mode at increasing temperatures. Such facile conversion is also supported by the calculations of ab-initio molecular-dynamics simulations. This work sheds new light on the importance of the dynamic structural alteration of active sites in zeolites with adsorbates at elevated temperatures.
Collapse
Affiliation(s)
- Guangchao Li
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong
| | | | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhan430071China
| | - Christopher Foo
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Jianwei Zheng
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Chiu Tang
- Diamond Light Source Ltd.DidcotOX11 0DEUK
| | - Sarah Day
- Diamond Light Source Ltd.DidcotOX11 0DEUK
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhan430071China
| | - Molly Meng‐Jung Li
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong
| | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| |
Collapse
|
11
|
Li G, Yoskamtorn T, Chen W, Foo C, Zheng J, Tang C, Day S, Zheng A, Li MM, Tsang SCE. Thermal Alteration in Adsorption Sites over SAPO‐34 Zeolite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guangchao Li
- Wolfson Catalysis Centre Department of Chemistry University of Oxford Oxford OX1 3QR UK
- Department of Applied Physics The Hong Kong Polytechnic University Hong Kong
| | | | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Christopher Foo
- Wolfson Catalysis Centre Department of Chemistry University of Oxford Oxford OX1 3QR UK
| | - Jianwei Zheng
- Wolfson Catalysis Centre Department of Chemistry University of Oxford Oxford OX1 3QR UK
| | - Chiu Tang
- Diamond Light Source Ltd. Didcot OX11 0DE UK
| | - Sarah Day
- Diamond Light Source Ltd. Didcot OX11 0DE UK
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Molly Meng‐Jung Li
- Department of Applied Physics The Hong Kong Polytechnic University Hong Kong
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre Department of Chemistry University of Oxford Oxford OX1 3QR UK
| |
Collapse
|
12
|
Nater DF, Kaul CJ, Lätsch L, Tsurugi H, Mashima K, Copéret C. Olefin Metathesis Catalysts Generated In Situ from Molybdenum(VI)-Oxo Complexes by Tuning Pendant Ligands. Chemistry 2022; 28:e202200559. [PMID: 35234311 PMCID: PMC9313794 DOI: 10.1002/chem.202200559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/01/2022]
Abstract
Tailored molybdenum(VI)-oxo complexes of the form MoOCl2 (OR)2 (OEt2 ) catalyse olefin metathesis upon reaction with an organosilicon reducing agent at 70 °C, in the presence of olefins. While this reactivity parallels what has recently been observed for the corresponding classical heterogeneous catalysts based on supported metal oxide under similar conditions, the well-defined nature of our starting molecular systems allows us to understand the influence of structural, spectroscopic and electronic characteristics of the catalytic precursor on the initiation and catalytic proficiency of the final species. The catalytic performances of the pre-catalysts are determined by the highly electron withdrawing (σ-donation) character of alkoxide ligands, Ot BuF9 being the best. This activity correlates with both the 95 Mo chemical shift and the reduction potential that follows the same trend: Ot BuF9 >Ot BuF6 >Ot BuF3 .
Collapse
Affiliation(s)
- Darryl F. Nater
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Christoph J. Kaul
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Lukas Lätsch
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Hayato Tsurugi
- Department of ChemistryGraduate School of Engineering ScienceOsaka University1-3, Machikaneyama-choToyonakaOsaka560-8531Japan
| | - Kazushi Mashima
- Department of ChemistryGraduate School of Engineering ScienceOsaka University1-3, Machikaneyama-choToyonakaOsaka560-8531Japan
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| |
Collapse
|
13
|
Berkson Z, Bernhardt M, Schlapansky SL, Benedikter MJ, Buchmeiser MR, Price GA, Sunley GJ, Copéret C. Olefin-Surface Interactions: A Key Activity Parameter in Silica-Supported Olefin Metathesis Catalysts. JACS AU 2022; 2:777-786. [PMID: 35373213 PMCID: PMC8969997 DOI: 10.1021/jacsau.2c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 06/02/2023]
Abstract
Molecularly defined and classical heterogeneous Mo-based metathesis catalysts are shown to display distinct and unexpected reactivity patterns for the metathesis of long-chain α-olefins at low temperatures (<100 °C). Catalysts based on supported Mo oxo species, whether prepared via wet impregnation or surface organometallic chemistry (SOMC), exhibit strong activity dependencies on the α-olefin chain length, with slower reaction rates for longer substrate chain lengths. In contrast, molecular and supported Mo alkylidenes are highly active and do not display such dramatic dependence on the chain length. State-of-the-art two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) spectroscopy analyses of postmetathesis catalysts, complemented by Fourier transform infrared (FT-IR) spectroscopy and molecular dynamics calculations, evidence that the activity decrease observed for supported Mo oxo catalysts relates to the strong adsorption of internal olefin metathesis products because of interactions with surface Si-OH groups. Overall, this study shows that in addition to the nature and the number of active sites, the metathesis rates and the overall catalytic performance depend on product desorption, even in the liquid phase with nonpolar substrates. This study further highlights the role of the support and active site composition and dynamics on activity as well as the need for considering adsorption in catalyst design.
Collapse
Affiliation(s)
- Zachariah
J. Berkson
- Department
of Chemistry and Applied Bioscience, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Moritz Bernhardt
- Department
of Chemistry and Applied Bioscience, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Simon L. Schlapansky
- Department
of Chemistry and Applied Bioscience, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Mathis J. Benedikter
- Institute
of Polymer Chemistry, Universität
Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Michael R. Buchmeiser
- Institute
of Polymer Chemistry, Universität
Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Gregory A. Price
- Applied
Sciences, BP Innovation & Engineering, BP plc, Saltend, Hull HU12 8DS, U.K.
| | - Glenn J. Sunley
- Applied
Sciences, BP Innovation & Engineering, BP plc, Saltend, Hull HU12 8DS, U.K.
| | - Christophe Copéret
- Department
of Chemistry and Applied Bioscience, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
14
|
Zhang B, Xiang S, Frenkel AI, Wachs IE. Molecular Design of Supported MoO x Catalysts with Surface TaO x Promotion for Olefin Metathesis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Zhang
- Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Shuting Xiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Israel E. Wachs
- Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
15
|
Tamura M, Nagasaki YH, Yabushita M, Nakagawa Y, Tomishige K. Dehydration of Amides to Nitriles over Heterogeneous Silica‐Supported Molybdenum Oxide Catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Masazumi Tamura
- Tohoku University Graduate School of Engineering Aoba 6-6-07, Aramaki, Aoba-ku 980-8579 Sendai JAPAN
| | - Yo-hei Nagasaki
- Tohoku University: Tohoku Daigaku Department of applied chemistry JAPAN
| | - Mizuho Yabushita
- Tohoku University: Tohoku Daigaku Department of Applied Chemistry JAPAN
| | - Yoshinao Nakagawa
- Tohoku University: Tohoku Daigaku Department of Applied Chemistry Aoba 6-6-07, Aramaki, Aoba-kuSendai 980-8579 Sendai JAPAN
| | - Keiichi Tomishige
- Tohoku University: Tohoku Daigaku Department of Applied Chemistry JAPAN
| |
Collapse
|
16
|
Zhang B, Ford ME, Ream E, Wachs IE. Olefin metathesis over supported MoO x catalysts: influence of the oxide support. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Supported MoOx catalysts on oxide supports (Al2O3, TiO2, ZrO2, SiO2) were synthesized for propylene metathesis, characterized with in situ spectroscopies (DRIFTS, Raman, UV-vis) and chemically probed with propylene-TPSR, ethylene/2-butene titration.
Collapse
Affiliation(s)
- Bin Zhang
- Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Michael E. Ford
- Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Eli Ream
- Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Israel E. Wachs
- Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|
17
|
Myradova M, Węgrzynowicz A, Węgrzyniak A, Gierada M, Jodlowski P, Łojewska J, Handzlik J, Michorczyk P. Tuning metathesis performance of molybdenum oxide-based catalyst by silica support acidity modulation and high temperature pretreatment. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02064a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum oxide-based catalysts containing 5 wt. % of Mo obtained by simple impregnation of silica mesoporous support were studied in olefin metathesis reaction at 50 °C. Effect of support modification...
Collapse
|
18
|
Zhang Q, Otroshchenko T, Kondratenko EV. Fundamentals and application potential of the synergy effect between ZnO and Mo/SiO 2 for propene production in the metathesis of ethylene and trans-2-butene. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00895e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enhancing effect of ZnO on the activity of Mo/SiO2 in the metathesis of ethylene with 2-butene is investigated. The strength of the effect depends on the reaction temperature and the manner in which ZnO and Mo/SiO2 are located in the reactor.
Collapse
Affiliation(s)
- Qiyang Zhang
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | - Tatiana Otroshchenko
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | | |
Collapse
|
19
|
Liu Y, Li J, Das A, Kim H, Jones LO, Ma Q, Bedzyk MJ, Schatz GC, Kratish Y, Marks TJ. Synthesis and Structure-Activity Characterization of a Single-Site MoO 2 Catalytic Center Anchored on Reduced Graphene Oxide. J Am Chem Soc 2021; 143:21532-21540. [PMID: 34914390 DOI: 10.1021/jacs.1c07236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Molecularly derived single-site heterogeneous catalysts can bridge the understanding and performance gaps between conventional homogeneous and heterogeneous catalysis, guiding the rational design of next-generation catalysts. While impressive advances have been made with well-defined oxide supports, the structural complexity of other supports and the nature of the grafted surface species present an intriguing challenge. In this study, single-site Mo(═O)2 species grafted onto reduced graphene oxide (rGO/MoO2) are characterized by XPS, DRIFTS, powder XRD, N2 physisorption, NH3-TPD, aqueous contact angle, active site poisoning assay, Mo EXAFS, model compound single-crystal XRD, DFT, and catalytic performance. NH3-TPD reveals that the anchored MoO2 moiety is not strongly acidic, while Mo 3d5/2 XPS assigns the oxidation state as Mo(VI), and XRD shows little rGO periodicity change on MoO2 grafting. Contact angle analysis shows that MoO2 grafting consumes rGO surface polar groups, yielding a more hydrophobic surface. The rGO/MoO2 DRIFTS assigns features at 959 and 927 cm-1 to the symmetric and antisymmetric Mo═O stretching modes, respectively, of an isolated cis-(O═Mo═O) moiety, in agreement with DFT computation. Moreover, the Mo EXAFS rGO/MoO2 structural data are consistent with isolated (C-O)2-Mo(═O)2 species having two Mo═O bonds and two Mo-O bonds at distances of 1.69(3) and 1.90(3) Å, respectively. rGO/MoO2 is also more active than the previously reported AC/MoO2 catalyst, with reductive carbonyl coupling TOFs approaching 1.81 × 103 h-1. rGO/MoO2 is environmentally robust and multiply recyclable with 69 ± 2% of the Mo sites catalytically significant. Overall, rGO/MoO2 is a structurally well-defined and versatile single-site Mo(VI) dioxo heterogeneous catalytic system.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Jiaqi Li
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Anusheela Das
- Department of Material Science and Engineering and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Hacksung Kim
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Leighton O Jones
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael J Bedzyk
- Department of Material Science and Engineering and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Yosi Kratish
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Otroshchenko T, Zhang Q, Kondratenko EV. Enhancing Propene Formation in the Metathesis of Ethylene with 2-Butene at Close to Room Temperature over MoO x/SiO 2 through Support Promotion with P, Cl, or S. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tatiana Otroshchenko
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | - Qiyang Zhang
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | | |
Collapse
|
21
|
Handzlik J, Kurleto K, Gierada M. Computational Insights into Active Site Formation during Alkene Metathesis over a MoO x/SiO 2 Catalyst: The Role of Surface Silanols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jarosław Handzlik
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Kraków 31-155, Poland
| | - Kamil Kurleto
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Kraków 31-155, Poland
| | - Maciej Gierada
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Kraków 31-155, Poland
| |
Collapse
|
22
|
Monai M, Gambino M, Wannakao S, Weckhuysen BM. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem Soc Rev 2021; 50:11503-11529. [PMID: 34661210 DOI: 10.1039/d1cs00357g] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
On-purpose synthetic routes for propylene production have emerged in the last couple of decades in response to the increasing demand for plastics and a shift to shale gas feedstocks for ethylene production. Propane dehydrogenation (PDH), an efficient and selective route to produce propylene, saw booming investments to fill the so-called propylene gap. In the coming years, however, a fluctuating light olefins market will call for flexibility in end-product of PDH plants. This can be achieved by combining PDH with propylene metathesis in a single step, propane to olefins (PTO), which allows production of mixtures of propylene, ethylene and butenes, which are important chemical building blocks for a.o. thermoplastics. The metathesis technology introduced by Phillips in the 1960s and mostly operated in reverse to produce propylene, is thus undergoing a renaissance of scientific and technological interest in the context of the PTO reaction. In this review, we will describe the state-of-the-art of PDH, propylene metathesis and PTO reactions, highlighting the open challenges and opportunities in the field. While the separate PDH and metathesis reactions have been extensively studied in the literature, understanding the whole PTO tandem-catalysis system will require new efforts in theoretical modelling and operando spectroscopy experiments, to gain mechanistic insights into the combined reactions and finally improve catalytic selectivity and stability for on-purpose olefins production.
Collapse
Affiliation(s)
- Matteo Monai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Marianna Gambino
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Sippakorn Wannakao
- SCG Chemicals Co., Ltd, 1 Siam-Cement Rd, Bang sue, Bangkok 1080, Thailand
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
23
|
Otroshchenko T, Zhang Q, Kondratenko EV. Room-Temperature Metathesis of Ethylene with 2-Butene to Propene Over MoOx-Based Catalysts: Mixed Oxides as Perspective Support Materials. Catal Letters 2021. [DOI: 10.1007/s10562-021-03822-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractWe investigated the effect of supports based on ZrO2, TiO2, Al2O3, and SiO2 on the rate of propene formation in the metathesis of ethylene with 2-butene at 50 °C over Mo-containing catalysts possessing highly dispersed MoOx. Large improvements in this rate were achieved when using supports composed of mixed oxides (ZrO2–SiO2, ZrO2–PO4, TiO2–SiO2; Al2O3–SiO2) rather than of individual oxides (ZrO2, TiO2, Al2O3, SiO2). Although previous literature studies dealing with the metathesis reaction over Al2O3- or SiO2-suppported catalysts at higher temperatures suggest the importance of redox or acidic properties of supported MoOx species for catalyst activity, we were not able to establish any general direct correlation in this regard. Contrarily, the rate of propene formation can be significantly enhanced when promoting supports with an oxide promoter. We suggest that the created support lattice defects may facilitate the transformation of MoOx to Mo carbenes under reaction conditions or improve the intrinsic activity of the latter.
Graphic Abstract
Collapse
|
24
|
Li G, Foo C, Yi X, Chen W, Zhao P, Gao P, Yoskamtorn T, Xiao Y, Day S, Tang CC, Hou G, Zheng A, Tsang SCE. Induced Active Sites by Adsorbate in Zeotype Materials. J Am Chem Soc 2021; 143:8761-8771. [PMID: 34076425 DOI: 10.1021/jacs.1c03166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There has been a long debate on how and where active sites are created for molecular adsorption and catalysis in zeolites, which underpin many important industrial applications. It is well accepted that Lewis acidic sites (LASs) and basic sites (LBSs) as active sites in pristine zeolites are generally believed to be the extra-framework Al species and residue anion (OH-) species formed at fixed crystallographic positions after their synthesis. However, the dynamic interactions of adsorbates/reactants with pristine zeotype materials to "create" sites during real conditions remain largely unexplored. Herein, direct experimental observation of the establishment of induced active sites in silicoaluminophosphate (SAPO) by an adsorbate is for the first time made, which contradicts the traditional view of the fixed active sites in zeotype materials. Evidence shows that an induced frustrated Lewis pair (FLP, three-coordinated framework Al as LAS and SiO (H) as LBS) can be transiently favored for heterolytic molecular binding/reactions of competitive polar adsorbates due to their ineffective orbital overlap in the rigid framework. High-resolution magic-angle-spinning solid-state NMR, synchrotron X-ray diffraction, neutron powder diffraction, in situ diffuse reflectance infrared Fourier transform spectroscopy, and ab initio molecular dynamics demonstrate the transformation of a typical Brønsted acid site (Al(OH)Si) in SAPO zeolites to new induced FLP structure for hetereolytic binding upon adsorption of a strong polar adsorbate. Our unprecedented finding opens up a new avenue to understanding the dynamic establishment of active sites for adsorption or chemical reactions under molecular bombardment of zeolitic structures.
Collapse
Affiliation(s)
- Guangchao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.,Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Christopher Foo
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Pu Zhao
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Tatchamapan Yoskamtorn
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Sarah Day
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Chiu C Tang
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
25
|
Copéret C, Berkson ZJ, Chan KW, de Jesus Silva J, Gordon CP, Pucino M, Zhizhko PA. Olefin metathesis: what have we learned about homogeneous and heterogeneous catalysts from surface organometallic chemistry? Chem Sci 2021; 12:3092-3115. [PMID: 34164078 PMCID: PMC8179417 DOI: 10.1039/d0sc06880b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Since its early days, olefin metathesis has been in the focus of scientific discussions and technology development. While heterogeneous olefin metathesis catalysts based on supported group 6 metal oxides have been used for decades in the petrochemical industry, detailed mechanistic studies and the development of molecular organometallic chemistry have led to the development of robust and widely used homogeneous catalysts based on well-defined alkylidenes that have found applications for the synthesis of fine and bulk chemicals and are also used in the polymer industry. The development of the chemistry of high-oxidation group 5-7 alkylidenes and the use of surface organometallic chemistry (SOMC) principles unlocked the preparation of so-called well-defined supported olefin metathesis catalysts. The high activity and stability (often superior to their molecular analogues) and molecular-level characterisation of these systems, that were first reported in 2001, opened the possibility for the first direct structure-activity relationships for supported metathesis catalysts. This review describes first the history of SOMC in the field of olefin metathesis, and then focuses on what has happened since 2007, the date of our last comprehensive reviews in this field.
Collapse
Affiliation(s)
- Christophe Copéret
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Zachariah J Berkson
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Ka Wing Chan
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Jordan de Jesus Silva
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Christopher P Gordon
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Margherita Pucino
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Pavel A Zhizhko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilov Str. 28 119991 Moscow Russia
| |
Collapse
|
26
|
Lei Y, Yan M. DFT studies of selective oxidation of propene on the MoO 3(010) surface. Phys Chem Chem Phys 2021; 23:2792-2804. [PMID: 33470256 DOI: 10.1039/d0cp03732j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective oxidation of propene to acrolein and acrylic acid has been applied in industry for many years. In this work, the density functional theory plus U (DFT+U) method was performed to study the hydrogen abstraction of propene on the MoO3(010) surface. From the most stable chemisorbed propene (di-σ propene), the allyl intermediate is difficult to produce on a perfect MoO3(010) surface because of the high barrier. In general, the barriers of the second hydrogen abstraction are much lower than those of the first one. The conclusion from our slab model calculations is consistent with the experimental results. It is found that the (3 + 2) mechanism exhibits lower barriers than the (5 + 2) mechanism. Oxygen defects facilitate the first dehydrogenation significantly, and π-allyl converts to σ-allyl favorably on defects, in agreement with a previous experimental study. The present study indicates that increasing the surface oxygen defects might be an effective way to promote the activity of MoO3 to propene oxidation.
Collapse
Affiliation(s)
- Yanhua Lei
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China. and Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou, Hunan Province 423000, People's Republic of China
| | - Min Yan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou, Hunan Province 423000, People's Republic of China
| |
Collapse
|
27
|
Insights on alkylidene formation on Mo2C: A potential overlap between direct deoxygenation and olefin metathesis. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Zhang Z, Xu W, Ye X, Xi Y, Qiu C, Ding L, Liu G, Xiao Q. Enormous passivation effects of a surrounding zeolitic framework on Pt clusters for the catalytic dehydrogenation of propane. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00738f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The significant passivation effect of the zeolitic framework on the catalytic performance of Pt clusters for dehydrogenation of propane to propylene is displayed. Pt/NaX shows 1100% enhanced TOFs and largely improved selectivity compared with Pt@NaX.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Wenlong Xu
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Xiaomei Ye
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Yonglan Xi
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Cunpu Qiu
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Liping Ding
- Key Lab of Mesoscopic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Gui Liu
- Key Lab of Mesoscopic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Qingbo Xiao
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| |
Collapse
|
29
|
Novodárszki G, Szabó B, Auer R, Tóth K, Leveles L, Barthos R, Turczel G, Pászti Z, Valyon J, Mihályi MR, Tuba R. Propylene synthesis via isomerization–metathesis of 1-hexene and FCC olefins. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00269d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient conversion of 1-hexene and FCC mixture to propylene via isomerization–metathesis (ISOMET) catalyzed by a HBEA–MoOx/Al2O3 system.
Collapse
Affiliation(s)
- Gyula Novodárszki
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| | - Blanka Szabó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| | - Róbert Auer
- MOL, Hungarian Oil and Gas Public Limited Company, Október huszonharmadika u. 18, 1117 Budapest, Hungary
| | - Katalin Tóth
- MOL, Hungarian Oil and Gas Public Limited Company, Október huszonharmadika u. 18, 1117 Budapest, Hungary
| | - László Leveles
- MOL, Hungarian Oil and Gas Public Limited Company, Október huszonharmadika u. 18, 1117 Budapest, Hungary
| | - Róbert Barthos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| | - Gábor Turczel
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| | - Zoltán Pászti
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| | - József Valyon
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| | - Magdolna R. Mihályi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| | - Róbert Tuba
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| |
Collapse
|
30
|
Yang Y, Zhang X, Kanchanakungwankul S, Lu Z, Noh H, Syed ZH, Farha OK, Truhlar DG, Hupp JT. Unexpected “Spontaneous” Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles. J Am Chem Soc 2020; 142:21169-21177. [DOI: 10.1021/jacs.0c10367] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Siriluk Kanchanakungwankul
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Hyunho Noh
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoha H. Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Zhang W, Wang H, Jiang J, Sui Z, Zhu Y, Chen D, Zhou X. Size Dependence of Pt Catalysts for Propane Dehydrogenation: from Atomically Dispersed to Nanoparticles. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03286] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haizhi Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiawei Jiang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhijun Sui
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yian Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
32
|
Tielens F, Gierada M, Handzlik J, Calatayud M. Characterization of amorphous silica based catalysts using DFT computational methods. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Zwaschka G, Nahalka I, Marchioro A, Tong Y, Roke S, Campen RK. Imaging the Heterogeneity of the Oxygen Evolution Reaction on Gold Electrodes Operando: Activity is Highly Local. ACS Catal 2020; 10:6084-6093. [PMID: 32551180 PMCID: PMC7295367 DOI: 10.1021/acscatal.0c01177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Indexed: 11/29/2022]
Abstract
![]()
Understanding the mechanism of the oxygen evolution reaction (OER), the oxidative half of electrolytic
water splitting, has proven challenging. Perhaps the largest hurdle
has been gaining experimental insight into the active site of the
electrocatalyst used to facilitate this chemistry. Decades of study
have clarified that a range of transition-metal oxides have particularly
high catalytic activity for the OER. Unfortunately, for virtually
all of these materials, metal oxidation and the OER occur at similar
potentials. As a result, catalyst surface topography and electronic
structure are expected to continuously evolve under reactive conditions.
Gaining experimental insight into the OER mechanism on such materials
thus requires a tool that allows spatially resolved characterization
of the OER activity. In this study, we overcome this formidable experimental
challenge using second harmonic microscopy and electrochemical methods
to characterize the spatial heterogeneity of OER activity on polycrystalline
Au working electrodes. At moderately anodic potentials, we find that
the OER activity of the electrode is dominated by <1% of the surface
area and that there are two types of active sites. The first is observed
at potentials positive of the OER onset and is stable under potential
cycling (and thus presumably extends multiple layers into the bulk
gold electrode). The second occurs at potentials negative of the OER
onset and is removed by potential cycling (suggesting that it involves
a structural motif only 1–2 Au layers deep). This type of active
site is most easily understood as the catalytically active species
(hydrous oxide) in the so-called incipient hydrous oxide/adatom mediator
model of electrocatalysis. Combining the ability we demonstrate here
to characterize the spatial heterogeneity of OER activity with a systematic
program of electrode surface structural modification offers the possibility
of creating a generation of OER electrocatalysts with unusually high
activity.
Collapse
Affiliation(s)
- Gregor Zwaschka
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Igor Nahalka
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering (IBI) and Materials Science and Engineering (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Arianna Marchioro
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering (IBI) and Materials Science and Engineering (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering (IBI) and Materials Science and Engineering (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - R. Kramer Campen
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| |
Collapse
|
34
|
Ma X, An Z, Song H, Shu X, Xiang X, He J. Atomic Pt-Catalyzed Heterogeneous Anti-Markovnikov C-N Formation: Pt 10 Activating N-H for Pt 1δ+-Activated C═C Attack. J Am Chem Soc 2020; 142:9017-9027. [PMID: 32315522 DOI: 10.1021/jacs.0c02997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-N formation is of great significance to synthetic chemistry, as N-containing products are widely used in chemistry, medicine, and biology. Addition of an amine to an unsaturated carbon-carbon bond is a simple yet effective route to produce new C-N bonds. But how to effectively conduct an anti-Markovnikov addition with high selectivity has been a great challenge. Here, we proposed a strategy for highly regioselective C-N addition via hydroamination by using supported Pt. It has been identified that atomic-scale Pt is the active site for C-N addition with Pt12+ for Markovnikov C-N formation and atomic Pt (Pt1δ+ and Pt10) contributing to anti-Markovnikov C-N formation. A selectivity of up to 92% to the anti-Markovnikov product has been achieved with atomic Pt in the addition of styrene and pyrrolidine. A cooperating catalysis for the anti-Markovnikov C-N formation between Pt1δ+ and Pt10 has been revealed. The reaction mechanism has been studied by EPR spectra and in situ FT-IR spectra of adsorption/desorption of styrene and/or pyrrolidine. It has been demonstrated that Pt10 activates amine to be electrophilic, while Pt1δ+ activates C═C by π-bonding to make β-C nucleophilic. The attack of nucleophilic β-C to electrophilic amine affords the anti-Markovnikov addition. This strategy proves highly effective to a variety of substrates in anti-Markovnikov C-N formation, including aromatic/aliphatic amines reacting with aromatic olefins, aromatic/aliphatic olefins with aromatic amines, and linear aliphatic olefins with secondary aliphatic amines. It is believed that the results provide evidence for the function of varied chemical states in monatomic catalysis.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
35
|
Felischak M, Wolff T, Alvarado Perea L, Seidel‐Morgenstern A, Hamel C. Detailed Kinetic Model for the Reaction of Ethene to Propene on Ni/AlMCM‐41. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.201900139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthias Felischak
- Otto von Guericke University Institute of Process Engineering Universitätsplatz 2 39106 Magdeburg Germany
| | - Tanya Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstraße 1 39106 Magdeburg Germany
| | - Leo Alvarado Perea
- Universidad Autónoma de Zacatecas Jardin Juarez 147 98000 Zacatecas Mexico
| | - Andreas Seidel‐Morgenstern
- Otto von Guericke University Institute of Process Engineering Universitätsplatz 2 39106 Magdeburg Germany
- Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstraße 1 39106 Magdeburg Germany
| | - Christof Hamel
- Otto von Guericke University Institute of Process Engineering Universitätsplatz 2 39106 Magdeburg Germany
- Anhalt University of Applied Sciences Bernburger Straße 55 06366 Köthen Germany
| |
Collapse
|
36
|
Vandervelden CA, Khan SA, Scott SL, Peters B. Site-averaged kinetics for catalysts on amorphous supports: an importance learning algorithm. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00356h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We combine importance sampling and kernel regression techniques to efficiently predict site-averaged kinetics for isolated catalyst sites on amorphous supports.
Collapse
Affiliation(s)
| | - Salman A. Khan
- Department of Chemical Engineering
- University of California
- Santa Barbara
- USA
| | - Susannah L. Scott
- Department of Chemical Engineering
- University of California
- Santa Barbara
- USA
- Department of Chemistry
| | - Baron Peters
- Department of Chemical and Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
- Department of Chemistry
| |
Collapse
|
37
|
Felischak M, Wolff T, Alvarado Perea L, Seidel-Morgenstern A, Hamel C. Influence of process parameters on single bed Ni/(Al)MCM-41 for the production of propene from ethene feedstock. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Michorczyk P, Węgrzyniak A, Węgrzynowicz A, Handzlik J. Simple and Efficient Way of Molybdenum Oxide-Based Catalyst Activation for Olefins Metathesis by Methane Pretreatment. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Piotr Michorczyk
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Adam Węgrzyniak
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Adam Węgrzynowicz
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Jarosław Handzlik
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| |
Collapse
|
39
|
Chan KW, Mance D, Safonova OV, Copéret C. Well-Defined Silica-Supported Tungsten(IV)-Oxo Complex: Olefin Metathesis Activity, Initiation, and Role of Brønsted Acid Sites. J Am Chem Soc 2019; 141:18286-18292. [PMID: 31618022 DOI: 10.1021/jacs.9b09493] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the importance of the heterogeneous tungsten-oxo-based olefin metathesis catalyst (WO3/SiO2) in industry, understanding of its initiation mechanism is still very limited. It has been proposed that reduced W(IV)-oxo surface species act as precatalysts. In order to understand the reactivity and initiation mechanism of surface W(IV)-oxo species, we synthesized a well-defined silica-supported W(IV)-oxo species, (≡SiO)WO(OtBuF6)(py)3 (F6@SiO2-700; OtBuF6 = OC(CH3)(CF3)2; py = pyridine), via surface organometallic chemistry (SOMC). F6@SiO2-700 was shown to be highly active in olefin metathesis upon removal of pyridine ligands through the addition of tris(pentafluorophenyl)borane (B(C6F5)3) or thermal treatment under high vacuum. The metathesis activity toward olefins with and without allylic C-H groups, namely β-methylstyrene and styrene, respectively, was investigated. In the case of styrene, we demonstrated the role of surface OH groups in initiating metathesis activity. We proposed that the presence of strong Brønsted acidic OH sites, which likely arises from the presence of adjacent W sites in the catalyst as revealed by 15N-labeled pyridine adsorption, can assist styrene metathesis. In contrast, initiation of olefins with allylic C-H groups (e.g., β-methylstyrene) is independent of the surface OH density and likely involves an allylic C-H activation mechanism, like the molecular W(IV)-oxo species. This study indicates that initiation mechanisms depend on the olefinic substrates and reveals the synergistic effect of Brønsted acidic surface sites and reduced W(IV) sites in the initiation of olefin metathesis.
Collapse
Affiliation(s)
- Ka Wing Chan
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Deni Mance
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | | | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| |
Collapse
|
40
|
Acid sites on silica-supported molybdenum oxides probed by ammonia adsorption: Experiment and theory. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Abstract
Olefin metathesis is the catalytic transformation of olefinic substrates, finding a wide range of applications in organic synthesis. The mesoporous molecular sieve Santa Barbara Amorphous (SBA-15) has proven to be an excellent support for metathesis catalysts thanks to its regular mesoporous structure, high BET area, and large pore volume. A survey of catalysts consisting of (i) molybdenum and tungsten oxides on SBA-15, and (ii) molybdenum and ruthenium organometallic complexes (Schrock and Grubbs-type carbenes) on SBA-15 is provided together with their characterization and catalytic performance in various metathesis reactions. The comparison with catalysts based on other supports demonstrates the high quality of the mesoporous molecular sieve SBA-15 as an advanced catalyst support.
Collapse
|
42
|
Pucino M, Zhai F, Gordon CP, Mance D, Hoveyda AH, Schrock RR, Copéret C. Silica-Supported Molybdenum Oxo Alkylidenes: Bridging the Gap between Internal and Terminal Olefin Metathesis. Angew Chem Int Ed Engl 2019; 58:11816-11819. [PMID: 31099940 DOI: 10.1002/anie.201903325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/15/2019] [Indexed: 11/11/2022]
Abstract
Grafting a molybdenum oxo alkylidene on silica (partially dehydroxylated at 700 °C) affords the first example of a well-defined silica-supported Mo oxo alkylidene, which is an analogue of the putative active sites in heterogeneous Mo-based metathesis catalysts. In contrast to its tungsten analogue, which shows poor activity towards terminal olefins because of the formation of a stable off-cycle metallacyclobutane intermediate, the Mo catalyst shows high metathesis activity for both terminal and internal olefins that is consistent with the lower stability of Mo metallacyclobutane intermediates. This Mo oxo metathesis catalyst also outperforms its corresponding neutral silica-supported Mo and W imido analogues.
Collapse
Affiliation(s)
- Margherita Pucino
- Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 2, 8093, Zürich, Switzerland
| | - Feng Zhai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher P Gordon
- Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 2, 8093, Zürich, Switzerland
| | - Deni Mance
- Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 2, 8093, Zürich, Switzerland
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Richard R Schrock
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christophe Copéret
- Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
43
|
Pucino M, Zhai F, Gordon CP, Mance D, Hoveyda AH, Schrock RR, Copéret C. Silica‐Supported Molybdenum Oxo Alkylidenes: Bridging the Gap between Internal and Terminal Olefin Metathesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Margherita Pucino
- Department of Chemistry and Applied Bioscience ETH Zürich Vladimir Prelog Weg 2 8093 Zürich Switzerland
| | - Feng Zhai
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Christopher P. Gordon
- Department of Chemistry and Applied Bioscience ETH Zürich Vladimir Prelog Weg 2 8093 Zürich Switzerland
| | - Deni Mance
- Department of Chemistry and Applied Bioscience ETH Zürich Vladimir Prelog Weg 2 8093 Zürich Switzerland
| | - Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg, CNRS 67000 Strasbourg France
| | - Richard R. Schrock
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Christophe Copéret
- Department of Chemistry and Applied Bioscience ETH Zürich Vladimir Prelog Weg 2 8093 Zürich Switzerland
| |
Collapse
|
44
|
Pei YP, Luo ZY, Hu RH, Yang YX, Chen WT. In situ preparation, structure, fluorescence and theoretical study of a cadmium-bipyridinium compound. INORG NANO-MET CHEM 2019. [DOI: 10.1080/15533174.2015.1136961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yun-Peng Pei
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji'an, Jiangxi, China
| | - Zhi-Yang Luo
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji'an, Jiangxi, China
| | - Rong-Hua Hu
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji'an, Jiangxi, China
| | - Yun-Xia Yang
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji'an, Jiangxi, China
| | - Wen-Tong Chen
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji'an, Jiangxi, China
| |
Collapse
|
45
|
Fu T, Wang Y, Wernbacher A, Schlögl R, Trunschke A. Single-Site Vanadyl Species Isolated within Molybdenum Oxide Monolayers in Propane Oxidation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00326] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teng Fu
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yuanqing Wang
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- BasCat - UniCat BASF JointLab, Technische Universität Berlin, Sekr. EW K 01, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Anna Wernbacher
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - Annette Trunschke
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
46
|
Otroshchenko T, Reinsdorf O, Linke D, Kondratenko EV. A chemical titration method for quantification of carbenes in Mo- or W-containing catalysts for metathesis of ethylene with 2-butenes: verification and application potential. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01697j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce and experimentally validate a simple titration method for quantifying the number of carbenes acting as active sites in the metathesis of ethylene with 2-butenes over Mo- or W-containing catalysts.
Collapse
Affiliation(s)
- Tatiana Otroshchenko
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- D-18059 Rostock
- Germany
| | - Ole Reinsdorf
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- D-18059 Rostock
- Germany
| | - David Linke
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- D-18059 Rostock
- Germany
| | | |
Collapse
|
47
|
Ghashghaee M, Ghambarian M. Ethene Protonation Over Silica-Grafted Metal (Cr, Mo, and W) Oxide Catalysts: A Comparative Nanocluster Modeling Study. RUSS J INORG CHEM+ 2018. [DOI: 10.1134/s0036023618160015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice. Catalysts 2018. [DOI: 10.3390/catal8100478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Active sites play an essential role in heterogeneous catalysis and largely determine the reaction properties. Yet identification and study of the active sites remain challenging owing to their dynamic behaviors during catalysis process and issues with current characterization techniques. This article provides a short review of research progresses in active sites of metal and metal oxide catalysts, which covers the past achievements, current research status, and perspectives in this research field. In particular, the concepts and theories of active sites are introduced. Major experimental and computational approaches that are used in active site study are summarized, with their applications and limitations being discussed. An outlook of future research direction in both experimental and computational catalysis research is provided.
Collapse
|
49
|
Chan KW, Lam E, D'Anna V, Allouche F, Michel C, Safonova OV, Sautet P, Copéret C. C-H Activation and Proton Transfer Initiate Alkene Metathesis Activity of the Tungsten(IV)-Oxo Complex. J Am Chem Soc 2018; 140:11395-11401. [PMID: 30110534 DOI: 10.1021/jacs.8b06603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In alkene metathesis, while group 6 (Mo or W) high-oxidation state alkylidenes are accepted to be key reaction intermediates for both homogeneous and heterogeneous catalysts, it has been proposed that low valent species in their +4 oxidation state can serve as precatalysts. However, the activation mechanism for these latter species-generating alkylidenes-is still an open question. Here, we report the syntheses of tungsten(IV)-oxo bisalkoxide molecular complexes stabilized by pyridine ligands, WO(OR)2py3 (R = CMe(CF3)2 (2a), R = Si(O tBu)3 (2b), and R = C(CF3)3 (2c); py = pyridine), and show that upon activation with B(C6F5)3 they display alkene metathesis activities comparable to W(VI)-oxo alkylidenes. The initiation mechanism is examined by kinetic, isotope labeling and computational studies. Experimental evidence reveals that the presence of an allylic CH group in the alkene reactant is crucial for initiating alkene metathesis. Deuterium labeling of the allylic C-H group shows a primary kinetic isotope effect on the rate of initiation. DFT calculations support the formation of an allyl hydride intermediate via activation of the allylic C-H bond and show that formation of the metallacyclobutane from the allyl "hydride" involves a proton transfer facilitated by the coordination of a Lewis acid (B(C6F5)3) and assisted by a Lewis base (pyridine). This proton transfer step is rate determining and yields the metathesis active species.
Collapse
Affiliation(s)
- Ka Wing Chan
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Erwin Lam
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Vincenza D'Anna
- Univ Lyon, Ens de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie , F-69342 Lyon , France
| | - Florian Allouche
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Carine Michel
- Univ Lyon, Ens de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie , F-69342 Lyon , France
| | | | - Philippe Sautet
- Univ Lyon, Ens de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie , F-69342 Lyon , France.,Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| |
Collapse
|
50
|
Abstract
Abstract
The reduced availability of propylene and C4 products from steam crackers continues to provoke on-purpose technologies for light olefins such that almost 30% of propylene in 2025 is predicted to be supplied from unconventional sources. Furthermore, the recent discoveries of natural gas reservoirs have urged interest in the conversion of surplus alkanes and alkenes, especially ethane and ethylene. The direct conversion of ethylene to propylene or a combination of value-added chemicals, including butylenes and oligomers in the range of gasoline and diesel fuel, provides the capability of responding to the fluctuations in the balance between supply and demand of the main petrochemicals. A comprehensive review of heterogeneous catalysts for the gas-phase conversion pathways is presented here in terms of catalytic performances (ethylene conversion and product selectivities), productivities, lifetimes, active sites, physicochemical properties, mechanisms, influence of operating conditions, deactivation and some unresolved/less-advanced aspects of the field. The addressed catalysts cover both zeolitic materials and transition metals, such as tungsten, molybdenum, rhenium and nickel. Efforts in both experimental and theoretical studies are taken into account. Aside from the potential fields of progress, the review reveals very promising performances for the emerging technologies to produce propylene, a mixture of propylene and butenes, or a liquid fuel from ethylene.
Collapse
|