1
|
Choi J, Kim BH. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1685. [PMID: 39453021 PMCID: PMC11510505 DOI: 10.3390/nano14201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Nanoparticle-based thin films are increasingly being used in various applications. One of the key factors that determines the properties and performances of these films is the type of ligands attached to the nanoparticle surfaces. While long-chain surfactants, such as oleic acid, are commonly employed to stabilize nanoparticles and ensure high monodispersity, these ligands often hinder charge transport due to their insulating nature. Although thermal annealing can remove the long-chain ligands, the removal process often introduces defects such as cracks and voids. In contrast, the use of short-chain organic or inorganic ligands can minimize interparticle distance, improving film conductivity, though challenges such as incomplete ligand exchange and residual barriers remain. Polymeric ligands, especially block copolymers, can also be employed to create films with tailored porosity. This review discusses the effects of various ligand types on the morphology and performance of nanoparticle-based films, highlighting the trade-offs between conductivity, structural integrity, and functionality.
Collapse
Affiliation(s)
- Jungwook Choi
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Byung Hyo Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
2
|
Sung Y, Kim HB, Kim JH, Noh Y, Yu J, Yang J, Kim TH, Oh J. Facile Ligand Exchange of Ionic Ligand-Capped Amphiphilic Ag 2S Nanocrystals for High Conductive Thin Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3853-3861. [PMID: 38207283 DOI: 10.1021/acsami.3c15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A surface ligand modification of colloidal nanocrystals (NCs) is one of the crucial issues for their practical applications because of the highly insulating nature of native long-chain ligands. Herein, we present straightforward methods for phase transfer and ligand exchange of amphiphilic Ag2S NCs and the fabrication of highly conductive films. S-terminated Ag2S (S-Ag2S) NCs are capped with ionic octylammonium (OctAH+) ligands to compensate for surface anionic charge, S2-, of the NC core. An injection of polar solvent, formamide (FA), into S-Ag2S NCs dispersed in toluene leads to an additional envelopment of the charged S-Ag2S NC core by FA due to electrostatic stabilization, which allows its amphiphilic nature and results in a rapid and effective phase transfer without any ligand addition. Because the solvation by FA involves a dissociation equilibrium of the ionic OctAH+ ligands, controlling a concentration of OctAH+ enables this phase transfer to show reversibility. This underlying chemistry allows S-Ag2S NCs in FA to exhibit a complete ligand exchange to Na+ ligands. The S-Ag2S NCs with Na+ ligands show a close interparticle distance and compatibility for uniformly deposited thin films by a simple spin-coating method. In photoelectrochemical measurements with stacked Ag2S NCs on ITO electrodes, a 3-fold enhanced current response was observed for the ligand passivation of Na+ compared to OctAH+, indicating a significantly enhanced charge transport in the Ag2S NC film by a drastically reduced interparticle distance due to the Na+ ligands.
Collapse
Affiliation(s)
- Yunmo Sung
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Hyun Beom Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Ji Heon Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Yoona Noh
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Jaesang Yu
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, South Korea
| | - Jaesung Yang
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, South Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| |
Collapse
|
3
|
Tian Y, Luo H, Chen M, Li C, Kershaw SV, Zhang R, Rogach AL. Mercury chalcogenide colloidal quantum dots for infrared photodetection: from synthesis to device applications. NANOSCALE 2023; 15:6476-6504. [PMID: 36960839 DOI: 10.1039/d2nr07309a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Commercial infrared (IR) photodetectors based on epitaxial growth inorganic semiconductors, e.g. InGaAs and HgCdTe, suffer from high fabrication cost, poor compatibility with silicon integrated circuits, rigid substrates and bulky cooling systems, which leaves a large development window for the emerging solution-processable semiconductor-based photo-sensing devices. Among the solution-processable semiconductors, mercury (Hg) chalcogenide colloidal quantum dots (QDs) exhibit unique ultra-broad and tuneable photo-responses in the short-wave infrared to far-wave infrared range, and have demonstrated photo-sensing abilities comparable to the commercial products, especially with advances in high operation temperature. Here, we provide a focused review on photodetectors employing Hg chalcogenide colloidal QDs, with a comprehensive summary of the essential progress in the areas of synthesis methods of QDs, property control, device engineering, focus plane array integration, etc. Besides imaging demonstrations, a series of Hg chalcogenide QD photodetector based flexible, integrated, multi-functional applications are also summarized. This review shows prospects for the next-generation low-cost highly-sensitive and compact IR photodetectors based on solution-processable Hg chalcogenide colloidal QDs.
Collapse
Affiliation(s)
- Yuanyuan Tian
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hongqiang Luo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| | - Rong Zhang
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Xiamen University, Xiamen 361005, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| |
Collapse
|
4
|
Kang J, Sherman ZM, Crory HSN, Conrad DL, Berry MW, Roman BJ, Anslyn EV, Truskett TM, Milliron DJ. Modular mixing in plasmonic metal oxide nanocrystal gels with thermoreversible links. J Chem Phys 2023; 158:024903. [PMID: 36641404 DOI: 10.1063/5.0130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gelation offers a powerful strategy to assemble plasmonic nanocrystal networks incorporating both the distinctive optical properties of constituent building blocks and customizable collective properties. Beyond what a single-component assembly can offer, the characteristics of nanocrystal networks can be tuned in a broader range when two or more components are intimately combined. Here, we demonstrate mixed nanocrystal gel networks using thermoresponsive metal-terpyridine links that enable rapid gel assembly and disassembly with thermal cycling. Plasmonic indium oxide nanocrystals with different sizes, doping concentrations, and shapes are reliably intermixed in linked gel assemblies, exhibiting collective infrared absorption that reflects the contributions of each component while also deviating systematically from a linear combination of the spectra for single-component gels. We extend a many-bodied, mutual polarization method to simulate the optical response of mixed nanocrystal gels, reproducing the experimental trends with no free parameters and revealing that spectral deviations originate from cross-coupling between nanocrystals with distinct plasmonic properties. Our thermoreversible linking strategy directs the assembly of mixed nanocrystal gels with continuously tunable far- and near-field optical properties that are distinct from those of the building blocks or mixed close-packed structures.
Collapse
Affiliation(s)
- Jiho Kang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Zachary M Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hannah S N Crory
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Diana L Conrad
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Marina W Berry
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
5
|
Ge J, Liang J, Chen X, Deng Y, Xiao P, Zhu JJ, Wang Y. Designing inorganically functionalized magic-size II-VI clusters and unraveling their surface states. Chem Sci 2022; 13:11755-11763. [PMID: 36320910 PMCID: PMC9580488 DOI: 10.1039/d2sc03868d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022] Open
Abstract
Surface engineering is a critical step in the functionalization of nanomaterials to improve their optical and electrochemical properties. However, this process remains a challenge in II-VI magic-size clusters (MSCs) due to their high sensitivity to the environment. Herein, we developed a general surface modification strategy to design all-inorganic MSCs by using certain metal salts (cation = Zn2+, In3+; Anion = Cl-, NO3 -, OTf-) and stabilized (CdS)34, (CdSe)34 and (ZnSe)34 MSCs in polar solvents. We further investigated the surface states of II-VI MSCs using electrochemiluminescence (ECL). The mechanism study revealed that the ECL emission was attributed to . Two ECL emissions at 556 nm and 530 nm demonstrated two surface passivation modes on (CdS)34 MSCs, which can be tuned by the surface ligands. The achievement of surface engineering opens a new design space for functional MSC compounds.
Collapse
Affiliation(s)
- Junjun Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jing Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Xufeng Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yalei Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Pengwei Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jun-Jie Zhu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|
6
|
Hao H, Ai J, Shi C, Zhou D, Meng L, Bian H, Fang Y. Structural Dynamics of Short Ligands on the Surface of ZnSe Semiconductor Nanocrystals. J Phys Chem Lett 2022; 13:3158-3164. [PMID: 35362990 DOI: 10.1021/acs.jpclett.2c00849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
ZnSe semiconductor nanocrystals (NCs) with a size comparable to their Bohr radius are synthesized, and the native capping agents with long hydrocarbon tails are replaced with short thiocyanate (SCN) ligands through a ligand exchange method. The structural dynamics of SCN ligands on the surface of ZnSe NCs in solution is investigated by ultrafast infrared spectroscopy. Vibrational population relaxation of SCN ligands is accelerated due to the specific interaction with the positively charged sites on the surface of NCs. The orientational anisotropy of the bound SCN ligands decayed at a rate much faster than that in the control solution containing Zn2+ cations. From the wobbling-in-the-cone model analysis, we found that the SCN ligand undergoes wobbling orientational diffusion with a relatively large cone semiangle on the surface of ZnSe NCs, and the overall orientational diffusion of bound SCN is found to be strongly dependent on the size of ZnSe NCs.
Collapse
Affiliation(s)
- Hongxing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jingwen Ai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chenxiao Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lingbo Meng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Green AM, Ofosu CK, Kang J, Anslyn EV, Truskett TM, Milliron DJ. Assembling Inorganic Nanocrystal Gels. NANO LETTERS 2022; 22:1457-1466. [PMID: 35124960 DOI: 10.1021/acs.nanolett.1c04707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inorganic nanocrystal gels retain distinct properties of individual nanocrystals while offering tunable, network-structure-dependent characteristics. We review different mechanisms for assembling gels from colloidal nanocrystals including (1) controlled destabilization, (2) direct bridging, (3) depletion, as well as linking mediated by (4) coordination bonding or (5) dynamic covalent bonding, and we highlight how each impacts gel properties. These approaches use nanocrystal surface chemistry or the addition of small molecules to mediate inter-nanocrystal attractions. Each method offers advantages in terms of gel stability, reversibility, or tunability and presents new opportunities for the design of reconfigurable materials and fueled assemblies.
Collapse
Affiliation(s)
- Allison M Green
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78 712, United States
| | - Charles K Ofosu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78 712, United States
| | - Jiho Kang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78 712, United States
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78 712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78 712, United States
- Department of Physics, University of Texas at Austin, Austin, Texas 78 712, United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78 712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78 712, United States
| |
Collapse
|
8
|
Wang W, Zhang M, Pan Z, Biesold GM, Liang S, Rao H, Lin Z, Zhong X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem Rev 2021; 122:4091-4162. [PMID: 34968050 DOI: 10.1021/acs.chemrev.1c00478] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal nanocrystals (NCs) are intriguing building blocks for assembling various functional thin films and devices. The electronic, optoelectronic, and thermoelectric applications of solution-processed, inorganic ligand (IL)-capped colloidal NCs are especially promising as the performance of related devices can substantially outperform their organic ligand-capped counterparts. This in turn highlights the significance of preparing IL-capped NC dispersions. The replacement of initial bulky and insulating ligands capped on NCs with short and conductive inorganic ones is a critical step in solution-phase ligand exchange for preparing IL-capped NCs. Solution-phase ligand exchange is extremely appealing due to the highly concentrated NC inks with completed ligand exchange and homogeneous ligand coverage on the NC surface. In this review, the state-of-the-art of IL-capped NCs derived from solution-phase inorganic ligand exchange (SPILE) reactions are comprehensively reviewed. First, a general overview of the development and recent advancements of the synthesis of IL-capped colloidal NCs, mechanisms of SPILE, elementary reaction principles, surface chemistry, and advanced characterizations is provided. Second, a series of important factors in the SPILE process are offered, followed by an illustration of how properties of NC dispersions evolve after ILE. Third, surface modifications of perovskite NCs with use of inorganic reagents are overviewed. They are necessary because perovskite NCs cannot withstand polar solvents or undergo SPILE due to their soft ionic nature. Fourth, an overview of the research progresses in utilizing IL-capped NCs for a wide range of applications is presented, including NC synthesis, NC solid and film fabrication techniques, field effect transistors, photodetectors, photovoltaic devices, thermoelectric, and photoelectrocatalytic materials. Finally, the review concludes by outlining the remaining challenges in this field and proposing promising directions to further promote the development of IL-capped NCs in practical application in the future.
Collapse
Affiliation(s)
- Wenran Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenxiao Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huashang Rao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xinhua Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
9
|
Guo R, Zhang K, Ji S, Zheng Y, Jin M. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Shi Y, Lim SJ, Ma L, Duan N, Yan X, Tang X, Yang W, Yang S, Hu J, Smith AM, Zhu X. Inorganic-Ligand Quantum Dots Meet Inorganic-Ligand Semiconductor Nanoplatelets: A Promising Fusion to Construct All-Inorganic Assembly. Inorg Chem 2021; 60:6994-6998. [PMID: 33929182 DOI: 10.1021/acs.inorgchem.1c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By the reaction of inorganic-ligand CdS/Cd2+ quantum dots (QDs) with inorganic-ligand CdSe/CdS/S2- nanoplatelets (NPLs), semiconductor CdS QDs were fused with CdSe/CdS NPLs to yield all-inorganic assemblies, accompanied by great photoluminescence-enhancement. These all-inorganic assemblies facilitate charge transport between each other and open up interesting prospects with electronic and optoelectronic nanodevices.
Collapse
Affiliation(s)
- Yunfeng Shi
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, People's Republic of China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, People's Republic of China.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sung Jun Lim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Liang Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ning Duan
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, People's Republic of China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, People's Republic of China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, People's Republic of China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, People's Republic of China
| | - Xiaole Tang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, People's Republic of China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, People's Republic of China
| | - Wenyan Yang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, People's Republic of China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, People's Republic of China
| | - Shu Yang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, People's Republic of China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, People's Republic of China
| | - Jiaxin Hu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, People's Republic of China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, People's Republic of China
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
11
|
Kim M, Park GH, Seo S, Bui VQ, Cho Y, Hong Y, Kawazoe Y, Lee H. Uncovering the Role of Countercations in Ligand Exchange of WSe 2: Tuning the d-Band Center toward Improved Hydrogen Desorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11403-11413. [PMID: 33636973 DOI: 10.1021/acsami.0c19865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The role of countercations that do not bind to core nanocrystals (NCs) but rather ensure charge balance on ligand-exchanged NC surfaces has been rarely studied and even neglected. Such a scenario is unfortunate, as an understanding of surface chemistry has emerged as a key factor in overcoming colloidal NC limitations as catalysts. In this work, we report on the unprecedented role of countercations in ligand exchange for a colloidal transition metal dichalcogenide (TMD), WSe2, to tune the d-band center toward the Fermi level for enhanced hydrogen desorption. Conventional long-chain organic ligands, oleylamine, of WSe2 NCs are exchanged with short atomic S2- ligands having countercations to preserve the charge balance (WSe2/S2-/M+, M = Li, Na, K). Upon exchange with S2- ligands, the charge-balancing countercations are intercalated between WSe2 layers, thereby serving a unique function as an electrochemical hydrogen evolution reaction (HER) catalyst. The HER activity of ligand-exchanged colloidal WSe2 NCs shows a decrease in overpotential by down-shift of d-band center to induce more electron-filling in antibonding orbital and an increase in the electrochemical active surface area (ECSA). Exchanging surface functionalities with S2- anionic ligands enhances HER kinetics, while the existence of intercalated countercations improves charge transfer with the electrolyte. The obtained results suggest that both anionic ligands and countercationic species in ligand exchange must be considered to enhance the overall catalytic activity of colloidal TMDs.
Collapse
Affiliation(s)
- Meeree Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - G Hwan Park
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sohyeon Seo
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Viet Quoc Bui
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yunhee Cho
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yeseul Hong
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan
| | - Hyoyoung Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Biopysics, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Gillet A, Cher S, Tassé M, Blon T, Alves S, Izzet G, Chaudret B, Proust A, Demont P, Volatron F, Tricard S. Polarizability is a key parameter for molecular electronics. NANOSCALE HORIZONS 2021; 6:271-276. [PMID: 33507203 DOI: 10.1039/d0nh00583e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identifying descriptors that govern charge transport in molecular electronics is of prime importance for the elaboration of devices. The effects of molecule characteristics, such as size, bulkiness or charge, have been widely reported. Herein, we show that the molecule polarizability can be a crucial parameter to consider. To this end, platinum nanoparticle self-assemblies (PtNP SAs) are synthesized in solution, including a series of polyoxometalates (POMs). The charge of the POM unit can be modified according to the nature of the central heteroatom while keeping its size constant. POM hybrids that display remote terminal thiol functions strongly anchor the PtNP surface to form robust SAs. IV curves, recorded by conductive AFM, show a decrease in Coulomb blockade as the dielectric constant of the POMs increases. In this system, charge transport across molecular junctions can be interpreted as variations in polarizability, which is directly related to the dielectric constant.
Collapse
Affiliation(s)
- Angélique Gillet
- Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yu S, Wu F, Zou P, Fan XB, Duan C, Dan M, Xie Z, Zhang Q, Zhang F, Zheng H, Zhou Y. Highly value-added utilization of H 2S in Na 2SO 3 solution over Ca-CdS nanocrystal photocatalysts. Chem Commun (Camb) 2020; 56:14227-14230. [PMID: 33118562 DOI: 10.1039/d0cc05894g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alkaline-earth metal Ca2+ modified CdS nanocrystals have been designed for the first time for highly efficient H2 evolution from hydrogen sulfide (H2S) with Na2SO3 as a favourable reaction medium. The advantage of Na2SO3 was revealed by an electrochemical test, and the conversion of Na2SO3 during the reaction was carefully studied. Particularly, most of Na2SO3 was converted into Na2S2O3. Highly value-added utilization of waste H2S is therefore achieved via photocatalysis.
Collapse
Affiliation(s)
- Shan Yu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu S, Xie Z, Ran M, Wu F, Zhong Y, Dan M, Zhou Y. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. J Colloid Interface Sci 2020; 573:71-77. [DOI: 10.1016/j.jcis.2020.03.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022]
|
15
|
Ye J, Ren G, Kang L, Zhang Y, Liu X, Zhou S, He Z. Efficient Photoelectron Capture by Ni Decoration in Methanosarcina barkeri-CdS Biohybrids for Enhanced Photocatalytic CO 2-to-CH 4 Conversion. iScience 2020; 23:101287. [PMID: 32623335 PMCID: PMC7334578 DOI: 10.1016/j.isci.2020.101287] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/13/2020] [Indexed: 01/08/2023] Open
Abstract
Semi-artificial photosynthesis (biohybrid) provides an intriguing opportunity for efficient CO2-to-CH4 conversion. However, creating a desirable semiconductor in biohybrids remains a great challenge. Here, by doping Ni into CdS nanoparticles, we have successfully developed the Methanosarcina barkeri-Ni:CdS biohybrids. The CH4 yield by the M. barkeri-Ni(0.75%):CdS biohybrids was approximately 250% higher than that by the M. barkeri-CdS biohybrids. The suitable Ni dopants serve as an effective electron sink, which accelerates the photoelectron transfer in biohybrids. In addition, Ni doping changes the metabolic status of M. barkeri and results in a higher expression of a series of proteins for electron transfer, energy conversion, and CO2 fixation. These increased proteins can promote the photoelectron capture by M. barkeri and injection into cells, which trigger a higher intracellular reduction potential to drive the reduction of CO2 to CH4. Our discovery will offer a promising strategy for the optimization of biohybrids in the solar-to-chemical conversion. M. barkeri-Ni:CdS biohybrids were successfully developed for CO2 reduction A highest QE of 2.08% was achieved by the M. barkeri-Ni(0.75%):CdS biohybrids Ni dopants effectively suppressed the electron-hole recombination in biohybrids Ni doping changed the metabolic status of M. barkeri in biohybrids
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Kang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiyun Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
16
|
Usmani S, Mikolasek M, Gillet A, Sanchez Costa J, Rigoulet M, Chaudret B, Bousseksou A, Lassalle-Kaiser B, Demont P, Molnár G, Salmon L, Carrey J, Tricard S. Spin crossover in Fe(triazole)-Pt nanoparticle self-assembly structured at the sub-5 nm scale. NANOSCALE 2020; 12:8180-8187. [PMID: 32248213 DOI: 10.1039/d0nr02154g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A main goal of molecular electronics is to relate the performance of devices to the structure and electronic state of molecules. Among the variety of possibilities that organic, organometallic and coordination chemistries offer to tune the energy levels of molecular components, spin crossover phenomenon is a perfect candidate for elaboration of molecular switches. The reorganization of the electronic state population of the molecules associated to the spin crossover can indeed lead to a significant change in conductivity. However, molecular spin crossover is very sensitive to the environment and can disappear once the molecules are integrated into devices. Here, we show that the association of ultra-small 1.2 nm platinum nanoparticles with FeII triazole-based spin crossover coordination polymers leads to self-assemblies, extremely well organized at the sub-3 nm scale. The quasi-perfect alignment of nanoparticles observed by transmission electron microscopy, in addition to specific signature in infrared spectroscopy, demonstrates the coordination of the long-chain molecules with the nanoparticles. Spin crossover is confirmed in such assemblies by X-ray absorption spectroscopic measurements and shows unambiguous characteristics both in magnetic and charge transport measurements. Coordinating polymers are therefore ideal candidates for the elaboration of robust, well-organized, hybrid self-assemblies with metallic nanoparticles, while maintaining sensitive functional properties, such as spin crossover.
Collapse
Affiliation(s)
- Suhail Usmani
- Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhong W, Huang Y, Wang X, Fan J, Yu H. Colloidal CdS and CdZnS nanocrystal photocatalysts with massive S2−-adsorption: one-step facile synthesis and highly efficient H2-evolution performance. Chem Commun (Camb) 2020; 56:9316-9319. [DOI: 10.1039/d0cc01191f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A cocatalyst-free strategy was reported to achieve the high H2-evolution activity by colloidal CdS nanocrystal photocatalysts with massive S2−-adsorption.
Collapse
Affiliation(s)
- Wei Zhong
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Ying Huang
- Department of Chemistry, School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Xuefei Wang
- Department of Chemistry, School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450002
- P. R. China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Department of Chemistry, School of Chemistry
| |
Collapse
|
18
|
Hu GL, Hu R, Liu ZH, Wang K, Yan XY, Wang HY. Tri-functional molecular relay to fabricate size-controlled CoOx nanoparticles and WO3 photoanode for an efficient photoelectrochemical water oxidation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00483a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heterojunction and element doping to couple light-harvesting semiconductors with catalytic materials have been widely employed for photoelectrochemical (PEC) water splitting.
Collapse
Affiliation(s)
- Gui-Lin Hu
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Rong Hu
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Zhi-Hong Liu
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Kai Wang
- Scientific Research and Academic Office
- Air Force Logistics College
- Xuzhou
- P. R. China
| | - Xiang-Yang Yan
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Hong-Yan Wang
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| |
Collapse
|
19
|
Wang Y, Pan JA, Wu H, Talapin DV. Direct Wavelength-Selective Optical and Electron-Beam Lithography of Functional Inorganic Nanomaterials. ACS NANO 2019; 13:13917-13931. [PMID: 31609104 DOI: 10.1021/acsnano.9b05491] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Direct optical lithography of functional inorganic nanomaterials (DOLFIN) is a photoresist-free method for high-resolution patterning of inorganic nanocrystals (NCs) that has been demonstrated using deep UV (DUV, 254 nm) photons. Here, we expand the versatility of DOLFIN by designing a series of photochemically active NC surface ligands for direct patterning using various photon energies including DUV, near-UV (i-line, 365 nm), blue (h-line, 405 nm), and visible (450 nm) light. We show that the exposure dose for DOLFIN can be ∼30 mJ/cm2, which is small compared to most commercial photopolymer resists. Patterned nanomaterials can serve as highly robust optical diffraction gratings. We also introduce a general approach for resist-free direct electron-beam lithography of functional inorganic nanomaterials (DELFIN) which enables all-inorganic NC patterns with feature size down to 30 nm, while preserving the optical and electronic properties of patterned NCs. The designed ligand chemistries and patterning techniques offer a versatile platform for nano- and micron-scale additive manufacturing, complementing the existing toolbox for device fabrication.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Chemistry and James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
| | - Jia-Ahn Pan
- Department of Chemistry and James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
| | - Haoqi Wu
- Department of Chemistry and James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
20
|
Xue Z, Wang P, Peng A, Wang T. Architectural Design of Self-Assembled Hollow Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801441. [PMID: 30256464 DOI: 10.1002/adma.201801441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Colloidal nanoparticle assemblies are widely designed and fabricated via various building blocks to enhance their intrinsic properties and potential applications. Self-assembled hollow superstructures have been a focal point in nanotechnology for several decades and are likely to remain so for the foreseeable future. The novel properties of self-assembled hollow superstructures stem from their effective spatial utilization. As such, a comprehensive appreciation of the interactive forces at play among individual building blocks is a prerequisite for designing and managing the self-assembly process, toward the fabrication of optimal hollow nanoproducts. Herein, the emerging approaches to the fabrication of self-assembled hollow superstructures, including hard-templated, soft-templated, self-templated, and template-free methods, are classified and discussed. The corresponding reinforcement mechanisms, such as strong ligand interaction strategies and extra-capping strategies, are discussed in detail. Finally, possible future directions for the construction of multifunctional hollow superstructures with highly efficient catalytic reaction systems and an integration platform for bioapplications are discussed.
Collapse
Affiliation(s)
- Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peilong Wang
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing, 100081, P. R. China
| | - Aidong Peng
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Freyer AR, Sercel PC, Hou Z, Savitzky BH, Kourkoutis LF, Efros AL, Krauss TD. Explaining the Unusual Photoluminescence of Semiconductor Nanocrystals Doped via Cation Exchange. NANO LETTERS 2019; 19:4797-4803. [PMID: 31199150 DOI: 10.1021/acs.nanolett.9b02284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aliovalent doping of CdSe nanocrystals (NCs) via cation exchange processes has resulted in interesting and novel observations for the optical and electronic properties of the NCs. However, despite over a decade of study, these observations have largely gone unexplained, partially due to an inability to precisely characterize the physical properties of the doped NCs. Here, electrostatic force microscopy was used to determine the static charge on individual, cation-doped CdSe NCs in order to investigate their net charge as a function of added cations. While the NC charge was relatively insensitive to the relative amount of doped cation per NC, there was a remarkable and unexpected correlation between the average NC charge and PL intensity, for all dopant cations introduced. We conclude that the changes in PL intensity, as tracked also by changes in NC charge, are likely a consequence of changes in the NC radiative rate caused by symmetry breaking of the electronic states of the nominally spherical NC due to the Coulombic potential introduced by ionized cations.
Collapse
Affiliation(s)
| | - Peter C Sercel
- T. J. Watson Laboratory of Applied Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | | | | | | | | | | |
Collapse
|
22
|
Khodam F, Amani-Ghadim AR, Aber S. Mg nanoparticles core-CdS QDs shell heterostructures with ZnS passivation layer for efficient quantum dot sensitized solar cell. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ren L, Wang M, Wang S, Yan H, Zhang Z, Li M, Zhang Z, Jin K. Doped Manipulation of Photoluminescence and Carrier Lifetime from CH 3NH 3PbI 3 Perovskite Thin Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16174-16180. [PMID: 30950263 DOI: 10.1021/acsami.9b01506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The compositional doping techniques can delicately tune the band gap, carrier concentration, and mobility of perovskites to optimize the photoelectric properties of materials. It is reported that the doped perovskites have been widely researched in the photovoltaic and photoelectronic field. Here, we show that the photoluminescence intensity and carrier lifetime of CH3NH3PbI3 films have been improved by 3 orders of magnitude by incorporating abundant MnAc2·4H2O in the perovskite precursor solution, which benefits from the morphological change and surface passivation induced by hydration water and surface manganese acetate. We also witness the increased photoluminescence quantum yield for film and the changed power conversion efficiency for perovskite solar cells. More importantly, the enhanced chemical stability of perovskite is displayed by immersing films into the water.
Collapse
Affiliation(s)
- Lixia Ren
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Min Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Hong Yan
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Zhan Zhang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Ming Li
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Zhaoting Zhang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , China
| |
Collapse
|
24
|
Shrestha A, Batmunkh M, Tricoli A, Qiao SZ, Dai S. Nahinfrarotaktive Bleichalkogenid‐Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201804053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aabhash Shrestha
- School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australien
- Nanotechnology Research Laboratory, Research School of Engineering The Australian National University Canberra ACT 2601 Australien
| | - Munkhbayar Batmunkh
- School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australien
- College of Science and Engineering Flinders University Bedford Park Adelaide SA 5042 Australien
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australien
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Engineering The Australian National University Canberra ACT 2601 Australien
| | - Shi Zhang Qiao
- School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australien
| | - Sheng Dai
- School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australien
- Department of Chemical Engineering Brunel University London Uxbridge UB8 3 Großbritannien
| |
Collapse
|
25
|
Shrestha A, Batmunkh M, Tricoli A, Qiao SZ, Dai S. Near-Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Post-Synthesis Ligand Exchange, and Applications in Solar Cells. Angew Chem Int Ed Engl 2019; 58:5202-5224. [PMID: 29878530 DOI: 10.1002/anie.201804053] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Quantum dots (QDs) of lead chalcogenides (e.g. PbS, PbSe, and PbTe) are attractive near-infrared (NIR) active materials that show great potential in a wide range of applications, such as, photovoltaics (PV), optoelectronics, sensors, and bio-electronics. The surface ligand plays an essential role in the production of QDs, post-synthesis modification, and their integration to practical applications. Therefore, it is critically important that the influence of surface ligands on the synthesis and properties of QDs is well understood for their applications in various devices. In this Review we elaborate the application of colloidal synthesis techniques for the preparation of lead chalcogenide based QDs. We specifically focus on the influence of surface ligands on the synthesis of QDs and their solution-phase ligand exchange. Given the importance of lead chalcogenide QDs as potential light harvesters, we also pay particular attention to the current progress of these QDs in photovoltaic applications.
Collapse
Affiliation(s)
- Aabhash Shrestha
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.,Nanotechnology Research Laboratory, Research School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Munkhbayar Batmunkh
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.,College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shi Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sheng Dai
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Chemical Engineering, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
26
|
Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films. Nat Commun 2019; 10:864. [PMID: 30787291 PMCID: PMC6382880 DOI: 10.1038/s41467-019-08883-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/06/2019] [Indexed: 11/09/2022] Open
Abstract
The discovery of SnSe single crystals with record high thermoelectric efficiency along the b-axis has led to the search for ways to synthesize polycrystalline SnSe with similar efficiencies. However, due to weak texturing and difficulties in doping, such high thermoelectric efficiencies have not been realized in polycrystals or thin films. Here, we show that highly textured and hole doped SnSe thin films with thermoelectric power factors at the single crystal level can be prepared by solution process. Purification step in the synthetic process produced a SnSe-based chalcogenidometallate precursor, which decomposes to form the SnSe2 phase. We show that the strong textures of the thin films in the b-c plane originate from the transition of two dimensional SnSe2 to SnSe. This composition change-driven transition offers wide control over composition and doping of the thin films. Our optimum SnSe thin films exhibit a thermoelectric power factor of 4.27 μW cm-1 K-2.
Collapse
|
27
|
Fan XB, Yu S, Wang X, Li ZJ, Zhan F, Li JX, Gao YJ, Xia AD, Tao Y, Li XB, Zhang LP, Tung CH, Wu LZ. Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804872. [PMID: 30570781 DOI: 10.1002/adma.201804872] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Semiconducting quantum dots (QDs) have recently triggered a huge interest in constructing efficient hydrogen production systems. It is well established that a large fraction of surface atoms of QDs need ligands to stabilize and avoid them from aggregating. However, the influence of the surface property of QDs on photocatalysis is rather elusive. Here, the surface regulation of CdSe QDs is investigated by surface sulfide ions (S2- ) for photocatalytic hydrogen evolution. Structural and spectroscopic study shows that with gradual addition of S2- , S2- first grows into the lattice and later works as ligands on the surface of CdSe QDs. In-depth transient spectroscopy reveals that the initial lattice S2- accelerates electron transfer from QDs to cocatalyst, and the following ligand S2- mainly facilitates hole transfer from QDs to the sacrificial agent. As a result, a turnover frequency (TOF) of 7950 h-1 can be achieved by the S2- modified CdSe QDs, fourfold higher than that of original mercaptopropionic acid (MPA) capped CdSe QDs. Clearly, the simple surface S2- modification of QDs greatly increases the photocatalytic efficiency, which provides subtle methods to design new QD material for advanced photocatalysis.
Collapse
Affiliation(s)
- Xiang-Bing Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shan Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xian Wang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhi-Jun Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fei Zhan
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jia-Xin Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Ji Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - An-Dong Xia
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ye Tao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Zhao K, Niu W, Wang Y, Zhang S. Electrophilic substitution reaction as a facile and general approach for reactive removal of native ligands from nanocrystals surface. NANOTECHNOLOGY 2019; 30:015701. [PMID: 30359328 DOI: 10.1088/1361-6528/aae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface property that strongly affects physical and chemical performances of inorganic nanocrystals (NCs) is a key enabler for NCs applications. Here, we report a facile, versatile and general strategy for reactive removal of NCs surface ligands based on electrophilic substitution reaction, in which an electrophile directly reacts with the electron-rich coordinating headgroup of surface-tethered ligands to form a non-coordinating product. This process leads to the break of NC-ligand bond, thereby achieving reactive removal of surface ligands. Based on this strategy, various hydrophobic NCs with different compositions and morphologies can be transferred into polar and hydrophilic media while preserving their size and shape. More importantly, the treated NCs present a great improvement in catalytic and biological performances in comparison with the untreated counterparts. This work not only provides a versatile ligand removal strategy for NCs surface modification but also opens up more opportunities for applications in the fields of electronics, catalysis and biotechnology.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Wang J, Xia T, Wang L, Zheng X, Qi Z, Gao C, Zhu J, Li Z, Xu H, Xiong Y. Enabling Visible-Light-Driven Selective CO2
Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H2
Evolution. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810550] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Tong Xia
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Xusheng Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Zeming Qi
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| |
Collapse
|
30
|
Wang J, Xia T, Wang L, Zheng X, Qi Z, Gao C, Zhu J, Li Z, Xu H, Xiong Y. Enabling Visible-Light-Driven Selective CO2
Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H2
Evolution. Angew Chem Int Ed Engl 2018; 57:16447-16451. [DOI: 10.1002/anie.201810550] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Tong Xia
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Xusheng Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Zeming Qi
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); School of Chemistry and Materials Science; National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| |
Collapse
|
31
|
Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun 2018; 9:4009. [PMID: 30275447 PMCID: PMC6167351 DOI: 10.1038/s41467-018-06294-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Photocatalytic hydrogen evolution is a promising technique for the direct conversion of solar energy into chemical fuels. Colloidal quantum dots with tunable band gap and versatile surface properties remain among the most prominent targets in photocatalysis despite their frequent toxicity, which is detrimental for environmentally friendly technological implementations. In the present work, all-inorganic sulfide-capped InP and InP/ZnS quantum dots are introduced as competitive and far less toxic alternatives for photocatalytic hydrogen evolution in aqueous solution, reaching turnover numbers up to 128,000 based on quantum dots with a maximum internal quantum yield of 31%. In addition to the favorable band gap of InP quantum dots, in-depth studies show that the high efficiency also arises from successful ligand engineering with sulfide ions. Due to their small size and outstanding hole capture properties, sulfide ions effectively extract holes from quantum dots for exciton separation and decrease the physical and electrical barriers for charge transfer. While quantum dots show high efficiency solar-to-fuel conversion for renewable energy, the frequently toxic elements employed present severe safety concerns. Here, authors demonstrate indium phosphide quantum dots as low-toxicity alternatives alongside efficient hydrogen evolution photocatalysis.
Collapse
|
32
|
Yu S, Fan XB, Wang X, Li J, Zhang Q, Xia A, Wei S, Wu LZ, Zhou Y, Patzke GR. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun 2018. [PMID: 30275447 DOI: 10.1038/s41467-018-06294-y.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Photocatalytic hydrogen evolution is a promising technique for the direct conversion of solar energy into chemical fuels. Colloidal quantum dots with tunable band gap and versatile surface properties remain among the most prominent targets in photocatalysis despite their frequent toxicity, which is detrimental for environmentally friendly technological implementations. In the present work, all-inorganic sulfide-capped InP and InP/ZnS quantum dots are introduced as competitive and far less toxic alternatives for photocatalytic hydrogen evolution in aqueous solution, reaching turnover numbers up to 128,000 based on quantum dots with a maximum internal quantum yield of 31%. In addition to the favorable band gap of InP quantum dots, in-depth studies show that the high efficiency also arises from successful ligand engineering with sulfide ions. Due to their small size and outstanding hole capture properties, sulfide ions effectively extract holes from quantum dots for exciton separation and decrease the physical and electrical barriers for charge transfer.
Collapse
Affiliation(s)
- Shan Yu
- School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu, 610500, China.,Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Xiang-Bing Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xian Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingguo Li
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Qian Zhang
- School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu, 610500, China.,Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiqian Wei
- School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu, 610500, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ying Zhou
- School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu, 610500, China.
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
33
|
Lee SW, Joh H, Seong M, Lee WS, Choi JH, Oh SJ. Transition States of Nanocrystal Thin Films during Ligand-Exchange Processes for Potential Applications in Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25502-25510. [PMID: 29968456 DOI: 10.1021/acsami.8b06754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ligand exchange is an advanced technique for tuning the various properties of nanocrystal (NC) thin films, widely used in the NC thin-film device applications. Understanding how the NC thin films transform into functional thin-film devices upon ligand exchange is essential. Here, we investigated the process of structural transformation and accompanying property changes in the NC thin films, by monitoring the various characteristics of silver (Ag) NC thin films at each stage of the ligand-exchange process. A transition state was identified in which the ligands are partially exchanged, where the NC thin films showed unexpected electromechanical features with high gauge factors up to 300. A model system was established to explain the origin of the high gauge factors, supported by the observation of spontaneously formed nanocracks and metal-insulator transition from the structural analysis and charge transport study, respectively. Taking advantages of the unique electromechanical properties of the NC thin films, we fabricated flexible strain gauge sensor devices with high sensitivity, reliability, and stability. We introduce a one-step fabrication process, namely, "the time- and spatial-selective ligand-exchange process", for the design of low-cost and high-performance wearable sensors that effectively detect human motion, such as finger or neck muscle movement. This study provides a fundamental understanding of the ligand-exchange process in NCs, as well as an insight into the functionalities of the NC thin films for technological applications.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Hyuk Choi
- Resource Utilization Research Center , Korea Institute of Geoscience and Mineral Resources , Daejeon 34132 , Republic of Korea
| | | |
Collapse
|
34
|
Han J, Li S, Zhang L, Zheng W, Jiang W, Jia D. T3 supertetrahedral cluster [Mn 4 Sn 6 S 20 ] 8− : Solvothermal syntheses, crystal structures and photocatalytic properties of Mn(II) chalcogenidostannates. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Kano S, Tada Y, Matsuda S, Fujii M. Solution Processing of Hydrogen-Terminated Silicon Nanocrystal for Flexible Electronic Device. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20672-20678. [PMID: 29808665 DOI: 10.1021/acsami.8b04072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate solution processing of hydrogen-terminated silicon nanocrystals (H-Si NCs) for flexible electronic devices. To obtain high and uniform conductivity of a solution-processed Si NC film, we adopt a perfectly dispersed colloidal H-Si NC solution. We show a high conductivity (2 × 10-5 S/cm) of a solution-processed H-Si NC film which is spin-coated in air. The NC film (area: 100 mm2) has uniform conductivity and responds to laser irradiation with 6.8 and 24.1 μs of rise and fall time. By using time-of-flight measurements, we propose a charge transport model in the H-Si NC film. For the proof-of-concept of this study, a flexible photodetector on a polyethylene terephthalate substrate is demonstrated by spin-coating colloidal H-Si NC solution in air. The photodetector can be bent in 5.9 mm bending radius at smallest, and the device properly works after being bent in 2500 cycles.
Collapse
Affiliation(s)
- Shinya Kano
- Department of Electrical and Electronic Engineering, Graduate School of Engineering , Kobe University , Rokkodai, Nada, Kobe 657-8501 , Japan
| | - Yasuhiro Tada
- Department of Electrical and Electronic Engineering, Graduate School of Engineering , Kobe University , Rokkodai, Nada, Kobe 657-8501 , Japan
| | - Satoshi Matsuda
- Department of Electrical and Electronic Engineering, Graduate School of Engineering , Kobe University , Rokkodai, Nada, Kobe 657-8501 , Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering , Kobe University , Rokkodai, Nada, Kobe 657-8501 , Japan
| |
Collapse
|
36
|
Cai B, Sayevich V, Gaponik N, Eychmüller A. Emerging Hierarchical Aerogels: Self-Assembly of Metal and Semiconductor Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707518. [PMID: 29921028 DOI: 10.1002/adma.201707518] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Aerogels assembled from colloidal metal or semiconductor nanocrystals (NCs) feature large surface area, ultralow density, and high porosity, thus rendering them attractive in various applications, such as catalysis, sensors, energy storage, and electronic devices. Morphological and structural modification of the aerogel backbones while maintaining the aerogel properties enables a second stage of the aerogel research, which is defined as hierarchical aerogels. Different from the conventional aerogels with nanowire-like backbones, those hierarchical aerogels are generally comprised of at least two levels of architectures, i.e., an interconnected porous structure on the macroscale and a specially designed configuration at local backbones at the nanoscale. This combination "locks in" the inherent properties of the NCs, so that the beneficial genes obtained by nanoengineering are retained in the resulting monolithic hierarchical aerogels. Herein, groundbreaking advances in the design, synthesis, and physicochemical properties of the hierarchical aerogels are reviewed and organized in three sections: i) pure metallic hierarchical aerogels, ii) semiconductor hierarchical aerogels, and iii) metal/semiconductor hybrid hierarchical aerogels. This report aims to define and demonstrate the concept, potential, and challenges of the hierarchical aerogels, thereby providing a perspective on the further development of these materials.
Collapse
Affiliation(s)
- Bin Cai
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| | - Vladimir Sayevich
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| | - Nikolai Gaponik
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| | - Alexander Eychmüller
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| |
Collapse
|
37
|
Schnitzenbaumer KJ, Dukovic G. Comparison of Phonon Damping Behavior in Quantum Dots Capped with Organic and Inorganic Ligands. NANO LETTERS 2018; 18:3667-3674. [PMID: 29781281 DOI: 10.1021/acs.nanolett.8b00800] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface ligand modification of colloidal semiconductor nanocrystals has been widely used as a means of controlling photoexcited-state generation, relaxation, and coupling to the environment. While progress has been made in understanding how surface ligand modification affects the behavior of electronic states, less is known about the influence of surface ligand modification on phonon behavior, which impacts relaxation dynamics and transport phenomena. In this work, we compare the dynamics of optical and acoustic phonons in CdTe quantum dots (QDs), CdTe/CdSe core/shell QDs capped with octadecylphosphonic acid ligands, and CdTe QDs capped with Se2- to ascertain how ligand exchange from native aliphatic ligands to single-atom Se2- ligands affects phonon behavior. We use transient absorption spectroscopy and observe modulations in the kinetics of excited-state decay due to QD lattice vibrations from both optical and acoustic phonons, which we describe using the damped oscillator model. The longitudinal optical phonons have similar frequencies and damping behavior in all three samples. In contrast, the longitudinal acoustic phonon mode in the Se2--capped CdTe QDs is severely damped, much more so than in CdTe and CdTe/CdSe QDs capped with the native aliphatic ligands. We attribute these differences in the acoustic phonon behavior to the differences in how the QD dissipates vibrational energy to its surroundings as a function of ligand identity. Our results indicate that these inorganic surface-capping ligands enhance not only the electronic but also the mechanical coupling of nanocrystals with their environment.
Collapse
Affiliation(s)
- Kyle J Schnitzenbaumer
- Department of Chemistry and Biochemistry , University of Colorado , Boulder , Colorado 80309 , United States
| | - Gordana Dukovic
- Department of Chemistry and Biochemistry , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
38
|
Ohata Y, Sugimoto H, Fujii M. Assembling silicon quantum dots into wires, networks and rods via metal ion bridges. NANOSCALE 2018; 10:7597-7604. [PMID: 29638232 DOI: 10.1039/c8nr00631h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wires and networks of Si quantum dots (QDs) with a length of over 1 μm and a width of ∼30 nm are produced by bridging Si QDs with metal ions in solution. It is shown that the width of the wires is almost independent of the preparation parameters and is always about 30 nm, except for the case when Si QDs larger than 30 nm are used, while the length of the wires depends strongly on the kinds of ions, the amount of ions and the amount of Si QDs in a solution. In addition to the microscopic size assemblies, macroscopic size rods of Si QDs with a width of ∼20 μm are produced by using Zn2+ ions. The XPS analyses reveal that Si QDs are connected to each other via a ZnO layer in the rod. The rods have much higher conductivity and photo-response than Si QD solids produced without metal ions.
Collapse
Affiliation(s)
- Yuki Ohata
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
39
|
Hewavitharana IK, Brock SL. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2018-1171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
An aqueous-based metal ion crosslinking approach for assembly of metal chalcogenide nanoparticles (NPs) into robust gels is reported. Short chalcogenide ligands (S2−) undergo crosslinking with metal salts (Sn4+) to form a gel [NP/S2−/Sn4+]n (NP=PbTe, PbS, CdS, CdSe). The corresponding aerogel networks retain the crystallinity and quantum confinement effects of the native building blocks while achieving excellent porosity [Brunauer–Emmett–Teller (BET) surface areas of 160–238 m2/g]. Treatment of sulfide-capped PbTe nanoparticles with an excess of Sn4+ leads to ion exchange and formation of an amorphous “SnTe” gel.
Collapse
Affiliation(s)
| | - Stephanie L. Brock
- Wayne State University , Department of Chemistry , Detroit, MI 48202 , USA
| |
Collapse
|
40
|
Li XB, Gao YJ, Wu HL, Wang Y, Guo Q, Huang MY, Chen B, Tung CH, Wu LZ. Assembling metallic 1T-MoS 2 nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chem Commun (Camb) 2018; 53:5606-5609. [PMID: 28429002 DOI: 10.1039/c7cc02366a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to their enhanced light harvesting, favored interfacial charge transfer and excellent proton reduction activity, hybrid photocatalysts of metallic 1T-MoS2 nanosheets and inorganic-ligand stabilized CdSe/ZnS QDs obtained via a self-assembly approach can produce H2 gas with a rate of ∼155 ± 3.5 μmol h-1 mg-1 under visible-light irradiation (λ = 410 nm), the most exceptional performance of solar H2 evolution using MoS2 as a cocatalyst known to date.
Collapse
Affiliation(s)
- Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang Y, Fedin I, Zhang H, Talapin DV. Direct optical lithography of functional inorganic nanomaterials. Science 2018; 357:385-388. [PMID: 28751606 DOI: 10.1126/science.aan2958] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
Photolithography is an important manufacturing process that relies on using photoresists, typically polymer formulations, that change solubility when illuminated with ultraviolet light. Here, we introduce a general chemical approach for photoresist-free, direct optical lithography of functional inorganic nanomaterials. The patterned materials can be metals, semiconductors, oxides, magnetic, or rare earth compositions. No organic impurities are present in the patterned layers, which helps achieve good electronic and optical properties. The conductivity, carrier mobility, dielectric, and luminescence properties of optically patterned layers are on par with the properties of state-of-the-art solution-processed materials. The ability to directly pattern all-inorganic layers by using a light exposure dose comparable with that of organic photoresists provides an alternate route for thin-film device manufacturing.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.,James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Igor Fedin
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.,James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Hao Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.,James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dmitri V Talapin
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA. .,James Franck Institute, University of Chicago, Chicago, IL 60637, USA.,Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
42
|
Wang P, Wang M, Zhang J, Li C, Xu X, Jin Y. Shell Thickness Engineering Significantly Boosts the Photocatalytic H 2 Evolution Efficiency of CdS/CdSe Core/Shell Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35712-35720. [PMID: 28952304 DOI: 10.1021/acsami.7b07211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colloidal semiconductor quantum dots (QDs) have recently emerged as a good candidate for photocatalytic hydrogen (H2) evolution in water. A further understanding of the factors that can affect and boost the catalytic activity of the QD-based H2-generating system is of great importance for the future design of such systems for practical use. Here, we report on the fine shell thickness engineering of colloidal CdS/CdSe core/shell QDs and its effect on the photocatalytic H2 production in water. Our results show that, with the proper shell thickness, the H2 photogeneration quantum yield (ΦH2) of CdS/CdSe core/shell QDs could reach 30.9% under the illumination of 420 nm light, which is 49% larger than that of the CdS core. Furthermore, the underlying mechanism has also been tentatively proposed and discussed.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, P. R. China
| | - Minmin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Jie Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, P. R. China
| | - Chuanping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xiaolong Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, P. R. China
| |
Collapse
|
43
|
La Rosa M, Avellini T, Lincheneau C, Silvi S, Wright, IA, Constable EC, Credi A. An Efficient Method for the Surface Functionalization of Luminescent Quantum Dots with Lipoic Acid Based Ligands. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marcello La Rosa
- Dipartimento di Scienze e Tecnologie Agro‐alimentari Università di Bologna Viale Fanin 50 40127 Bologna Italy
- CLAN – Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche Via Gobetti 101 40129 Bologna Italy
| | - Tommaso Avellini
- Dipartimento di Chimica “G. Ciamician” Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Christophe Lincheneau
- Dipartimento di Chimica “G. Ciamician” Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Serena Silvi
- CLAN – Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche Via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Iain A. Wright,
- Department of Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Edwin C. Constable
- Department of Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Alberto Credi
- Dipartimento di Scienze e Tecnologie Agro‐alimentari Università di Bologna Viale Fanin 50 40127 Bologna Italy
- CLAN – Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche Via Gobetti 101 40129 Bologna Italy
- ISOF‐CNR Via Gobetti 101 40129 Bologna Italy
| |
Collapse
|
44
|
Darbandi A, Datta D, Patel K, Lin G, Stroscio MA, Dutta M. Molecular beacon anchored onto a graphene oxide substrate. NANOTECHNOLOGY 2017; 28:375501. [PMID: 28696331 DOI: 10.1088/1361-6528/aa7e50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this article, we report a graphene oxide-based nanosensor incorporating semiconductor quantum dots linked to DNA-aptamers that functions as a 'turn-off' fluorescent nanosensor for detection of low concentrations of analytes. A specific demonstration of this turn-off aptasensor is presented for the case of the detection of mercury (II) ions. In this system, ensembles of aptamer-based quantum-dot sensors are anchored onto graphene oxide (GO) flakes which provide a platform for analyte detection in the vicinity of GO. Herein, the operation of this ensemble-based nanosensor is demonstrated for mercury ions, which upon addition of mercury, quenching of the emission intensity from the quantum dots is observed due to resonance energy transfer between quantum dots and the gold nanoparticle connected via a mercury target aptamer. A key result is that the usually dominant effect of quenching of the quantum dot due to close proximity to the GO can be reduced to negligible levels by using a linker molecule in conjunctions with the aptamer-based nanosensor. The effect of ionic concentration of the background matrix on the emission intensity was also investigated. The sensor system is found to be highly selective towards mercury and exhibits a linear behavior (r 2 > 0.99) in the nanomolar concentration range. The detection limit of the sensor towards mercury with no GO present was found to be 16.5 nM. With GO attached to molecular beacon via 14 base, 35 base, and 51 base long linker DNA, the detection limit was found to be 38.4 nM, 9.45 nM, and 11.38 nM; respectively.
Collapse
Affiliation(s)
- Arash Darbandi
- University of Illinois at Chicago, Department of Bioengineering, United States of America
| | | | | | | | | | | |
Collapse
|
45
|
Ibáñez M, Hasler R, Liu Y, Dobrozhan O, Nazarenko O, Cadavid D, Cabot A, Kovalenko MV. Tuning p-Type Transport in Bottom-Up-Engineered Nanocrystalline Pb Chalcogenides Using Alkali Metal Chalcogenides as Capping Ligands. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:7093-7097. [PMID: 29434424 PMCID: PMC5805404 DOI: 10.1021/acs.chemmater.7b02967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/20/2017] [Indexed: 05/05/2023]
Affiliation(s)
- Maria Ibáñez
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Roger Hasler
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Yu Liu
- Catalonia
Energy Research Institute - IREC, Sant Adria del Besos, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia
Energy Research Institute - IREC, Sant Adria del Besos, 08930 Barcelona, Spain
| | - Olga Nazarenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Doris Cadavid
- Catalonia
Energy Research Institute - IREC, Sant Adria del Besos, 08930 Barcelona, Spain
| | - Andreu Cabot
- Catalonia
Energy Research Institute - IREC, Sant Adria del Besos, 08930 Barcelona, Spain
- ICREA, Pg. Lluís Company 23, 08010 Barcelona, Spain
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- M. V. Kovalenko. E-mail:
| |
Collapse
|
46
|
Ren Z, Yu J, Pan Z, Wang J, Zhong X. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18936-18944. [PMID: 28508629 DOI: 10.1021/acsami.7b03715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The insulating nature of organic ligands containing long hydrocarbon tails brings forward serious limitations for presynthesized quantum dots (QDs) in photovoltaic applications. Replacing the initial organic hydrocarbon chain ligands with simple, cheap, and small inorganic ligands is regarded as an efficient strategy for improving the performance of the resulting photovoltaic devices. Herein, thiosulfate (S2O32-), and sulfide (S2-) were employed as ligand-exchange reagents to get access to the inorganic ligand S2O32-- and S2--capped CdSe QDs. The obtained inorganic ligand-capped QDs, together with the initial oleylamine-capped QDs, were used as light-absorbing materials in the construction of quantum dot sensitized solar cells (QDSCs). Photovoltaic results indicate that thiosulfate-capped QDs give excellent power conversion efficiency (PCE) of 6.11% under the illumination of full one sun, which is remarkably higher than those of sulfide- (3.36%) and OAm-capped QDs (0.84%) and is comparable to the state-of-the-art value based on mercaptocarboxylic acid capped QDs. Photoluminescence (PL) decay characterization demonstrates that thiosulfate-based QDSCs have a much-faster electron injection rate from QD to TiO2 substrate in comparison with those of sulfide- and OAm-based QDSCs. Electrochemical impedance spectroscopy (EIS) results indicate that higher charge-recombination resistance between potoanode and eletrolyte interfaces were observed in the thiosulfate-based cells. To the best of our knowledge, this is the first application of thiosulfate-capped QDs in the fabrication of efficient QDSCs. This will lend a new perspective to boosting the performance of QDSCs furthermore.
Collapse
Affiliation(s)
- Zhenwei Ren
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
- College of Materials and Energy, South China Agricultural University , 483 Wushan Road, Guangzhou 510642, China
| | - Juan Yu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Zhenxiao Pan
- College of Materials and Energy, South China Agricultural University , 483 Wushan Road, Guangzhou 510642, China
| | - Jizheng Wang
- Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences , Beijing 100190, China
| | - Xinhua Zhong
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
- College of Materials and Energy, South China Agricultural University , 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
47
|
Rahman M, Davey K, Qiao SZ. Counteracting Blueshift Optical Absorption and Maximizing Photon Harvest in Carbon Nitride Nanosheet Photocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700376. [PMID: 28440056 DOI: 10.1002/smll.201700376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Blueshift of optical absorption and corresponding widening of the bandgap is a fundamental problem with 2D carbon nitride nanosheets (CNNS). An additional problem is low quantum yields (<9%) due to higher loss of absorbed photons. These problems impose a significant restriction to photocatalytic performance of CNNS. Therefore, the synthesis of narrow bandgap CNNS with high quantum efficiency is of pressing research importance. This contribution reports melem-derived narrow bandgap CNNS with a record-low bandgap of 2.45 eV. The narrowing in bandgap comes with improved optical absorption and use of visible-light photons together with excellent charge transport dynamics. This is demonstrated by a record high hydrogen evolution rate of 863 µmol h-1 with apparent quantum efficiency of 16% at 420 nm.
Collapse
Affiliation(s)
- Mohammad Rahman
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
48
|
Lin Q, Yun HJ, Liu W, Song HJ, Makarov NS, Isaienko O, Nakotte T, Chen G, Luo H, Klimov VI, Pietryga JM. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. J Am Chem Soc 2017; 139:6644-6653. [PMID: 28431206 DOI: 10.1021/jacs.7b01327] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, II-VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands. Due to electrostatic stabilization, these QDs are readily dispersible in polar solvents, in which they form highly concentrated solutions that remain stable for months. QDs of all three Pb chalcogenides retain their photoluminescence, allowing for a detailed study of the effect of the surface ionic double layer on electronic passivation of QD surfaces, which we find can be explained using the hard/soft acid-base theory. Importantly, we prepare highly conductive films of PbS, PbSe, and PbTe QDs by directly casting from solution without further chemical treatment, as determined by field-effect transistor measurements. This method allows for precise control over the surface chemistry, and therefore the transport properties of deposited films. It also permits single-step deposition of films of unprecedented thickness via continuous processing techniques, as we demonstrate by preparing a dense, smooth, 5.3-μm-thick PbSe QD film via doctor-blading. As such, it offers important advantages over laborious layer-by-layer methods for solar cells and photodetectors, while opening the door to new possibilities in ionizing-radiation detectors.
Collapse
Affiliation(s)
- Qianglu Lin
- Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Hyeong Jin Yun
- Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Wenyong Liu
- Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Hyung-Jun Song
- Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Nikolay S Makarov
- Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Oleksandr Isaienko
- Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Tom Nakotte
- Department of Chemical and Materials Engineering, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Gen Chen
- Department of Chemical and Materials Engineering, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Hongmei Luo
- Department of Chemical and Materials Engineering, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Victor I Klimov
- Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Jeffrey M Pietryga
- Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
49
|
Sayevich V, Guhrenz C, Dzhagan VM, Sin M, Werheid M, Cai B, Borchardt L, Widmer J, Zahn DRT, Brunner E, Lesnyak V, Gaponik N, Eychmüller A. Hybrid N-Butylamine-Based Ligands for Switching the Colloidal Solubility and Regimentation of Inorganic-Capped Nanocrystals. ACS NANO 2017; 11:1559-1571. [PMID: 28052188 DOI: 10.1021/acsnano.6b06996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report on a simple and effective technique of tuning the colloidal solubility of inorganic-capped CdSe and CdSe/CdS core/shell nanocrystals (NCs) from highly polar to nonpolar media using n-butylamine molecules. The introduction of the short and volatile organic amine mainly results in a modification of the labile diffusion region of the inorganic-capped NCs, enabling a significant extension of their dispersibility and improving the ability to form long-range assemblies. Moreover, the hybrid n-butylamine/inorganic capping can be thermally decomposed under mild heat treatment, making this approach of surface functionalization well-compatible with a low-temperature, solution-processed device fabrication. Particularly, a field-effect transistor-based on n-butylamine/Ga-I-complex-capped 4.5 nm CdSe NC solids shows excellent transport characteristics with electron mobilities up to 2 cm2/(V·s) and a high current modulation value (>104) at a low operation voltage (<2 V).
Collapse
Affiliation(s)
- Vladimir Sayevich
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), TU Dresden , Bergstr. 66b, Dresden 01062, Germany
| | - Chris Guhrenz
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), TU Dresden , Bergstr. 66b, Dresden 01062, Germany
| | | | - Maria Sin
- Department of Chemistry and Food Chemistry, Bioanalytical Chemistry, TU Dresden , Bergstr. 66, Dresden 01069, Germany
| | - Matthias Werheid
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), TU Dresden , Bergstr. 66b, Dresden 01062, Germany
| | - Bin Cai
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), TU Dresden , Bergstr. 66b, Dresden 01062, Germany
| | - Lars Borchardt
- Department of Inorganic Chemistry, TU Dresden , Bergstr. 66, Dresden 01062, Germany
| | - Johannes Widmer
- Institut für Angewandte Photophysik, TU Dresden , George-Bähr-Str. 1, Dresden 01069, Germany
| | | | - Eike Brunner
- Department of Chemistry and Food Chemistry, Bioanalytical Chemistry, TU Dresden , Bergstr. 66, Dresden 01069, Germany
| | - Vladimir Lesnyak
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), TU Dresden , Bergstr. 66b, Dresden 01062, Germany
| | - Nikolai Gaponik
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), TU Dresden , Bergstr. 66b, Dresden 01062, Germany
| | - Alexander Eychmüller
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), TU Dresden , Bergstr. 66b, Dresden 01062, Germany
| |
Collapse
|
50
|
Jang Y, Shapiro A, Isarov M, Rubin-Brusilovski A, Safran A, Budniak AK, Horani F, Dehnel J, Sashchiuk A, Lifshitz E. Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem Commun (Camb) 2017; 53:1002-1024. [DOI: 10.1039/c6cc08742f] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Core/shell heterostructures provide controlled optical properties, tuneable electronic structure, and chemical stability due to an appropriate interface design.
Collapse
|