1
|
Wang J, Deng Z, Liang J, Wang Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat Prod Rep 2023; 40:1498-1520. [PMID: 37581222 DOI: 10.1039/d3np00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Time span of literature covered: up to mid-2023Iterative type I polyketide synthases (iPKSs) are outstanding natural chemists: megaenzymes that repeatedly utilize their catalytic domains to synthesize complex natural products with diverse bioactivities. Perhaps the most fascinating but least understood question about type I iPKSs is how they perform the iterative yet programmed reactions in which the usage of domain combinations varies during the synthetic cycle. The programmed patterns are fulfilled by multiple factors, and strongly influence the complexity of the resulting natural products. This article reviews selected reports on the structural enzymology of iPKSs, focusing on the individual domain structures followed by highlighting the representative programming activities that each domain may contribute.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Löhr NA, Rakhmanov M, Wurlitzer JM, Lackner G, Gressler M, Hoffmeister D. Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biol Biotechnol 2023; 10:17. [PMID: 37542286 PMCID: PMC10401856 DOI: 10.1186/s40694-023-00164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Malik Rakhmanov
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
3
|
Löhr NA, Urban MC, Eisen F, Platz L, Hüttel W, Gressler M, Müller M, Hoffmeister D. The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases. Chembiochem 2023; 24:e202200649. [PMID: 36507600 PMCID: PMC10108026 DOI: 10.1002/cbic.202200649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the β-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.
Collapse
Affiliation(s)
- Nikolai A. Löhr
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Maximilian C. Urban
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Frederic Eisen
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lukas Platz
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
4
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
5
|
Docking analysis of hexanoic acid and quercetin with seven domains of polyketide synthase A provided insight into quercetin-mediated aflatoxin biosynthesis inhibition in Aspergillus flavus. 3 Biotech 2019; 9:149. [PMID: 30944796 DOI: 10.1007/s13205-019-1675-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Studies on phytochemicals as anti-aflatoxigenic agents have gained importance including quercetin. Thus, to understand the molecular mechanism behind inhibition of aflatoxin biosynthesis by quercetin, interaction study with polyketide synthase A (PksA) of Aspergillus flavus was undertaken. The 3D structure of seven domains of PksA was modeled using SWISS-MODEL server and docking studies were performed by Autodock tools-1.5.6. Docking energies of both the ligands (quercetin and hexanoic acid) were compared with each of the domains of PksA enzyme. Binding energy for quercetin was lesser that ranged from - 7.1 to - 5.25 kcal/mol in comparison to hexanoic acid (- 4.74 to - 3.54 kcal/mol). LigPlot analysis showed the formation of 12 H bonds in case of quercetin and 8 H bonds in hexanoic acid. During an interaction with acyltransferase domain, both ligands showed H bond formation at Arg63 position. Also, in product template domain, quercetin creates four H bonds in comparison to one in hexanoic acid. Our quantitative RT-PCR analysis of genes from aflatoxin biosynthesis showed downregulation of pksA, aflD, aflR, aflP and aflS at 24 h time point in comparison to 7 h in quercetin-treated A. flavus. Overall results revealed that quercetin exhibited the highest level of binding potential (more number of H bonds) with PksA domain in comparison to hexanoic acid; thus, quercetin possibly inhibits via competitively binding to the domains of polyketide synthase, a key enzyme of aflatoxin biosynthetic pathway. Further, we propose that key enzymes from aflatoxin biosynthetic pathway in aflatoxin-producing Aspergilli could be explored further using other phytochemicals as inhibitors.
Collapse
|
6
|
Al-Dhelaan R, Russo PS, Padden SE, Amaya A, Dong DW, You YO. Condensation-Incompetent Ketosynthase Inhibits trans-Acyltransferase Activity. ACS Chem Biol 2019; 14:304-312. [PMID: 30642162 DOI: 10.1021/acschembio.8b01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonelongating modules with condensation-incompetent ketosynthase (KS0) are frequently found in many trans-acyltransferase polyketide synthases ( trans-AT PKS). KS0 catalyzes translocation of carbon chain without decarboxylative condensation. Unlike typical elongating modules where malonylation of acyl carrier protein (ACP) precedes elongation, the malonylation of ACP downstream of KS0 is assumed to be prevented. In this study, the regulation mechanism(s) of ACP malonylation in a non-elongating module of difficidin biosynthase was investigated. In vitro reconstitution, protein mass spectrometry, and enzyme kinetics demonstrated that KS0 controls the pathway by inhibiting the trans-AT activity. Protein-protein interactions of the surrounding domains also contribute to the regulation. Enzyme kinetics further identified the DfnKS05 as an allosteric inhibitor of trans-AT. The principle and knowledge discovered from this study will enhance the understanding of this unusual PKS system.
Collapse
Affiliation(s)
- Reham Al-Dhelaan
- Department of Chemistry and Biochemistry , George Mason University , Fairfax , Virginia 22030 , United States
| | | | - Sean E Padden
- Department of Chemistry and Biochemistry , George Mason University , Fairfax , Virginia 22030 , United States
| | - Anthony Amaya
- Department of Chemistry and Biochemistry , George Mason University , Fairfax , Virginia 22030 , United States
| | | | - Young-Ok You
- Department of Chemistry and Biochemistry , George Mason University , Fairfax , Virginia 22030 , United States
| |
Collapse
|
7
|
Storm PA, Pal P, Huitt-Roehl CR, Townsend CA. Exploring Fungal Polyketide C-Methylation through Combinatorial Domain Swaps. ACS Chem Biol 2018; 13:3043-3048. [PMID: 30350943 DOI: 10.1021/acschembio.8b00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polyketide C-methylation occurs during a programmed sequence of dozens of reactions carried out by multidomain polyketide synthases (PKSs). Fungal PKSs perform these reactions iteratively, where a domain may be exposed to and act upon multiple enzyme-tethered intermediates during biosynthesis. We surveyed a collection of C-methyltransferase (CMeT) domains from nonreducing fungal PKSs to gain insight into how different methylation patterns are installed. Our in vitro results show that control of methylation resides primarily with the CMeT, and CMeTs can intercept and methylate intermediates from noncognate nonreducing PKS domains. Furthermore, the methylation pattern is likely imposed by a competition between methylation or ketosynthase-catalyzed extension for each intermediate. Understanding site-specific polyketide C-methylation may facilitate targeted C-C bond formation in engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Philip A. Storm
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Paramita Pal
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Callie R. Huitt-Roehl
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Abstract
Covering: up to mid of 2018 Type I fatty acid synthases (FASs) are giant multienzymes catalyzing all steps of the biosynthesis of fatty acids from acetyl- and malonyl-CoA by iterative precursor extension. Two strikingly different architectures of FAS evolved in yeast (as well as in other fungi and some bacteria) and metazoans. Yeast-type FAS (yFAS) assembles into a barrel-shaped structure of more than 2 MDa molecular weight. Catalytic domains of yFAS are embedded in an extensive scaffolding matrix and arranged around two enclosed reaction chambers. Metazoan FAS (mFAS) is a 540 kDa X-shaped dimer, with lateral reaction clefts, minimal scaffolding and pronounced conformational variability. All naturally occurring yFAS are strictly specialized for the production of saturated fatty acids. The yFAS architecture is not used for the biosynthesis of any other secondary metabolite. On the contrary, mFAS is related at the domain organization level to major classes of polyketide synthases (PKSs). PKSs produce a variety of complex and potent secondary metabolites; they either act iteratively (iPKS), or are linked via directed substrate transfer into modular assembly lines (modPKSs). Here, we review the architectures of yFAS, mFAS, and iPKSs. We rationalize the evolution of the yFAS assembly, and provide examples for re-engineering of yFAS. Recent studies have provided novel insights into the organization of iPKS. A hybrid crystallographic model of a mycocerosic acid synthase-like Pks5 yielded a comprehensive visualization of the organization and dynamics of fully-reducing iPKS. Deconstruction experiments, structural and functional studies of specialized enzymatic domains, such as the product template (PT) and the starter-unit acyltransferase (SAT) domain have revealed functional principles of non-reducing iterative PKS (NR-PKSs). Most recently, a six-domain loading region of an NR-PKS has been visualized at high-resolution together with cryo-EM studies of a trapped loading intermediate. Altogether, these data reveal the related, yet divergent architectures of mFAS, iPKS and also modPKSs. The new insights highlight extensive dynamics, and conformational coupling as key features of mFAS and iPKS and are an important step towards collection of a comprehensive series of snapshots of PKS action.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
9
|
Herbst DA, Huitt-Roehl CR, Jakob RP, Kravetz JM, Storm PA, Alley JR, Townsend CA, Maier T. The structural organization of substrate loading in iterative polyketide synthases. Nat Chem Biol 2018; 14:474-479. [PMID: 29610486 DOI: 10.1038/s41589-018-0026-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 11/09/2022]
Abstract
Polyketide synthases (PKSs) are microbial multienzymes for the biosynthesis of biologically potent secondary metabolites. Polyketide production is initiated by the loading of a starter unit onto an integral acyl carrier protein (ACP) and its subsequent transfer to the ketosynthase (KS). Initial substrate loading is achieved either by multidomain loading modules or by the integration of designated loading domains, such as starter unit acyltransferases (SAT), whose structural integration into PKS remains unresolved. A crystal structure of the loading/condensing region of the nonreducing PKS CTB1 demonstrates the ordered insertion of a pseudodimeric SAT into the condensing region, which is aided by the SAT-KS linker. Cryo-electron microscopy of the post-loading state trapped by mechanism-based crosslinking of ACP to KS reveals asymmetry across the CTB1 loading/-condensing region, in accord with preferential 1:2 binding stoichiometry. These results are critical for re-engineering the loading step in polyketide biosynthesis and support functional relevance of asymmetric conformations of PKSs.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department of Biozentrum, University of Basel, Basel, Switzerland
| | | | - Roman P Jakob
- Department of Biozentrum, University of Basel, Basel, Switzerland
| | - Jacob M Kravetz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Philip A Storm
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie R Alley
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Timm Maier
- Department of Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Storm PA, Townsend CA. In trans hydrolysis of carrier protein-bound acyl intermediates by CitA during citrinin biosynthesis. Chem Commun (Camb) 2017; 54:50-53. [PMID: 29189834 PMCID: PMC5822715 DOI: 10.1039/c7cc07079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polyketide synthases (PKSs) have several known editing mechanisms to ensure that non-productive intermediates are removed from the acyl carrier protein (ACP). We demonstrate that CitA, a putative hydrolase in the citrinin biosynthetic gene cluster, removes ACP-bound acyl intermediates. We propose that it serves an editing role in trans.
Collapse
Affiliation(s)
- Philip A Storm
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| | | |
Collapse
|
11
|
Liu L, Zhang Z, Shao CL, Wang CY. Analysis of the Sequences, Structures, and Functions of Product-Releasing Enzyme Domains in Fungal Polyketide Synthases. Front Microbiol 2017; 8:1685. [PMID: 28928723 PMCID: PMC5591372 DOI: 10.3389/fmicb.2017.01685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/21/2017] [Indexed: 11/14/2022] Open
Abstract
Product-releasing enzyme (PRE) domains in fungal non-reducing polyketide synthases (NR-PKSs) play a crucial role in catalysis and editing during polyketide biosynthesis, especially accelerating final biosynthetic reactions accompanied with product offloading. However, up to date, the systematic knowledge about PRE domains is deficient. In the present study, the relationships between sequences, structures, and functions of PRE domains were analyzed with 574 NR-PKSs of eight groups (I–VIII). It was found that the PRE domains in NR-PKSs could be mainly classified into three types, thioesterase (TE), reductase (R), and metallo-β-lactamase-type TE (MβL-TE). The widely distributed TE or TE-like domains were involved in NR-PKSs of groups I–IV, VI, and VIII. The R domains appeared in NR-PKSs of groups IV and VII, while the physically discrete MβL-TE domains were employed by most NR-PKSs of group V. The changes of catalytic sites and structural characteristics resulted in PRE functional differentiations. The phylogeny revealed that the evolution of TE domains was accompanied by complex functional divergence. The diverse sequence lengths of TE lid-loops affected substrate specificity with different chain lengths. The volume diversification of TE catalytic pockets contributed to catalytic mechanisms with functional differentiations. The above findings may help to understand the crucial catalysis of fungal aromatic polyketide biosyntheses and govern recombination of NR-PKSs to obtain unnatural target products.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong UniversityJinan, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of ChinaQingdao, China
| |
Collapse
|
12
|
Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases. Proc Natl Acad Sci U S A 2017; 114:E4142-E4148. [PMID: 28484029 PMCID: PMC5448209 DOI: 10.1073/pnas.1609001114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered by the inaccessibility of intrinsically unstable poly-β-ketones for in vitro studies. We describe here the crystallographic application of "atom replacement" mimetics in which isoxazole rings linked by thioethers mimic the alternating sites of carbonyls in the poly-β-ketone intermediates. We report the 1.8-Å cocrystal structure of the PksA PT domain from aflatoxin biosynthesis with a heptaketide mimetic tethered to a stably modified 4'-phosphopantetheine, which provides important empirical evidence for a previously proposed mechanism of PT-catalyzed cyclization. Key observations support the proposed deprotonation at C4 of the nascent polyketide by the catalytic His1345 and the role of a protein-coordinated water network to selectively activate the C9 carbonyl for nucleophilic addition. The importance of the 4'-phosphate at the distal end of the pantetheine arm is demonstrated to both facilitate delivery of the heptaketide mimetic deep into the PT active site and anchor one end of this linear array to precisely meter C4 into close proximity to the catalytic His1345. Additional structural features, docking simulations, and mutational experiments characterize protein-substrate mimic interactions, which likely play roles in orienting and stabilizing interactions during the native multistep catalytic cycle. These findings afford a view of a polyketide "atom-replaced" mimetic in a NR-PKS active site that could prove general for other PKS domains.
Collapse
|
13
|
Storm PA, Herbst DA, Maier T, Townsend CA. Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin. Cell Chem Biol 2017; 24:316-325. [PMID: 28238725 DOI: 10.1016/j.chembiol.2017.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/30/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
Abstract
Fungal polyketide synthases (PKSs) are large, multidomain enzymes that biosynthesize a wide range of natural products. A hallmark of these megasynthases is the iterative use of catalytic domains to extend and modify a series of enzyme-bound intermediates. A subset of these iterative PKSs (iPKSs) contains a C-methyltransferase (CMeT) domain that adds one or more S-adenosylmethionine (SAM)-derived methyl groups to the carbon framework. Neither the basis by which only specific positions on the growing intermediate are methylated ("programming") nor the mechanism of methylation are well understood. Domain dissection and reconstitution of PksCT, the fungal non-reducing PKS (NR-PKS) responsible for the first isolable intermediate in citrinin biosynthesis, demonstrates the role of CMeT-catalyzed methylation in precursor elongation and pentaketide formation. The crystal structure of the S-adenosyl-homocysteine (SAH) coproduct-bound PksCT CMeT domain reveals a two-subdomain organization with a novel N-terminal subdomain characteristic of PKS CMeT domains and provides insights into co-factor and ligand recognition.
Collapse
Affiliation(s)
- Philip A Storm
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Timm Maier
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
14
|
Koryakina I, Kasey C, McArthur JB, Lowell AN, Chemler JA, Li S, Hansen DA, Sherman DH, Williams GJ. Inversion of Extender Unit Selectivity in the Erythromycin Polyketide Synthase by Acyltransferase Domain Engineering. ACS Chem Biol 2017; 12:114-123. [PMID: 28103677 DOI: 10.1021/acschembio.6b00732] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acyltransferase (AT) domains of polyketide synthases (PKSs) select extender units for incorporation into polyketides and dictate large portions of the structures of clinically relevant natural products. Accordingly, there is significant interest in engineering the substrate specificity of PKS ATs in order to site-selectively manipulate polyketide structure. However, previous attempts to engineer ATs have yielded mutant PKSs with relaxed extender unit specificity, rather than an inversion of selectivity from one substrate to another. Here, by directly screening the extender unit selectivity of mutants from active site saturation libraries of an AT from the prototypical PKS, 6-deoxyerythronolide B synthase, a set of single amino acid substitutions was discovered that dramatically impact the selectivity of the PKS with only modest reductions of product yields. One particular substitution (Tyr189Arg) inverted the selectivity of the wild-type PKS from its natural substrate toward a non-natural alkynyl-modified extender unit while maintaining more than twice the activity of the wild-type PKS with its natural substrate. The strategy and mutations described herein form a platform for combinatorial biosynthesis of site-selectively modified polyketide analogues that are modified with non-natural and non-native chemical functionality.
Collapse
Affiliation(s)
- Irina Koryakina
- Department
of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| | - Christian Kasey
- Department
of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| | | | - Andrew N. Lowell
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph A. Chemler
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shasha Li
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Douglas A. Hansen
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David H. Sherman
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gavin J. Williams
- Department
of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
15
|
Hiratsuka T, Suzuki H, Minami A, Oikawa H. Stepwise cyclopropanation on the polycyclopropanated polyketide formation in jawsamycin biosynthesis. Org Biomol Chem 2017; 15:1076-1079. [DOI: 10.1039/c6ob02675c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cyclopropane deficient jawsamycin analogs were isolated from transformant harboring jaw genes, enabling us to propose an enzymatic cyclopropanation mechanism.
Collapse
Affiliation(s)
- Tomoshige Hiratsuka
- Division of chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Hideaki Suzuki
- Division of chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Atsushi Minami
- Division of chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Hideaki Oikawa
- Division of chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| |
Collapse
|
16
|
Bai J, Lu Y, Xu YM, Zhang W, Chen M, Lin M, Gunatilaka AAL, Xu Y, Molnár I. Diversity-Oriented Combinatorial Biosynthesis of Hybrid Polyketide Scaffolds from Azaphilone and Benzenediol Lactone Biosynthons. Org Lett 2016; 18:1262-5. [PMID: 26934205 DOI: 10.1021/acs.orglett.6b00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two disparate polyketide families, the benzenediol lactones and the azaphilones, are produced by fungi using iterative polyketide synthase (iPKS) enzymes consisting of collaborating partner subunits. Exploitation of this common biosynthetic logic using iPKS subunit shuffling allowed the diversity-oriented combinatorial biosynthesis of unprecedented polyketide scaffolds new to nature, bearing structural motifs from both of these orthogonal natural product families. Starter unit acyltransferase domain replacements proved necessary but not sufficient to guarantee communication between iPKS subunits.
Collapse
Affiliation(s)
- Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China.,Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Yuanyuan Lu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Ya-ming Xu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Wei Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Ming Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Min Lin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
17
|
Lowry B, Walsh CT, Khosla C. In Vitro Reconstitution of Metabolic Pathways: Insights into Nature's Chemical Logic. Synlett 2015; 26:1008-1025. [PMID: 26207083 PMCID: PMC4507746 DOI: 10.1055/s-0034-1380264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In vitro analysis of metabolic pathways is becoming a powerful method to gain a deeper understanding of Nature's core biochemical transformations. With astounding advancements in biotechnology, purification of a metabolic pathway's constitutive enzymatic components is becoming a tractable problem, and such in vitro studies allow scientists to capture the finer details of enzymatic reaction mechanisms, kinetics, and the identity of organic product molecules. In this review, we present eleven metabolic pathways that have been the subject of in vitro reconstitution studies in the literature in recent years. In addition, we have selected and analyzed subset of four case studies within these eleven examples that exemplify remarkable organic chemistry occurring within biology. These examples serves as tangible reminders that Nature's biochemical routes obey the fundamental principles of organic chemistry, and the chemical mechanisms are reminiscent of those featured in traditional synthetic organic routes. The illustrations of biosynthetic chemistry depicted in this review may inspire the development of biomimetic chemistries via abiotic chemical techniques.
Collapse
Affiliation(s)
- Brian Lowry
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA;
| | - Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA; ; Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305 ; Department of Chemistry, 333 Campus Drive Mudd Building, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
18
|
Huitt-Roehl CR, Hill EA, Adams MM, Vagstad AL, Li JW, Townsend CA. Starter unit flexibility for engineered product synthesis by the nonreducing polyketide synthase PksA. ACS Chem Biol 2015; 10:1443-9. [PMID: 25714897 DOI: 10.1021/acschembio.5b00005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonreducing polyketide synthases (NR-PKSs) are unique among PKSs in their domain structure, notably including a starter unit:acyl-carrier protein (ACP) transacylase (SAT) domain that selects an acyl group as the primer for biosynthesis, most commonly acetyl-CoA from central metabolism. This clan of mega-enzymes resembles fatty acid synthases (FASs) by sharing both their central chain elongation steps and their capacity for iterative catalysis. In this mode of synthesis, catalytic domains involved in chain extension exhibit substrate plasticity to accommodate growing chains as small as two carbons to 20 or more. PksA is the NR-PKS central to the biosynthesis of the mycotoxin aflatoxin B1 whose SAT domain accepts an unusual hexanoyl starter from a dedicated yeast-like FAS. Explored in this paper is the ability of PksA to utilize a selection of potential starter units as substrates to initiate and sustain extension and cyclization to on-target, programmed polyketide synthesis. Most of these starter units were successfully accepted and properly processed by PksA to achieve biosynthesis of the predicted naphthopyrone product. Analysis of the on-target and derailment products revealed trends of tolerance by individual PksA domains to alternative starter units. In addition, natural and un-natural variants of the active site cysteine were examined and found to be capable of biosynthesis, suggesting possible direct loading of starter units onto the β-ketoacyl synthase (KS) domain. In light of the data assembled here, the predictable synthesis of unnatural products by NR-PKSs is more fully defined.
Collapse
Affiliation(s)
- Callie R. Huitt-Roehl
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | - Eric A. Hill
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | - Martina M. Adams
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | - Anna L. Vagstad
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | - Jesse W. Li
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
19
|
Nakamura H, Wang JX, Balskus EP. Assembly line termination in cylindrocyclophane biosynthesis: discovery of an editing type II thioesterase domain in a type I polyketide synthase. Chem Sci 2015; 6:3816-3822. [PMID: 29218151 PMCID: PMC5707447 DOI: 10.1039/c4sc03132f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/11/2015] [Indexed: 01/18/2023] Open
Abstract
Investigation of cylindrocyclophane biosynthesis reveals a C-terminal thioesterase domain involved in PKS assembly line editing, not termination.
The termination step is an important source of structural diversity in polyketide biosynthesis. Most type I polyketide synthase (PKS) assembly lines are terminated by a thioesterase (TE) domain located at the C-terminus of the final module, while other PKS assembly lines lack a terminal TE domain and are instead terminated by a separate enzyme in trans. In cylindrocyclophane biosynthesis, the type I modular PKS assembly line is terminated by a freestanding type III PKS (CylI). Unexpectedly, the final module of the type I PKS (CylH) also possesses a C-terminal TE domain. Unlike typical type I PKSs, the CylH TE domain does not influence assembly line termination by CylI in vitro. Instead, this domain phylogenetically resembles a type II TE and possesses activity consistent with an editing function. This finding may shed light on the evolution of unusual PKS termination logic. In addition, the presence of related type II TE domains in many cryptic type I PKS and nonribosomal peptide synthetase (NRPS) assembly lines has implications for pathway annotation, product prediction, and engineering.
Collapse
Affiliation(s)
- H Nakamura
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , USA .
| | - J X Wang
- Small Molecule Mass Spectrometry Facility , FAS Division of Science , Cambridge , Massachusetts 02138 , USA
| | - E P Balskus
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , USA .
| |
Collapse
|
20
|
Rittner A, Grininger M. Modular polyketide synthases (PKSs): a new model fits all? Chembiochem 2014; 15:2489-93. [PMID: 25318851 DOI: 10.1002/cbic.201402432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 01/10/2023]
Abstract
Step-by-step to great diversity: With the potential to synthesize multi-millions of bioactive compounds, modular polyketide synthases (PKSs) are of great importance. In this Highlight, new developments in the understanding of the structure and function of these proteins are reviewed.
Collapse
Affiliation(s)
- Alexander Rittner
- Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence "Macromolecular Complexes", Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt/Main (Germany)
| | | |
Collapse
|
21
|
Abstract
In this viewpoint highlights are drawn from a deep analysis of the multifaceted problem of aflatoxin biosynthesis, one of the most highly rearranged polyketide natural products known. Fundamental chemical insights have emerged into how cytochrome P450-mediated skeletal rearrangements occur through probable cationic intermediates and oxidative dearomatizations, which are applicable more widely in natural product catabolism. So to where current experimental methods have failed in our hands, bioinformatic tools and fresh experimental strategies have been developed to identify linker regions in large, polydomain proteins and guide the dissection and reassembly of their component parts. It has been possible to deduce individual catalytic roles, how overall synthesis is coordinated and how these enzymes can be re-engineered in a rational manner to prepare non-natural products. These insights and innovations were often not planned or anticipated, but sprung from the inability to answer fundamental questions. Advances in science can take place by chance favoring the prepared mind, other times by refusing to give up and devising new solutions to address hard questions. Both ways forward played important roles in the investigation of aflatoxin biosynthesis. For these contributions I am pleased to share this special issue of NPR with John Vederas and Tom Simpson, who have been leaders in this field for the last third of a century.
Collapse
Affiliation(s)
- Craig A Townsend
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Newman AG, Vagstad AL, Storm P, Townsend CA. Systematic domain swaps of iterative, nonreducing polyketide synthases provide a mechanistic understanding and rationale for catalytic reprogramming. J Am Chem Soc 2014; 136:7348-62. [PMID: 24815013 PMCID: PMC4046768 DOI: 10.1021/ja5007299] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 11/29/2022]
Abstract
Iterative, nonreducing polyketide synthases (NR-PKSs) are multidomain enzymes responsible for the construction of the core architecture of aromatic polyketide natural products in fungi. Engineering these enzymes for the production of non-native metabolites has been a long-standing goal. We conducted a systematic survey of in vitro "domain swapped" NR-PKSs using an enzyme deconstruction approach. The NR-PKSs were dissected into mono- to multidomain fragments and recombined as noncognate pairs in vitro, reconstituting enzymatic activity. The enzymes used in this study produce aromatic polyketides that are representative of the four main chemical features set by the individual NR-PKS: starter unit selection, chain-length control, cyclization register control, and product release mechanism. We found that boundary conditions limit successful chemistry, which are dependent on a set of underlying enzymatic mechanisms. Crucial for successful redirection of catalysis, the rate of productive chemistry must outpace the rate of spontaneous derailment and thioesterase-mediated editing. Additionally, all of the domains in a noncognate system must interact efficiently if chemical redirection is to proceed. These observations refine and further substantiate current understanding of the mechanisms governing NR-PKS catalysis.
Collapse
Affiliation(s)
- Adam G. Newman
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | | | - Philip
A. Storm
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Khosla C, Herschlag D, Cane DE, Walsh CT. Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 2014; 53:2875-83. [PMID: 24779441 PMCID: PMC4020578 DOI: 10.1021/bi500290t] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two hallmarks of assembly line polyketide synthases have motivated an interest in these unusual multienzyme systems, their stereospecificity and their capacity for directional biosynthesis. In this review, we summarize the state of knowledge regarding the mechanistic origins of these two remarkable features, using the 6-deoxyerythronolide B synthase as a prototype. Of the 10 stereocenters in 6-deoxyerythronolide B, the stereochemistry of nine carbon atoms is directly set by ketoreductase domains, which catalyze epimerization and/or diastereospecific reduction reactions. The 10th stereocenter is established by the sequential action of three enzymatic domains. Thus, the problem has been reduced to a challenge in mainstream enzymology, where fundamental gaps remain in our understanding of the structural basis for this exquisite stereochemical control by relatively well-defined active sites. In contrast, testable mechanistic hypotheses for the phenomenon of vectorial biosynthesis are only just beginning to emerge. Starting from an elegant theoretical framework for understanding coupled vectorial processes in biology [Jencks, W. P. (1980) Adv. Enzymol. Relat. Areas Mol. Biol. 51, 75-106], we present a simple model that can explain assembly line polyketide biosynthesis as a coupled vectorial process. Our model, which highlights the important role of domain-domain interactions, not only is consistent with recent observations but also is amenable to further experimental verification and refinement. Ultimately, a definitive view of the coordinated motions within and between polyketide synthase modules will require a combination of structural, kinetic, spectroscopic, and computational tools and could be one of the most exciting frontiers in 21st Century enzymology.
Collapse
Affiliation(s)
- Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
24
|
Liu T, Sanchez JF, Chiang YM, Oakley BR, Wang CCC. Rational domain swaps reveal insights about chain length control by ketosynthase domains in fungal nonreducing polyketide synthases. Org Lett 2014; 16:1676-9. [PMID: 24593241 PMCID: PMC3993715 DOI: 10.1021/ol5003384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
A facile
genetic methodology in the filamentous fungus Aspergillus
nidulans allowed exchange of the starter unit ACP transacylase
(SAT) domain
in the nonreduced polyketide synthase (NR-PKS) AfoE of the asperfuranone
pathway with the SAT domains from 10 other NR-PKSs. The newly created
hybrid with the NR-PKS AN3386 is able to accept a longer starter unit
in place of the native substrate to create a novel aromatic polyketide in vivo.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy , Los Angeles, California 90089, United States
| | | | | | | | | |
Collapse
|
25
|
Leitão AL, Enguita FJ. Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Microbiol Res 2014; 169:652-65. [PMID: 24636745 DOI: 10.1016/j.micres.2014.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 02/15/2014] [Accepted: 02/16/2014] [Indexed: 01/07/2023]
Abstract
Secondary metabolic pathways of fungal origin provide an almost unlimited resource of new compounds for medical applications, which can fulfill some of the, currently unmet, needs for therapeutic alternatives for the treatment of a number of diseases. Secondary metabolites secreted to the extracellular medium (extrolites) belong to diverse chemical and structural families, but the majority of them are synthesized by the condensation of a limited number of precursor building blocks including amino acids, sugars, lipids and low molecular weight compounds also employed in anabolic processes. In fungi, genes related to secondary metabolic pathways are frequently clustered together and show a modular organization within fungal genomes. The majority of fungal gene clusters responsible for the biosynthesis of secondary metabolites contain genes encoding a high molecular weight condensing enzyme which is responsible for the assembly of the precursor units of the metabolite. They also contain other auxiliary genes which encode enzymes involved in subsequent chemical modification of the metabolite core. Synthetic biology is a branch of molecular biology whose main objective is the manipulation of cellular components and processes in order to perform logically connected metabolic functions. In synthetic biology applications, biosynthetic modules from secondary metabolic processes can be rationally engineered and combined to produce either new compounds, or to improve the activities and/or the bioavailability of the already known ones. Recently, advanced genome editing techniques based on guided DNA endonucleases have shown potential for the manipulation of eukaryotic and bacterial genomes. This review discusses the potential application of genetic engineering and genome editing tools in the rational design of fungal secondary metabolite pathways by taking advantage of the increasing availability of genomic and biochemical data.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal.
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal.
| |
Collapse
|
26
|
Belecki K, Townsend CA. Biochemical determination of enzyme-bound metabolites: preferential accumulation of a programmed octaketide on the enediyne polyketide synthase CalE8. J Am Chem Soc 2013; 135:14339-48. [PMID: 24041368 DOI: 10.1021/ja406697t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite considerable interest in the enediyne family of antitumor antibiotics, assembly of their polyketide core structures in nature remains poorly understood. Discriminating methods to access enzyme-bound intermediates are critical for elucidating unresolved polyketide and nonribosomal peptide biosynthetic pathways. Here, we describe the development of broadly applicable techniques for the mild chemical release and analysis of intermediates bound to carrier proteins (CPs), providing access to these species even in sensitive systems. These techniques were applied to CalE8, the polyketide synthase (PKS) involved in calicheamicin biosynthesis, facilitating the unambiguous identification of enzyme-bound polyketides on an enediyne PKS. Moreover, these methods enabled the preparation of fully unloaded CalE8, providing a "clean slate" for reconstituted activity and allowing us to demonstrate the preferential accumulation of a PKS-bound octaketide with evidence of programmed processing control by CalE8. This intermediate, which has the expected chain length for enediyne core construction, could previously only be indirectly inferred. These studies prove that this polyketide is an authentic product of CalE8 and may be a key precursor to the enediyne core of calicheamicin, as it is the only programmed, enzyme-bound species observed for any enediyne system to date. Our experimental advances into a generally inaccessible system illustrate the utility of these techniques for investigating CP-based biosynthetic pathways.
Collapse
Affiliation(s)
- Katherine Belecki
- Department of Chemistry, The Johns Hopkins University , Remsen 252, 3400 North Charles St., Baltimore, Maryland 21218, United States
| | | |
Collapse
|
27
|
Probing the selectivity and protein·protein interactions of a nonreducing fungal polyketide synthase using mechanism-based crosslinkers. ACTA ACUST UNITED AC 2013; 20:1135-46. [PMID: 23993461 DOI: 10.1016/j.chembiol.2013.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 06/28/2013] [Accepted: 07/07/2013] [Indexed: 01/05/2023]
Abstract
Protein·protein interactions, which often involve interactions among an acyl carrier protein (ACP) and ACP partner enzymes, are important for coordinating polyketide biosynthesis. However, the nature of such interactions is not well understood, especially in the fungal nonreducing polyketide synthases (NR-PKSs) that biosynthesize toxic and pharmaceutically important polyketides. Here, we employ mechanism-based crosslinkers to successfully probe ACP and ketosynthase (KS) domain interactions in NR-PKSs. We found that crosslinking efficiency is closely correlated with the strength of ACP·KS interactions and that KS demonstrates strong starter unit selectivity. We further identified positively charged surface residues by KS mutagenesis, which mediates key interactions with the negatively charged ACP surface. Such complementary/matching contact pairs can serve as "adapter surfaces" for future efforts to generate new polyketides using NR-PKSs.
Collapse
|
28
|
Xu Y, Zhou T, Zhang S, Xuan LJ, Zhan J, Molnár I. Thioesterase domains of fungal nonreducing polyketide synthases act as decision gates during combinatorial biosynthesis. J Am Chem Soc 2013; 135:10783-91. [PMID: 23822773 PMCID: PMC3780601 DOI: 10.1021/ja4041362] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A crucial step during the programmed biosynthesis of fungal polyketide natural products is the release of the final polyketide intermediate from the iterative polyketide synthases (iPKSs), most frequently by a thioesterase (TE) domain. Realization of combinatorial biosynthesis with iPKSs requires TE domains that can accept altered polyketide intermediates generated by hybrid synthase enzymes and successfully release "unnatural products" with the desired structure. Achieving precise control over product release is of paramount importance with O-C bond-forming TE domains capable of macrocyclization, hydrolysis, transesterification, and pyrone formation that channel reactive, pluripotent polyketide intermediates to defined structural classes of bioactive secondary metabolites. By exploiting chimeric iPKS enzymes to offer substrates with controlled structural variety to two orthologous O-C bond-forming TE domains in situ, we show that these enzymes act as nonequivalent decision gates, determining context-dependent release mechanisms and overall product flux. Inappropriate choice of a TE could eradicate product formation in an otherwise highly productive chassis. Conversely, a judicious choice of a TE may allow the production of a desired hybrid metabolite. Finally, a serendipitous choice of a TE may reveal the unexpected productivity of some chassis. The ultimate decision gating role of TE domains influences the observable outcome of combinatorial domain swaps, emphasizing that the deduced programming rules are context dependent. These factors may complicate engineering the biosynthesis of a desired "unnatural product" but may also open additional avenues to create biosynthetic novelty based on fungal nonreduced polyketides.
Collapse
Affiliation(s)
- Yuquan Xu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Tong Zhou
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA
| | - Shuwei Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Li-Jiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
- Bio5 Institute, The University of Arizona, 1657 E. Helen St., Tucson, AZ 85721, USA
| |
Collapse
|
29
|
Xu W, Chooi YH, Choi JW, Li S, Vederas JC, Da Silva NA, Tang Y. LovG: the thioesterase required for dihydromonacolin L release and lovastatin nonaketide synthase turnover in lovastatin biosynthesis. Angew Chem Int Ed Engl 2013; 52:6472-5. [PMID: 23653178 DOI: 10.1002/anie.201302406] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Xu W, Chooi YH, Choi JW, Li S, Vederas JC, Da Silva NA, Tang Y. LovG: The Thioesterase Required for Dihydromonacolin L Release and Lovastatin Nonaketide Synthase Turnover in Lovastatin Biosynthesis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Xu Y, Zhou T, Zhou Z, Su S, Roberts SA, Montfort WR, Zeng J, Chen M, Zhang W, Lin M, Zhan J, Molnár I. Rational reprogramming of fungal polyketide first-ring cyclization. Proc Natl Acad Sci U S A 2013; 110:5398-403. [PMID: 23509261 PMCID: PMC3619332 DOI: 10.1073/pnas.1301201110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Resorcylic acid lactones and dihydroxyphenylacetic acid lactones represent important pharmacophores with heat shock response and immune system modulatory activities. The biosynthesis of these fungal polyketides involves a pair of collaborating iterative polyketide synthases (iPKSs): a highly reducing iPKS with product that is further elaborated by a nonreducing iPKS (nrPKS) to yield a 1,3-benzenediol moiety bridged by a macrolactone. Biosynthesis of unreduced polyketides requires the sequestration and programmed cyclization of highly reactive poly-β-ketoacyl intermediates to channel these uncommitted, pluripotent substrates to defined subsets of the polyketide structural space. Catalyzed by product template (PT) domains of the fungal nrPKSs and discrete aromatase/cyclase enzymes in bacteria, regiospecific first-ring aldol cyclizations result in characteristically different polyketide folding modes. However, a few fungal polyketides, including the dihydroxyphenylacetic acid lactone dehydrocurvularin, derive from a folding event that is analogous to the bacterial folding mode. The structural basis of such a drastic difference in the way a PT domain acts has not been investigated until now. We report here that the fungal vs. bacterial folding mode difference is portable on creating hybrid enzymes, and we structurally characterize the resulting unnatural products. Using structure-guided active site engineering, we unravel structural contributions to regiospecific aldol condensations and show that reshaping the cyclization chamber of a PT domain by only three selected point mutations is sufficient to reprogram the dehydrocurvularin nrPKS to produce polyketides with a fungal fold. Such rational control of first-ring cyclizations will facilitate efforts to the engineered biosynthesis of novel chemical diversity from natural unreduced polyketides.
Collapse
Affiliation(s)
- Yuquan Xu
- Natural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85706
| | - Tong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT 84322
| | - Zhengfu Zhou
- Natural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85706
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China; and
| | - Shiyou Su
- Natural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85706
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China; and
| | | | - William R. Montfort
- Department of Chemistry and Biochemistry and
- Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Jia Zeng
- Department of Biological Engineering, Utah State University, Logan, UT 84322
| | - Ming Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China; and
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China; and
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China; and
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, Logan, UT 84322
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85706
- Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
32
|
Gao Z, Wang J, Norquay AK, Qiao K, Tang Y, Vederas JC. Investigation of fungal iterative polyketide synthase functions using partially assembled intermediates. J Am Chem Soc 2013; 135:1735-8. [PMID: 23356934 PMCID: PMC3577055 DOI: 10.1021/ja4001823] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Iterative polyketide synthases (PKSs) are large, multifunctional enzymes that resemble eukaryotic fatty acid synthases but can make highly functionalized secondary metabolites using complex and unresolved programming rules. During biosynthesis of the kinase inhibitor hypothemycin by Hypomyces subiculosus , a highly reducing iterative PKS, Hpm8, cooperates with a nonreducing iterative PKS, Hpm3, to construct the advanced intermediate dehydrozearalenol (DHZ). The identity of putative intermediates in the formation of the highly reduced hexaketide portion of DHZ were confirmed by incorporation of (13)C-labeled N-acetylcysteamine (SNAC) thioesters using the purified enzymes. The results show that Hpm8 can accept SNAC thioesters of intermediates that are ready for transfer from its acyl carrier protein domain to its ketosynthase domain and assemble them into DHZ in cooperation with Hpm3. Addition of certain structurally modified analogues of intermediates to Hpm8 and Hpm3 can produce DHZ derivatives.
Collapse
Affiliation(s)
- Zhizeng Gao
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jingjing Wang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
| | - Amy K. Norquay
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kangjian Qiao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
33
|
Vagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial Domain Swaps Provide Insights into the Rules of Fungal Polyketide Synthase Programming and the Rational Synthesis of Non-Native Aromatic Products. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Vagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial domain swaps provide insights into the rules of fungal polyketide synthase programming and the rational synthesis of non-native aromatic products. Angew Chem Int Ed Engl 2013; 52:1718-21. [PMID: 23283670 DOI: 10.1002/anie.201208550] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Anna L Vagstad
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The iterative type I polyketide synthases (IPKSs) are central to the biosynthesis of an enormously diverse array of natural products in fungi. These natural products, known as polyketides, exhibit a wide range of biological activities and include clinically important drugs as well as undesirable toxins. The PKSs synthesize these structurally diverse polyketides via a series of decarboxylative condensations of malonyl-CoA extender units and β-keto modifications in a highly programmed manner. Significant progress has been made over the past few years in understanding the biosynthetic mechanism and programming of fungal PKSs. The continuously expanding fungal genome sequence data have sparked genome-directed discoveries of new fungal PKSs and associated products. The increasing number of fungal PKSs that have been linked to their products along with in-depth biochemical and structural characterizations of these large enzymes have remarkably improved our knowledge on the molecular basis for polyketide structural diversity in fungi. This Perspective highlights the recent advances and examines how the newly expanded paradigm has contributed to our ability to link fungal PKS genes to chemical structures and vice versa. The knowledge will help us navigate through the logarithmically expanding seas of genomic information for polyketide compound discovery and provided opportunities to reprogram these megasynthases to generate new chemical entities.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| |
Collapse
|
36
|
Belecki K, Townsend CA. Environmental Control of the Calicheamicin Polyketide Synthase Leads to Detection of a Programmed Octaketide and a Proposal for Enediyne Biosynthesis. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Newman AG, Vagstad AL, Belecki K, Scheerer JR, Townsend CA. Analysis of the cercosporin polyketide synthase CTB1 reveals a new fungal thioesterase function. Chem Commun (Camb) 2012; 48:11772-4. [PMID: 23108075 DOI: 10.1039/c2cc36010a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The polyketide synthase CTB1 is demonstrated to catalyze pyrone formation thereby expanding the known biosynthetic repertoire of thioesterase domains in iterative, non-reducing polyketide synthases.
Collapse
Affiliation(s)
- Adam G Newman
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
38
|
Belecki K, Townsend CA. Environmental control of the calicheamicin polyketide synthase leads to detection of a programmed octaketide and a proposal for enediyne biosynthesis. Angew Chem Int Ed Engl 2012; 51:11316-9. [PMID: 23042574 DOI: 10.1002/anie.201206462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/09/2022]
Abstract
A light in the dark: the fermentation products of the polyketide synthase CalE8 (without its cognate thioesterase) were identified and gave some insight into the elusive early steps of calicheamicin biosynthesis. Fermentation in either the light or dark resulted in different proportions of a new octaketide and led to an updated mechanistic proposal.
Collapse
Affiliation(s)
- Katherine Belecki
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
39
|
The International Conference of Natural Product Biosynthesis (ICNPB, 8th US-Japan seminar on the Biosynthesis of Natural Products). J Antibiot (Tokyo) 2012; 65:587-90. [PMID: 22990380 DOI: 10.1038/ja.2012.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Foulke-Abel J, Townsend CA. Demonstration of starter unit interprotein transfer from a fatty acid synthase to a multidomain, nonreducing polyketide synthase. Chembiochem 2012; 13:1880-4. [PMID: 22807303 DOI: 10.1002/cbic.201200267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Indexed: 11/09/2022]
Abstract
The pathway for substrate transacylation between a fungal type I fatty acid synthase (FAS) and a nonreducing polyketide synthase (NR-PKS) was determined by in vitro reconstitution of dissected domains. System kinetics were influenced by domain dissections, and the FAS phosphopantetheinyl transferase (PPT) monodomain exhibited coenzyme A selectivity for the post-translational activation of the FAS acyl carrier protein (ACP).
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
41
|
|