1
|
Veider F, Sanchez Armengol E, Bernkop-Schnürch A. Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304713. [PMID: 37675812 DOI: 10.1002/smll.202304713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
The past two decades have witnessed a rapid progress in the development of surface charge-reversible nanoparticles (NPs) for drug delivery and diagnosis. These NPs are able to elegantly address the polycation dilemma. Converting their surface charge from negative/neutral to positive at the target site, they can substantially improve delivery of drugs and diagnostic agents. By specific stimuli like a shift in pH and redox potential, enzymes, or exogenous stimuli such as light or heat, charge reversal of NP surface can be achieved at the target site. The activated positive surface charge enhances the adhesion of NPs to target cells and facilitates cellular uptake, endosomal escape, and mitochondrial targeting. Because of these properties, the efficacy of incorporated drugs as well as the sensitivity of diagnostic agents can be essentially enhanced. Furthermore, charge-reversible NPs are shown to overcome the biofilm formed by pathogenic bacteria and to shuttle antibiotics directly to the cell membrane of these microorganisms. In this review, the up-to-date design of charge-reversible NPs and their emerging applications in drug delivery and diagnosis are highlighted.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Singh D, Lakshmi D, Meena CL, Krishna GR, Sanjayan GJ. Carbamate-Protected (BOC and O-NB) 2-Aminopyrimidinedione-Based Janus G-C Nucleobase Motifs as Building Blocks for Supramolecular Assembly and Smart Polymers. J Org Chem 2023; 88:14953-14959. [PMID: 37851916 DOI: 10.1021/acs.joc.3c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this paper, we report "carbamate protected" 2-aminopyrimidinedione-based Janus G-C nucleobases (2-APD Janus G-C nucleobases) featuring polymerizable groups and self-complementary triple H-bonding motifs DDA and AAD as building blocks for developing smart polymers and self-healing materials. The carbamate-masked H-bonding motif, cleavable under acidic (BOC group) or photocleavable (O-nitrobenzyl group) conditions, would facilitate the synthesis of smart polymers by alleviating aggregation during polymerization which in turn would exclude self-assembly-assisted solubility issues. Ready accessibility in excellent yields coupled with the possibility for facile introduction of polymerizable groups would make these building blocks excellent candidates for diverse polymerization applications.
Collapse
Affiliation(s)
- Dharmendra Singh
- Organic Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durga Lakshmi
- Organic Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chhuttan L Meena
- Organic Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Wagh MA, Shinde DR, Gamidi RK, Sanjayan GJ. 2-Amino-5-methylene-pyrimidine-4,6-dione-based Janus G-C nucleobase as a versatile building block for self-assembly. Org Biomol Chem 2023; 21:6914-6918. [PMID: 37593940 DOI: 10.1039/d3ob01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
This communication reports a nature-inspired Janus G-C nucleobase featuring two recognition sites: DDA (G mimic) and DAA (C mimic), which is capable of forming a linear tape-like supramolecular polymer structure. As demonstrated herein, the amino group of this self-assembling system can be further modified to yield a highly stable quadruple H-bonding system as well as a masked self-assembling system cleavable upon exposure to light.
Collapse
Affiliation(s)
- Mahendra A Wagh
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Dinesh R Shinde
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
4
|
Abstract
Photoirradiation and small organic molecule triggering of appropriately designed caged hormones enable the control and manipulation of the corresponding biological processes with high spatial and temporal resolution. Caged trans-zeatin substituted with nitrobenzene carbonates as photoremovable protecting groups and trans-cyclooctene as the tetrazine-responsive motif have been synthesized. A smooth release of the trapped trans-zeatin molecule has been achieved, permitting targeted perturbation of biological processes, including degradation, glucosylation, and recognition by appropriate enzymes.
Collapse
Affiliation(s)
- Xin Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang X, Zhang M, Wu M, Yang L, Liu R, Zhang R, Zhao T, Song C, Liu G, Zhu Q. Photoresponsive Bridged Polysilsesquioxanes for Protein Immobilization/Controlled Release and Micropatterns. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36370-36379. [PMID: 34297533 DOI: 10.1021/acsami.1c10542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein micropatterning on microfabricated surfaces is a promising technology in applications for biochip microarrays, cell attachment, and biosensors. In the present work, a novel photoresponsive polymer based on light-triggered charge shifting bridged polysilsesquioxane (CBPS) is designed and prepared. The organic bridged units containing a photocleavable group of diethylaminocoumarin-4-yl in CBPS could be cleaved rapidly upon irradiation at 410 nm, resulting in the polymer surface switching from a positive charge to a negative charge property. The photoresponsive behavior of CBPS is studied using FTIR, UV-vis, SEM, fluorescence microscopy, and zeta potential analysis. Proteins are easily immobilized on the polymer surface via electrostatic interactions and released after irradiation as required. Combined with photopatterning techniques, accurate protein micropatterns are fabricated by covering a photomask upon irradiation. A gradient protein pattern is also spatially and temporally controlled by regulating irradiation parameters. This smart photoresponsive polymer surface provides a gentle and straightforward strategy to micropattern charged proteins. Moreover, the photoresponsive polymer holds permitting potential in biomedical applications such as conjugating biomolecules, guiding cell arrays, and resisting bacteria.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mengmeng Zhang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mingyue Wu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Linchuan Yang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rui Liu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rui Zhang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tongtong Zhao
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ci Song
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Gang Liu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qingzeng Zhu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Zhang X, Zhang M, Wu M, Yang L, Liu R, Zhang R, Zhao T, Song C, Liu G, Zhu Q. Precise Controlled Target Molecule Release through Light-Triggered Charge Reversal Bridged Polysilsesquioxane Nanoparticles. Polymers (Basel) 2021; 13:polym13152392. [PMID: 34371994 PMCID: PMC8346980 DOI: 10.3390/polym13152392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Precise control of target molecule release time, site, and dosage remains a challenge in controlled release systems. We employed a photoresponsive molecule release system via light-triggered charge reversal nanoparticles to achieve a triggered, stepwise, and precise controlled release platform. This release system was based on photocleavage-bridged polysilsesquioxane nanoparticles which acted as nanocarriers of doxorubicin loaded on the surface via electrostatic interaction. The nanoparticles could reverse into positive charges triggered by 254 nm light irradiation due to the photocleavage of the o-nitrobenzyl bridged segment. The charge reversal property of the nanoparticles could release loaded molecules. Doxorubicin was selected as a positively charged model molecule. The as-prepared nanoparticles with an average size of 124 nm had an acceptable doxorubicin loading content up to 12.8%. The surface charge of the nanoparticles could rapidly reverse from negative (−28.20 mV) to positive (+18.9 mV) upon light irradiation for only 10 min. In vitro release experiments showed a cumulative release up to 96% with continuously enhancing irradiation intensity. By regulating irradiation parameters, precisely controlled drug release was carried out. The typical “stepped” profile could be accurately controlled in an on/off irradiation mode. This approach provides an ideal light-triggered molecule release system for location, timing, and dosage. This updated controlled release system, triggered by near-infrared or infrared light, will have greater potential applications in biomedical technology.
Collapse
|
7
|
Santra S, Sk MA, Mondal A, Molla MR. Self-Immolative Polyurethane-Based Nanoassemblies: Surface Charge Modulation at Tumor-Relevant pH and Redox-Responsive Guest Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8282-8289. [PMID: 32579366 DOI: 10.1021/acs.langmuir.0c01474] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of a stimuli-responsive amphiphilic polymer has been of great interest in the area of targeted drug delivery applications. In this article, a new amphiphilic polyurethane with a hydrophobic backbone consisting of a redox-responsive self-immolative unit and hydrophilic pendant triethylene glycol, which is periodically grafted on the backbone by a tertiary amine group, has been designed and synthesized. This amphiphilic polymer self-assembles into a micellar nanostructure (investigated by dynamic light scattering and transmission electron microscopy) in an aqueous medium and shows guest encapsulation property. Furthermore, the pH-responsive nature leads to the formation of a positively charged nanoassembly at a tumor-relevant pH (∼6.5-6.8), which is probed by zeta potential measurements. As the backbone was constructed with self-immolative, redox-responsive functionality, degradation of the polymer was observed in the presence of a reducing agent, glutathione (GSH), which results in disassembly of the self-assembled structure followed by guest release as probed by UV-vis spectroscopy. The triggered degradation and pH-specific charge generation (from neutral to positive), we believe, will have implications in the design of biodegradable polymers as supramoleular scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| | - Mursed A Sk
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| | - Mijanur R Molla
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| |
Collapse
|
8
|
Yang HY, Li Y, Lee DS. Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol Rapid Commun 2020; 41:e2000106. [DOI: 10.1002/marc.202000106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P. R. China
| | - Yi Li
- College of Material and Textile Engineering Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
9
|
Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials 2019; 217:119299. [DOI: 10.1016/j.biomaterials.2019.119299] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/31/2022]
|
10
|
Ďorďovič V, Vojtová J, Jana S, Uchman M. Charge reversal and swelling in saccharide binding polyzwitterionic phenylboronic acid-modified poly(4-vinylpyridine) nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py00938h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present the synthesis and characterization of zwitterionic poly(4-vinylpyridine) nanoparticles quaternized with phenylboronic acid (QxPVP-PBA) whose size and surface charge can be tuned by varying the saccharide and the degree of quaternization.
Collapse
Affiliation(s)
- Vladimír Ďorďovič
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Jana Vojtová
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Somdeb Jana
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| |
Collapse
|
11
|
Bernkop-Schnürch A. Strategies to overcome the polycation dilemma in drug delivery. Adv Drug Deliv Rev 2018; 136-137:62-72. [PMID: 30059702 DOI: 10.1016/j.addr.2018.07.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/07/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022]
Abstract
Because of polycationic auxiliary agents such as chitosan, polyethyleneimine and cell penetrating peptides as well as cationic lipids assembling to polycationic systems, drug carriers can tightly interact with cell membranes exhibiting a high-density anionic charge. Because of these interactions the cell membrane is depolarized and becomes vulnerable to various uptake mechanisms. On their way to the target site, however, the polycationic character of all these drug carriers is eliminated by polyanionic macromolecules such as mucus glycoproteins, serum proteins, proteoglycans of the extracellular matrix (ECM) and polyanionic surface substructures of non-target cells such as red blood cells. Strategies to overcome this polycation dilemma are focusing on a pH-, redox- or enzyme-triggered charge conversion at the target site. The pH-triggered systems are making use of a slight acidic environment at the target site such as in case of solid tumors, inflammatory tissue and ischemic tissue. Due to a pH shift from 7.2 to slightly acidic mainly amino substructures of polymeric excipients are protonated or shielding groups such as 2,3 dimethylmaleic acid are cleaved off unleashing the underlying cationic character. Redox-triggered systems are utilizing disulfide linkages to bulky side chains such as PEGs masking the polycationic character. Under mild reducing conditions such as in the tumor microenvironment these disulfide bonds are cleaved. Enzyme-triggered systems are targeting enzymes such as alkaline phosphatase, matrix metalloproteinases or hyaluronidase in order to eliminate anionic moieties via enzymatic cleavage resulting in a charge conversion from negative to positive. Within this review an overview about the pros and cons of these systems is provided.
Collapse
Affiliation(s)
- Andreas Bernkop-Schnürch
- Institute of Pharmacy/Department of Pharmaceutical Technology, University of Innsbruck Center for Chemistry and Biomedicine, Innrain 80/82, Room L.04.231, 6020 Innsbruck, Austria; ThioMatrix Forschungs- und Entwicklungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| |
Collapse
|
12
|
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29193848 DOI: 10.1002/adhm.201700831] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE Suite 103 Albuquerque NM 87106 USA
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute; Center of Excellence in Nanomedicine (CENM); King Abdulaziz City for Science and Technology (KACST); Riyadh 11461 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| |
Collapse
|
13
|
Chen C, Yang Z, Tang X. Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy. Med Res Rev 2018; 38:829-869. [PMID: 29315675 DOI: 10.1002/med.21479] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Gene-based therapy is one of essential therapeutic strategies for precision medicine through targeting specific genes in specific cells of target tissues. However, there still exist many problems that need to be solved, such as safety, stability, selectivity, delivery, as well as immunity. Currently, the key challenges of gene-based therapy for clinical potential applications are the safe and effective nucleic acid drugs as well as their safe and efficient gene delivery systems. In this review, we first focus on current nucleic acid drugs and their formulation in clinical trials and on the market, including antisense oligonucleotide, siRNA, aptamer, and plasmid nucleic acid drugs. Subsequently, we summarize different chemical modifications of nucleic acid drugs as well as their delivery systems for gene-based therapeutics in vivo based on nucleic acid chemistry and nanotechnology methods.
Collapse
Affiliation(s)
- Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
14
|
Croissant JG, Cattoën X, Durand JO, Wong Chi Man M, Khashab NM. Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes. NANOSCALE 2016; 8:19945-19972. [PMID: 27897295 DOI: 10.1039/c6nr06862f] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic-inorganic hybrid materials garner properties from their organic and inorganic matrices as well as synergistic features, and therefore have recently attracted much attention at the nanoscale. Non-porous organosilica hybrid nanomaterials with a high organic content such as silsesquioxanes (R-SiO1.5, with R organic groups) and bridged silsesquioxanes (O1.5Si-R-SiO1.5) are especially attractive hybrids since they provide 20 to 80 weight percent of organic functional groups in addition to the known chemistry and stability of silica. In the organosilica family, silsesquioxanes (R-SiO1.5) stand between silicas (SiO2) and silicones (R2SiO), and are variously called organosilicas, ormosil (organically-modified silica), polysilsesquioxanes and silica hybrids. Herein, we comprehensively review non-porous silsesquioxane and bridged silsesquioxane nanomaterials and their applications in nanomedicine, electro-optics, and catalysis.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | - Xavier Cattoën
- Institut Néel, Université Grenoble Alpes and CNRS, Grenoble, France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier UMR-5253 CNRS-UM2-ENSCM-UM1cc, 1701 Place Eugène Bataillon, F-34095 Montpelliercedex 05, France
| | - Michel Wong Chi Man
- Institut Charles Gerhardt Montpellier UMR-5253 CNRS-UM2-ENSCM-UM1cc, 1701 Place Eugène Bataillon, F-34095 Montpelliercedex 05, France
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| |
Collapse
|
15
|
Yang L, Tang Y, Liu N, Liu CH, Ding Y, Wu ZQ. Facile Synthesis of Hybrid Silica Nanoparticles Grafted with Helical Poly(phenyl isocyanide)s and Their Enantioselective Crystallization Ability. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01870] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li Yang
- Department
of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Yang Tang
- Department
of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Na Liu
- Department
of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Chun-Hua Liu
- Department
of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Yunsheng Ding
- Department
of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Zong-Quan Wu
- Department
of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| |
Collapse
|
16
|
Chen X, Liu L, Jiang C. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharm Sin B 2016; 6:261-7. [PMID: 27471667 PMCID: PMC4951588 DOI: 10.1016/j.apsb.2016.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 01/31/2023] Open
Abstract
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).
Collapse
Key Words
- Abs, integrin aVb3 mAbs
- B-PDEAEA, poly[(2-acryloyl) ethyl (p-boronic acid benzyl) diethylammonium bromide]
- BPS, bridged polysilsesquioxanexerogel
- BSA, bovine serum albumin
- CA4, combretastatin A4
- CAPL, charge reversible pullulan-based
- CHPNH2, cationic cholesteryl group–bearing pullulans
- CMC, carboxymethyl cellulose
- CPLAs, cationic polylactides
- Cancer therapy
- Charge-reversal nanoparticles
- Cit, citraconic anhydride
- Cya, cysteamine hydrochloride
- DAP, 2,3-diamino-propionate
- DCL, dimethyl maleamidic acid-ε-caprolactone
- DDS, drug delivery system
- DM, dimyristeroyl
- DMA, 2,3-dimethylmaleic anhydride
- DMPA, dimethylol propionic acid
- DOX, doxorubicin
- Drug delivery carriers
- FITC, fluorescein isothiocyanate
- GO, graphene oxide
- GSH, glutathione
- Glu, glutamic acid
- HCC, hepatocellular carcinoma
- HEP, 1,4-bis(2-hydroxyethyl) piperazine
- HMP, p-hydroxylmethylenephenol
- His, histidine
- MG, microgels
- MMPs, matrix metalloproteinases
- MNP, magnetic nanoparticles
- NPs, nanoparticles
- Nanotechnology
- PAEP, poly(allyl ethylene phosphate)
- PAH, poly(allylamine) hydrochloride
- PBAE, poly(β-amino ester)
- PCL, poly(ε-caprolactone)
- PDADMAC, poly(diallyldimethylammonium chloride)
- PEG, polyethylene glycol
- PEI, polyethylenimine
- PEO, poly(ethylene oxide)
- PK, protein kinase
- PLA, ploylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PLL, poly(l-lysine)
- PMA, poly(methacrylic acid)
- PS, pH sensitive
- PSS, poly(sodium 4-styrenesulfonate)
- PSSS, poly(styrene-co-4-styrene-sulfonate)
- PTX, paclitaxel
- PU, polyurethane
- PVPON, poly(N-vinylpyrrolidone)
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Stimuli responsive
- TMA, 2-(mercaptoethyl) trimethylammonium chloride
- TUNA, thioundecyl-tetraethyleneglycolester-o-nitrobenzy-lethyldimethyl ammonium bromide
- pA-F, fluorescein-labeled polyanion
Collapse
Affiliation(s)
- Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 2016; 91:90-127. [DOI: 10.1016/j.biomaterials.2016.03.019] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 01/23/2023]
|
18
|
Chen Y, Shi J. Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3235-72. [PMID: 26936391 DOI: 10.1002/adma.201505147] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/22/2015] [Indexed: 05/22/2023]
Abstract
Organic-inorganic hybrid materials aiming to combine the individual advantages of organic and inorganic components while overcoming their intrinsic drawbacks have shown great potential for future applications in broad fields. In particular, the integration of functional organic fragments into the framework of mesoporous silica to fabricate mesoporous organosilica materials has attracted great attention in the scientific community for decades. The development of such mesoporous organosilica materials has shifted from bulk materials to nanosized mesoporous organosilica nanoparticles (designated as MONs, in comparison with traditional mesoporous silica nanoparticles (MSNs)) and corresponding applications in nanoscience and nanotechnology. In this comprehensive review, the state-of-art progress of this important hybrid nanomaterial family is summarized, focusing on the structure/composition-performance relationship of MONs of well-defined morphology, nanostructure, and nanoparticulate dimension. The synthetic strategies and the corresponding mechanisms for the design and construction of MONs with varied morphologies, compositions, nanostructures, and functionalities are overviewed initially. Then, the following part specifically concentrates on their broad spectrum of applications in nanotechnology, mainly in nanomedicine, nanocatalysis, and nanofabrication. Finally, some critical issues, presenting challenges and the future development of MONs regarding the rational synthesis and applications in nanotechnology are summarized and discussed. It is highly expected that such a unique molecularly organic-inorganic nanohybrid family will find practical applications in nanotechnology, and promote the advances of this discipline regarding hybrid chemistry and materials.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
| |
Collapse
|
19
|
Maggini L, Travaglini L, Cabrera I, Castro-Hartmann P, De Cola L. Biodegradable Peptide-Silica Nanodonuts. Chemistry 2016; 22:3697-703. [DOI: 10.1002/chem.201504605] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Laura Maggini
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Leana Travaglini
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ingrid Cabrera
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | | | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
- Institut für Nanotechnologie (INT); Karlsruhe Institute of Technology, Campus Nord; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
20
|
Fatieiev Y, Croissant JG, Alsaiari S, Moosa BA, Anjum DH, Khashab NM. Photoresponsive Bridged Silsesquioxane Nanoparticles with Tunable Morphology for Light-Triggered Plasmid DNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24993-24997. [PMID: 26406224 DOI: 10.1021/acsami.5b07365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bridged silsesquioxane nanocomposites with tunable morphologies incorporating o-nitrophenylene-ammonium bridges are described. The systematic screening of the sol-gel parameters allowed the material to reach the nanoscale with controlled dense and hollow structures of 100-200 nm. The hybrid composition of silsesquioxanes with 50% organic content homogeneously distributed in the nanomaterials endowed them with photoresponsive properties. Light irradiation was performed to reverse the surface charge of nanoparticles from +46 to -39 mV via a photoreaction of the organic fragments within the particles, as confirmed by spectroscopic monitorings. Furthermore, such nanoparticles were applied for the first time for the on-demand delivery of plasmid DNA in HeLa cancer cells via light actuation.
Collapse
Affiliation(s)
- Yevhen Fatieiev
- Smart Hybrid Materials Laboratory, Imaging and Characterization Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonas G Croissant
- Smart Hybrid Materials Laboratory, Imaging and Characterization Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Shahad Alsaiari
- Smart Hybrid Materials Laboratory, Imaging and Characterization Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Basem A Moosa
- Smart Hybrid Materials Laboratory, Imaging and Characterization Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dalaver H Anjum
- Smart Hybrid Materials Laboratory, Imaging and Characterization Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory, Imaging and Characterization Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Fatieiev Y, Croissant JG, Julfakyan K, Deng L, Anjum DH, Gurinov A, Khashab NM. Enzymatically degradable hybrid organic-inorganic bridged silsesquioxane nanoparticles for in vitro imaging. NANOSCALE 2015; 7:15046-15050. [PMID: 26165456 DOI: 10.1039/c5nr03065j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe biodegradable bridged silsesquioxane (BS) composite nanomaterials with an unusually high organic content (ca. 50%) based on oxamide components mimicking amino acid biocleavable groups. Unlike most bulk BS materials, the design of sub-200 nm nearly monodisperse nanoparticles (NPs) was achieved. These enzymatically degradable BS NPs were further tested as promising imaging nanoprobes.
Collapse
Affiliation(s)
- Y Fatieiev
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Croissant J, Maynadier M, Mongin O, Hugues V, Blanchard-Desce M, Chaix A, Cattoën X, Wong Chi Man M, Gallud A, Gary-Bobo M, Garcia M, Raehm L, Durand JO. Enhanced two-photon fluorescence imaging and therapy of cancer cells via Gold@bridged silsesquioxane nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:295-9. [PMID: 25208237 DOI: 10.1002/smll.201401759] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Indexed: 05/24/2023]
Abstract
A two-photon photosensitizer with four triethoxysilyl groups is synthesized through the click reaction. This photosensitizer allows the design of bridged silsesquioxane (BS) nanoparticles through a sol-gel process; moreover, gold core BS shells or BS nanoparticles decorated with gold nanospheres are synthesized. An enhancement of the two-photon properties is noted with gold and the nanoparticles are efficient for two-photon imaging and two-photon photodynamic therapy of cancer cells.
Collapse
Affiliation(s)
- Jonas Croissant
- Institut Charles Gerhardt Montpellier, UMR-5253, CNRS-UM2-ENSCM-UM1, cc 1701, Place Eugène Bataillon, F-34095, Montpellier cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Croissant JG, Mauriello-Jimenez C, Maynadier M, Cattoën X, Wong Chi Man M, Raehm L, Mongin O, Blanchard-Desce M, Garcia M, Gary-Bobo M, Maillard P, Durand JO. Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells. Chem Commun (Camb) 2015; 51:12324-7. [DOI: 10.1039/c5cc03736k] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells are described.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Institut Charles Gerhardt Montpellier
- UMR-5253 CNRS-UM-ENSCM cc 1701
- F-34095 Montpellier Cedex 05
- France
| | - Chiara Mauriello-Jimenez
- Institut Charles Gerhardt Montpellier
- UMR-5253 CNRS-UM-ENSCM cc 1701
- F-34095 Montpellier Cedex 05
- France
| | | | - Xavier Cattoën
- Institut Néel
- CNRS and Université Grenoble-Alpes
- 38042 Grenoble
- France
| | - Michel Wong Chi Man
- Institut Charles Gerhardt Montpellier
- UMR-5253 CNRS-UM-ENSCM cc 1701
- F-34095 Montpellier Cedex 05
- France
| | - Laurence Raehm
- Institut Charles Gerhardt Montpellier
- UMR-5253 CNRS-UM-ENSCM cc 1701
- F-34095 Montpellier Cedex 05
- France
| | - Olivier Mongin
- Institut des Sciences Chimiques de Rennes
- CNRS UMR 6226 Université Rennes 1 Campus Beaulieu F-35042 Rennes Cedex
- France
| | | | - Marcel Garcia
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS
- 34093 Montpellier Cedex 05
- France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS
- 34093 Montpellier Cedex 05
- France
| | | | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier
- UMR-5253 CNRS-UM-ENSCM cc 1701
- F-34095 Montpellier Cedex 05
- France
| |
Collapse
|
24
|
Bürglová K, Noureddine A, Hodačová J, Toquer G, Cattoën X, Wong Chi Man M. A general method for preparing bridged organosilanes with pendant functional groups and functional mesoporous organosilicas. Chemistry 2014; 20:10371-82. [PMID: 25044077 DOI: 10.1002/chem.201403136] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 01/04/2023]
Abstract
New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol-gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper-catalysed azide-alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1) the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol-gel process; 2) the precursor is first subjected to the sol-gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne- or azide-containing precursors, and thereafter, functionalised with complementary model azide- or alkyne-containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials.
Collapse
Affiliation(s)
- Kristýna Bürglová
- Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-ENSCM-UM1), 8, rue de l'école normale, 34296 Montpellier (France); Department of Organic Chemistry, Institute of Chemical Technology, Technická 5, 16628 Praha 6 (Czech Republic)
| | | | | | | | | | | |
Collapse
|
25
|
Kumar BVVSP, Salikolimi K, Eswaramoorthy M. Glucose- and pH-responsive charge-reversal surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4540-4544. [PMID: 24773560 DOI: 10.1021/la500407r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have shown a pH- and glucose-responsive charge reversal on silica surface through heterogeneous functionalization utilizing amines and boronic acid moieties. The dual responsiveness of the charge reversal has been unambiguously demonstrated through the desorption of charged chromophores. Interestingly, we observed a concentration-dependent desorption response to glucose at physiologically relevant levels.
Collapse
Affiliation(s)
- B V V S Pavan Kumar
- Nanomaterials and Catalysis Lab, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bangalore 560064, India
| | | | | |
Collapse
|
26
|
Park DS, Ha TS, Kim KY, Lim JH, Kim KM. New composites of spherical bridged polysilsesquioxanes and aggregates of Pd nanoparticles with POSS via ionic interactions. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-013-1094-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Choi J, Sung H, Ko Y, Lee S, Choi W, Bang J, Cho J. Layer-by-Layer Assembly of Inorganic Nanosheets and Polyelectrolytes for Reverse Osmosis Composite Membranes. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2014. [DOI: 10.1252/jcej.13we136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University
- Green School, Korea University
| | - Hyemin Sung
- Department of Chemical and Biological Engineering, Korea University
| | - Yongmin Ko
- Department of Chemical and Biological Engineering, Korea University
| | - Seunghye Lee
- Department of Chemical and Biological Engineering, Korea University
| | - Wanseok Choi
- Department of Chemical and Biological Engineering, Korea University
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University
| |
Collapse
|
28
|
Cheong S, Kim Y, Kwon T, Kim BJ, Cho J. Inorganic nanoparticle multilayers using photo-crosslinking layer-by-layer assembly and their applications in nonvolatile memory devices. NANOSCALE 2013; 5:12356-12364. [PMID: 24162469 DOI: 10.1039/c3nr04547a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We introduce a general and facile method for the preparation of organic/inorganic nanoparticle (NP) nanocomposite multilayer films that allows vertical growth of various NP layers (i.e., metal or transition metal oxide NPs) in a densely packed structure. Our approach is based on the successive photo-crosslinking layer-by-layer (LbL) assembly between hydrophobic ligands onto a NP surface and photoinitiator (PI) molecules. Therefore, our approach requires neither the additional surface modification needed for well-defined NPs synthesized in organic media nor the deposition step that inserts a polymer layer bridge between adjacent inorganic NP layers in the preparation of traditional LbL-assembled NP films. We also demonstrate that photo-crosslinking LbL-assembled (metal oxide NP)n films could be used as a nonvolatile memory layer without a high-temperature thermal treatment, unlike conventional vacuum-deposition- or sol-gel-derived memory devices, which require thermal treatments at temperatures greater than 200 °C. This robust method could open a facile route for the design of functional NP-based electronic devices.
Collapse
Affiliation(s)
- Sanghyuk Cheong
- Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea.
| | | | | | | | | |
Collapse
|
29
|
Li L, Raghupathi K, Yuan C, Thayumanavan S. Surface charge generation in nanogels for activated cellular uptake at tumor-relevant pH. Chem Sci 2013. [DOI: 10.1039/c3sc50899d] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|