1
|
Lu F, Li L, Zhang M, Yu C, Pan Y, Cheng F, Hu W, Lu X, Wang Q, Fan Q. Confined semiconducting polymers with boosted NIR light-triggered H 2O 2 production for hypoxia-tolerant persistent photodynamic therapy. Chem Sci 2024; 15:12086-12097. [PMID: 39092116 PMCID: PMC11290442 DOI: 10.1039/d4sc01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
Hypoxia featured in malignant tumors and the short lifespan of photo-induced reactive oxygen species (ROS) are two major issues that limit the efficiency of photodynamic therapy (PDT) in oncotherapy. Developing efficient type-I photosensitizers with long-term ˙OH generation ability provides a possible solution. Herein, a semiconducting polymer-based photosensitizer PCPDTBT was found to generate 1O2, ˙OH, and H2O2 through type-I/II PDT paths. After encapsulation within a mesoporous silica matrix, the NIR-II fluorescence and ROS generation are enhanced by 3-4 times compared with the traditional phase transfer method, which can be attributed to the excited-state lifetime being prolonged by one order of magnitude, resulting from restricted nonradiative decay channels, as confirmed by femtosecond spectroscopy. Notably, H2O2 production reaches 15.8 μM min-1 under a 730 nm laser (80 mW cm-2). Further adsorption of Fe2+ ions on mesoporous silica not only improves the loading capacity of the chemotherapy drug doxorubicin but also triggers a Fenton reaction with photo-generated H2O2 in situ to produce ˙OH continuously after the termination of laser irradiation. Thus, semiconducting polymer-based nanocomposites enables NIR-II fluorescence imaging guided persistent PDT under hypoxic conditions. This work provides a promising paradigm to fabricate persistent photodynamic therapy platforms for hypoxia-tolerant phototheranostics.
Collapse
Affiliation(s)
- Feng Lu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Lili Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Meng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Chengwu Yu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Yonghui Pan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Fangfang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Wenbo Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University Xi'an 710072 China
| | - Xiaomei Lu
- Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University Nanjing 211816 China
- Zhengzhou Institute of Biomedical Engineering and Technology Zhengzhou 450001 China
| | - Qi Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| |
Collapse
|
2
|
Li D, Wang H, Chen J, Wu Q. Fluorinated Polymer Donors for Nonfullerene Organic Solar Cells. Chemistry 2024; 30:e202303155. [PMID: 38018363 DOI: 10.1002/chem.202303155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
The rapid development of narrow-bandgap nonfullerene acceptors (NFAs) has boosted the efficiency of organic solar cells (OSCs) over 19 %. The new features of high-performance NFAs, such as visible-NIR light absorption, moderate the highest occupied molecular orbitals (HOMO), and high crystallinity, require polymer donors with matching physical properties. This emphasizes the importance of methods that can effectively tune the physical properties of polymers. Owning to very small atom size and strongest electronegativity, the fluorination has been proved the most efficient strategy to regulate the physical properties of polymer donors, including frontier energy level, absorption coefficient, dielectric constant, crystallinity and charge transport. Owing to the success of fluorination strategy, the vast majority of high-performance polymer donors possess one or more fluorine atoms. In this review, the fluorination synthetic methods, the synthetic route of well-known fluorinated building blocks, the fluorinated polymers which are categorized by the type of donor or acceptor units, and the relationships between the polymer structures, properties, and photovoltaic performances are comprehensively surveyed. We hope this review could provide the readers a deeper insight into fluorination strategy and lay a strong foundation for future innovation of fluorinated polymers.
Collapse
Affiliation(s)
- Dongyan Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Huijuan Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| |
Collapse
|
3
|
Qin R, Wu Y, Ding Z, Zhang R, Yu J, Huang W, Liu D, Lu G, Liu SF, Zhao K, Han Y. Highly Stretchable Conjugated Polymer/Elastomer Blend Films with Sandwich Structure. Macromol Rapid Commun 2024; 45:e2300240. [PMID: 37289949 DOI: 10.1002/marc.202300240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The physical blending of high-mobility conjugated polymers with ductile elastomers provides a simple way to realize high-performance stretchable films. However, how to control the morphology of the conjugated polymer and elastomer blend film and its response to mechanical fracture processes during stretching are not well understood. Herein, a sandwich structure is constructed in the blend film based on a conjugated polymer poly[(5-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b″]dithiophene-2,6-diyl)(6-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b″]dithiophene-2,6-diyl)] (PCDTFBT) and an elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The sandwich structure is composed of a PCDTFBT:SEBS mixed layer laminated with a PCDTFBT-rich layer at both the top and bottom surfaces. During stretching, the external strain energy can be effectively dissipated by the deformation of the crystalline PCDTFBT domains and amorphous SEBS phases and the recrystallization of the PCDTFBT chains. This endows the blend film with excellent ductility, with a large crack onset strain exceeding 1100%, and minimized the electrical degradation of the blend film at a large strain. This study indicates that the electrical and mechanical performance of conjugated polymer/elastomer blend films can be improved by manipulating their microstructure.
Collapse
Affiliation(s)
- Ru Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Jifa Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
4
|
Kong W, Wang J, Hu Y, Cui N, Yan C, Cai X, Cheng P. P-type Polymers in Semitransparent Organic Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202307622. [PMID: 37395558 DOI: 10.1002/anie.202307622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
P-type polymers are polymeric semiconducting materials that conduct holes and have extensive applications in optoelectronics such as organic photovoltaics. Taking the advantage of intrinsic discontinuous light absorption of organic semiconductors, semitransparent organic photovoltaics (STOPVs) present compelling opportunities in various potential applications such as building-integrated photovoltaics, agrivoltaics, automobiles, and wearable electronics. The characteristics of p-type polymers, including optical, electronic, and morphological properties, determine the performance of STOPVs, and the requirements for p-type polymers differ between opaque organic photovoltaics and STOPVs. Hence, in this Minireview, recent advances of p-type polymers used in STOPVs are systematically summarized, with emphasis on the effects of chemical structures, conformation structures, and aggregation structures of p-type polymers on the performance of STOPVs. Furthermore, new design concepts and guidelines are also proposed for p-type polymers to facilitate the future development of high-performance STOPVs.
Collapse
Affiliation(s)
- Weibo Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiayu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yingyue Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ningbo Cui
- State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xufu Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Sugita H, Kamigawara T, Miyazaki S, Shimada R, Katoh T, Ohta Y, Yokozawa T. Intramolecular Palladium Catalyst Transfer on Benzoheterodiazoles as Acceptor Monomers and Discovery of Catalyst Transfer Inhibitors. Chemistry 2023; 29:e202301242. [PMID: 37302983 DOI: 10.1002/chem.202301242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Intramolecular catalyst transfer on benzoheterodiazoles was investigated in Suzuki-Miyaura coupling reactions and polymerization reactions with t Bu3 PPd precatalyst. In the coupling reactions of dibromobenzotriazole, dibromobenzoxazole, and dibromobenzothiadiazole with pinacol phenylboronate, the product ratios of monosubstituted product to disubstituted product were 0/100, 27/73, and 89/11, respectively, indicating that the Pd catalyst undergoes intramolecular catalyst transfer on dibromobenzotriazole, whereas intermolecular transfer occurs in part in the case of dibromobenzoxazole and is predominant for dibromobenzothiadiazole. The polycondensation of 1.3 equivalents of dibromobenzotriazole with 1.0 equivalent of para- and meta-phenylenediboronates afforded high-molecular-weight polymer and cyclic polymer, respectively. In the case of dibromobenzoxazole, however, para- and meta-phenylenediboronates afforded moderate-molecular-weight polymer with bromine at both ends and cyclic polymer, respectively. In the case of dibromobenzothiadiazole, they afforded low-molecular-weight polymers with bromine at both ends. Addition of benzothiadiazole derivatives interfered with catalyst transfer in the coupling reactions.
Collapse
Affiliation(s)
- Hajime Sugita
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Takeru Kamigawara
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Sou Miyazaki
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Ryusuke Shimada
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Takayoshi Katoh
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Yoshihiro Ohta
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| |
Collapse
|
6
|
Guijarro F, de la Cruz P, Khandelwal K, Singhal R, Langa F, Sharma GD. Effects of Halogenation on Cyclopentadithiophenevinylene-Based Acceptors with Excellent Responses in Binary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21296-21305. [PMID: 37073988 PMCID: PMC11165453 DOI: 10.1021/acsami.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
In recent years, non-fused non-fullerene acceptors (NFAs) have attracted increasing consideration due to several advantages, which include simple preparation, superior yield, and low cost. In the work reported here, we designed and synthesized three new NFAs with the same cyclopentadithiophenevinylene (CPDTV) trimer as the electron-donating unit and different terminal units (IC for FG10, IC-4F for FG8, and IC-4Cl for FG6). Both halogenated NFAs, i.e., FG6 and FG8, show red-shifted absorption spectra and higher electron mobilities (more pronounced for FG6) in comparison with FG10. Moreover, the dielectric constants of these materials also increased upon halogenation of the IC terminal units, thus leading to a reduction in the exciton binding energy, which is favorable for dissociation of excitons and subsequent charge transfer despite the driving force (highest occupied molecular orbital and lowest unoccupied molecular orbital offsets) being very small. The organic solar cells (OSCs) constructed using these acceptors and PBDB-T, as the donor, showed PCE values of 15.08, 12.56, and 9.04% for FG6, FG8, and FG10, respectively. The energy loss for the FG6-based device was the lowest (0.45 eV) of all the devices, and this may be attributed to it having the highest dielectric constant, which leads to a reduction in the binding energy of exciton and a small driving force for hole transfer from FG6 to PBDB-T. The results indicate that the NFA containing the CPDTV oligomer core and halogenated terminal units can efficiently spread the absorption spectrum to the NIR zone. Non-fused NFAs have a bright future in the quest to obtain efficient OSCs with low cost for marketable purposes.
Collapse
Affiliation(s)
- Fernando
G. Guijarro
- Instituto de Nanociencia, Universidad de Castilla-La Mancha, Nanotecnología
y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071 Toledo, Spain
| | - Pilar de la Cruz
- Instituto de Nanociencia, Universidad de Castilla-La Mancha, Nanotecnología
y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071 Toledo, Spain
| | - Kanupriya Khandelwal
- Department of Physics, The LNM Institute
of Information Technology, Jamdoli, 302031 Jaipur, (Rai), India
| | - Rahul Singhal
- Department of Physics, Malviya National
Institute of Technology, JLN Marg, 302017 Jaipur, (Raj.), India
| | - Fernando Langa
- Instituto de Nanociencia, Universidad de Castilla-La Mancha, Nanotecnología
y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071 Toledo, Spain
| | - Ganesh D. Sharma
- Department of Physics, The LNM Institute
of Information Technology, Jamdoli, 302031 Jaipur, (Rai), India
- Department
of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, 302031 Jaipur, (Rai), India
| |
Collapse
|
7
|
Chen J, Li D, Su M, Xiao Y, Chen H, Lin M, Qiao X, Dang L, Huang XC, He F, Wu Q. A Multifluorination Strategy Toward Wide Bandgap Polymers for Highly Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202215930. [PMID: 36629745 DOI: 10.1002/anie.202215930] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
Creating new electron-deficient unit is highly demanded to develop high-performance polymer donors for non-fullerene organic solar cells (OSCs). Herein, we reported a multifluorinated unit 4,5,6,7-tetrafluoronaphtho[2,1-b : 3,4-b']dithio-phene (FNT) and its polymers PFNT-F and PFNT-Cl. The advantages of multifluorination: (1) it enables the polymers to exhibit low-lying HOMO (≈-5.5 eV) and wide band gap (≈2.0 eV); (2) the short interactions (F⋅⋅⋅H, F⋅⋅⋅F) endow the polymers with properties of high film crystallinity and efficient hole transport; (3) well miscibility with NFAs that leads to a more well-defined nanofibrous morphology and face-on orientation in the blend films. Therefore, the PFNT-F/Cl : N3 based OSCs exhibit impressive FF values of 0.80, and remarkable PCEs of 17.53 % and 18.10 %, which make them ranked the best donor materials in OSCs. This work offers new insights into the rational design of high-performance polymers by multifluorination strategy.
Collapse
Affiliation(s)
- Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Dongyan Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Mingbin Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology, Shenzhen, 518055, China
| | - Man Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiaolan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, China
| |
Collapse
|
8
|
Zhang Y, Deng L, Cho Y, Lee J, Shibayama N, Zhang Z, Wang C, Hu Z, Wang J, Wu F, Chen L, Du Y, Ren F, Yang C, Gao P. Revealing the Enhanced Thermoelectric Properties of Controllably Doped Donor-Acceptor Copolymer: The Impact of Regioregularity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206233. [PMID: 36592416 DOI: 10.1002/smll.202206233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Albeit considerable attention to the fast-developing organic thermoelectric (OTE) materials due to their flexibility and non-toxic features, it is still challenging to design an OTE polymer with superior thermoelectric properties. In this work, two "isomorphic" donor-acceptor (D-A) conjugated polymers are studied as the semiconductor in OTE devices, revealing for the first time the internal mechanism of regioregularity on thermoelectric performances in D-A type polymers. A higher molecular structure regularity can lead to higher crystalline order and mobility, higher doping efficiency, order of energy state, and thermoelectric (TE) performance. As a result, the regioregular P2F exhibits a maximum power factor (PF) of up to 113.27 µW m-1 K-2 , more than three times that of the regiorandom PRF (35.35 µW m-1 K-2 ). However, the regular backbone also implies lower miscibility with a dopant, negatively affecting TE performance. Therefore, the trade-off between doping efficiency and miscibility plays a vital role in OTE materials, and this work sheds light on the molecular design strategy of OTE polymers with state-of-the-art performances.
Collapse
Affiliation(s)
- Yingyao Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Longhui Deng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yongjoon Cho
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Jungho Lee
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
- Samsung Electro-Mechanics Co, Ltd., 150, Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16674, Republic of Korea
| | - Naoyuki Shibayama
- Naoyuki Shibayama, Department of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa, 225-8503, Japan
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Can Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhenyu Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jing Wang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, 330031, Nanchang, China
| | - Feiyan Wu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, 330031, Nanchang, China
| | - Lie Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, 330031, Nanchang, China
| | - Yitian Du
- Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021, China
| | - Fangbin Ren
- Xiamen University of Technology, Xiamen, 361024, China
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
9
|
Shivhare R, Moore GJ, Hofacker A, Hutsch S, Zhong Y, Hambsch M, Erdmann T, Kiriy A, Mannsfeld SCB, Ortmann F, Banerji N. Short Excited-State Lifetimes Mediate Charge-Recombination Losses in Organic Solar Cell Blends with Low Charge-Transfer Driving Force. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101784. [PMID: 34396598 DOI: 10.1002/adma.202101784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
A blend of a low-optical-gap diketopyrrolopyrrole polymer and a fullerene derivative, with near-zero driving force for electron transfer, is investigated. Using femtosecond transient absorption and electroabsorption spectroscopy, the charge transfer (CT) and recombination dynamics as well as the early-time transport are quantified. Electron transfer is ultrafast, consistent with a Marcus-Levich-Jortner description. However, significant charge recombination and unusually short excited (S1 ) and CT state lifetimes (≈14 ps) are observed. At low S1 -CT offset, a short S1 lifetime mediates charge recombination because: i) back-transfer from the CT to the S1 state followed by S1 recombination occurs and ii) additional S1 -CT hybridization decreases the CT lifetime. Both effects are confirmed by density functional theory calculations. In addition, relatively slow (tens of picoseconds) dissociation of charges from the CT state is observed, due to low local charge mobility. Simulations using a four-state kinetic model entailing the effects of energetic disorder reveal that the free charge yield can be increased from the observed 12% to 60% by increasing the S1 and CT lifetimes to 150 ps. Alternatively, decreasing the interfacial CT state disorder while increasing bulk disorder of free charges enhances the yield to 65% in spite of the short lifetimes.
Collapse
Affiliation(s)
- Rishi Shivhare
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Gareth John Moore
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Andreas Hofacker
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technical University of Dresden, Nöthnitzerstrasse 61, D-01187, Dresden, Germany
| | - Sebastian Hutsch
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748, Garching b. München, Germany
- Center for Advancing Electronics Dresden, Technical University of Dresden, Helmholtzstrasse 18, D-01069, Dresden, Germany
| | - Yufei Zhong
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Mike Hambsch
- Center for Advancing Electronics Dresden, Technical University of Dresden, Helmholtzstrasse 18, D-01069, Dresden, Germany
| | - Tim Erdmann
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, USA
| | - Anton Kiriy
- Leibniz Institute of Polymer Research Dresden, Hohestrasse 6, D-01069, Dresden, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden, Technical University of Dresden, Helmholtzstrasse 18, D-01069, Dresden, Germany
| | - Frank Ortmann
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748, Garching b. München, Germany
- Center for Advancing Electronics Dresden, Technical University of Dresden, Helmholtzstrasse 18, D-01069, Dresden, Germany
| | - Natalie Banerji
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| |
Collapse
|
10
|
Dhakal P, Ferron T, Alotaibi A, Murcia V, Alqahtani O, Collins BA. Evidence for Field-Dependent Charge Separation Caused by Mixed Phases in Polymer-Fullerene Organic Solar Cells. J Phys Chem Lett 2021; 12:1847-1853. [PMID: 33577332 DOI: 10.1021/acs.jpclett.0c03863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As organic photovoltaic performance approaches 20% efficiencies, causal structure-performance relationships must be established for devices to realize theoretical limits and become commercially competitive. Here, we reveal evidence of a causal relationship between mixed donor-acceptor interfaces and charge generation in polymer-fullerene solar cells. To do this, we combine a holistic loss analysis of device performance with quantitative synchrotron X-ray nanocharacterization to identify a >98% anticorrelation between field-dependent geminate recombination and nanodomain purity. Importantly, our analysis eliminates other possible explanations of the performance trends, a requirement to establish causality. The unprecedented granular level of our analysis also separates field-dependent and field-independent recombination at the interface, where we find for the first time that this system is free of field-independent recombination, a loss channel that plagues high-performance systems, including those with non-fullerene acceptors. This result broadens the case that minimizing mixed phases to promote sharp interfaces between pure aggregated domains is the ideal nanostructure for realizing theoretical efficiency limits of organic photovoltaics.
Collapse
Affiliation(s)
- Prabodh Dhakal
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Thomas Ferron
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Awwad Alotaibi
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | - Victor Murcia
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | - Obaid Alqahtani
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
- Department of Physics, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Brian A Collins
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
11
|
Hu X, Zhong C, Li X, Jia X, Wei Y, Xie L. Synthesis and Application of Cyclopentadithiophene Derivatives. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Yang T, He Y, Cheng Y, Gao X, Wu Y, Yuan W, Tao Y. Cyclometalated Ir(III) complexes as potential electron acceptors for organic solar cells. Dalton Trans 2021; 50:9871-9880. [PMID: 34195721 DOI: 10.1039/d1dt01136g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated iridium(iii) complexes have been investigated as promising electron donor (D) materials in organic solar cells (OSCs) due to their unique octahedral configuration for optimized morphology and their significantly long lifetimes potentially for enhanced exciton dissociation. However, the application as electron acceptor (A) materials has never been reported. In order to fill this blank, herein, two cyclometalated heteroleptic Ir complexes, TRIr and 2TRIr, based on electron donating-accepting type organic ligands with different π-conjugation lengths are reported as electron acceptor materials in comparison with their corresponding main organic ligands. The two Ir complexes exhibit suitable HOMO/LUMO energy levels of -5.55/-3.47 eV and -5.44/-3.48 eV, which are ∼0.1 eV higher in the HOMO and ∼0.15 eV deeper in the LUMO than the TR and 2TR ligands, respectively. 2TRIr with extended ligand π-conjugation displays a poor triplet feature, while TRIr demonstrates obvious metal-to-ligand charge transfer (MLCT) transition absorption, with a triplet component photoluminescence (PL) lifetime of 85 ns in neat films. When blended with PBDB-T in bulk heterojunction (BHJ) OSCs, the power conversion efficiencies (PCEs) are 2-3 times higher than their relevant ligands, with values of 1.20% and 1.62% for TRIr and 2TRIr, and 0.58% and 0.47% for the TR and 2TR ligand-based devices, respectively. TRIr and 2TRIr based active layer blends exhibit poorer hole and electron mobilities, whereas compared with their relatively linear planar ligands, both of the two octahedral Ir complexes exhibit an optimized surface morphology for less bimolecular recombination and more efficient exciton dissociation, thus contributing to improved photovoltaic performance.
Collapse
Affiliation(s)
- Tianjian Yang
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yinming He
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yang Cheng
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yijing Wu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Wenbo Yuan
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
13
|
Hou L, Lv J, Wobben F, Le Corre VM, Tang H, Singh R, Kim M, Wang F, Sun H, Chen W, Xiao Z, Kumar M, Xu T, Zhang W, McCulloch I, Duan T, Xie H, Koster LJA, Lu S, Kan Z. Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56231-56239. [PMID: 33270414 DOI: 10.1021/acsami.0c16411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorination is one of the effective approaches to alter the organic semiconductor properties that impact the performance of the organic solar cells (OSCs). Positive effects of fluorination are also revealed in the application of fused ring electron acceptors (FREAs). However, in comparison with the efforts allocated to the material designs and power conversion efficiency enhancement, understanding on the excitons and charge carriers' behaviors in high-performing OSCs containing FREAs is limited. Herein, the impact of fluorine substituents on the active layer morphology, and therefore exciton dissociation, charge separation, and charge carriers' recombination processes are examined by fabricating OSCs with PTO2 as the donor and two FREAs, O-IDTT-IC and its fluorinated analogue O-IDTT-4FIC, as the acceptors. With the presence of O-IDTT-4FIC in the devices, it is found that the excitons dissociate more efficiently, and the activation energy required to split the excitons to free charge carriers is much lower; the charge carriers live longer and suffer less extent of trap-assisted recombination; the trap density is 1 order of magnitude lower than that of the nonfluorinated counterpart. Overall, these findings provide information about the complex impacts of FREA fluorination on efficiently performed OSCs.
Collapse
Affiliation(s)
- Licheng Hou
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Lv
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Friso Wobben
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen NL-9747AG, The Netherlands
| | - Vincent M Le Corre
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen NL-9747AG, The Netherlands
| | - Hua Tang
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ranbir Singh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
| | - Min Kim
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Jeonju 54896 Republic of Korea
| | - Fufang Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Wenjing Chen
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengguo Xiao
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Manish Kumar
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tongle Xu
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Zhang
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Iain McCulloch
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, U.K
| | - Tainan Duan
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Huling Xie
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - L Jan Anton Koster
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen NL-9747AG, The Netherlands
| | - Shirong Lu
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhipeng Kan
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
14
|
R. Murad A, Iraqi A, Aziz SB, Hi H, N. Abdullah S, Brza MA, Abdulwahid RT. Influence of Fluorine Substitution on the Optical, Thermal, Electrochemical and Structural Properties of Carbazole-Benzothiadiazole Dicarboxylic Imide Alternate Copolymers. Polymers (Basel) 2020; 12:E2910. [PMID: 33291677 PMCID: PMC7761964 DOI: 10.3390/polym12122910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
In this work four novel donor-acceptor copolymers, PCDTBTDI-DMO, PCDTBTDI-8, P2F-CDTBTDI-DMO and P2F-CDTBTDI-8, were designed and synthesised via Suzuki polymerisation. The first two copolymers consist of 2,7-carbazole flanked by thienyl moieties as the electron donor unit and benzothiadiazole dicarboxylic imide (BTDI) as electron acceptor units. In the structures of P2F-CDTBTDI-DMO and P2F-CDTBTDI-8 copolymers, two fluorine atoms were incorporated at 3,6-positions of 2,7-carbazole to investigate the impact of fluorine upon the optoelectronic, structural and thermal properties of the resulting polymers. P2F-CDTBTDI-8 possesses the highest number average molecular weight (Mn = 24,200 g mol-1) among all the polymers synthesised. PCDTBTDI-DMO and PCDTBTDI-8 show identical optical band gaps of 1.76 eV. However, the optical band gaps of fluorinated copolymers are slightly higher than non-fluorinated counterparts. All polymers have deep-lying highest occupied molecular orbital (HOMO) levels. Changing the alkyl chain substituents on BTDI moieties from linear n-octyl to branched 3,7-dimethyloctyl groups as well as substituting the two hydrogen atoms at 3,6-positions of carbazole unit by fluorine atoms has negligible impact on the HOMO levels of the polymers. Similarly, the lowest unoccupied molecular orbital (LUMO) energy levels are almost comparable for all polymers. Thermogravimetric analysis (TGA) has shown that all polymers have good thermal stability and also confirmed that the fluorinated copolymers have higher thermal stability relative to those non-fluorinated analogues. Powder X-ray diffraction (XRD) studies proved that all polymers have an amorphous nature in the solid state.
Collapse
Affiliation(s)
- Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq;
| | - Ahmed Iraqi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK; (A.I.); (H.H.)
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Hunan Hi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK; (A.I.); (H.H.)
| | - Sozan N. Abdullah
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - M. A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Physics, College of Education, Old Campus, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq
| |
Collapse
|
15
|
Feng S, Lu H, Liu Y, Xue W, Zhang C, Zhang H, Ma W, Huang W, Bo Z. Enhancing the Photovoltaic Performance of a Benzo[ c][1,2,5]thiadiazole-Based Polymer Donor via a Non-Fullerene Acceptor Pairing Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53021-53028. [PMID: 33170610 DOI: 10.1021/acsami.0c17571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a well-known electron-withdrawing group, benzo[c][1,2,5]thiadiazole (BT) has been intensively studied and adopted to construct polymer donors with tunable band gaps. However, polymer solar cells (PSCs) with BT-based polymer donors, limited by the weak absorption and inflexible energy level of fullerene derivatives, usually suffer mediocre power conversion efficiencies (PCEs). Here, through subtly tailoring a BT unit with asymmetric fluoro and alkyloxy groups and judiciously pairing a BT-based polymer donor with three narrow band gap non-fullerene acceptors (e.g., IEICO-4F, ITOIC-2F, and IDTCN-O), active layers with complementary absorption spectra, small lowest unoccupied molecular orbital (LUMO) offsets, and preferred morphologies have been achieved. Consequently, PSCs with excellent Jsc values (over 20 mA/cm2) and high PCEs up to 12.33% have been obtained. To the best of our knowledge, the value of 12.33% is among the highest PCEs for BT-based polymers in binary PSCs so far. This work demonstrates that the cooperative effect of energy levels, absorption spectra, and morphologies between the donors and acceptors is crucial for governing the performance of organic photovoltaics.
Collapse
Affiliation(s)
- Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, P. R. China
| | - Hao Lu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yahui Liu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wenyue Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cai'e Zhang
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Huanxiang Zhang
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, P. R. China
| | - Zhishan Bo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
16
|
Liu Y, Liu J, Chen D, Wang X, Zhang Z, Yang Y, Jiang L, Qi W, Ye Z, He S, Liu Q, Xi L, Zou Y, Wu C. Fluorination Enhances NIR‐II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ye Liu
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Jinfeng Liu
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Dandan Chen
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaosha Wang
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Zhe Zhang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yicheng Yang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lihui Jiang
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Weizhi Qi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Ziyuan Ye
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shuqing He
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Quanying Liu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Xi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
17
|
Liu Y, Liu J, Chen D, Wang X, Zhang Z, Yang Y, Jiang L, Qi W, Ye Z, He S, Liu Q, Xi L, Zou Y, Wu C. Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angew Chem Int Ed Engl 2020; 59:21049-21057. [PMID: 32767727 DOI: 10.1002/anie.202007886] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Indexed: 12/24/2022]
Abstract
Here, we describe a fluorination strategy for semiconducting polymers for the development of highly bright second near-infrared region (NIR-II) probes. Tetrafluorination yielded a fluorescence QY of 3.2 % for the polymer dots (Pdots), over a 3-fold enhancement compared to non-fluorinated counterparts. The fluorescence enhancement was attributable to a nanoscale fluorous effect in the Pdots that maintained the molecular planarity and minimized the structure distortion between the excited state and ground state, thus reducing the nonradiative relaxations. By performing through-skull and through-scalp imaging of the brain vasculature of live mice, we quantitatively analyzed the vascular morphology of transgenic brain tumors in terms of the vessel lengths, vessel branches, and vessel symmetry, which showed statistically significant differences from the wild type animals. The bright NIR-II Pdots obtained through fluorination chemistry provide insightful information for precise diagnosis of the malignancy of the brain tumor.
Collapse
Affiliation(s)
- Ye Liu
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Jinfeng Liu
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Dandan Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiaosha Wang
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Zhe Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yicheng Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lihui Jiang
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ziyuan Ye
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shuqing He
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
18
|
Sutton JJ, Li Y, Ryu HS, Tay EJ, Woo HY, Gordon KC. Fluorination Position: A Study of the Optoelectronic Properties of Two Regioisomers Using Spectroscopic and Computational Techniques. J Phys Chem A 2020; 124:7685-7691. [DOI: 10.1021/acs.jpca.0c05210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua J. Sutton
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Yuxiang Li
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Republic of Korea
| | - Hwa Sook Ryu
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Republic of Korea
| | - Elliot J. Tay
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Republic of Korea
| | - Keith C. Gordon
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| |
Collapse
|
19
|
Appalanaidu E, Vidya V, Busireddy MR, Vaidya JR, Chetti P. Effect of fluorine on optoelectronic properties in DI-A-DII-A-DI type organic molecules: A combined experimental and DFT study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Li S, Yang X, Zhang L, An J, Cai B, Wang X. Effect of fluorine substituents on benzothiadiazole-based D-π-A'-π-A photosensitizers for dye-sensitized solar cells. RSC Adv 2020; 10:9203-9209. [PMID: 35497242 PMCID: PMC9050066 DOI: 10.1039/c9ra09693k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/24/2020] [Indexed: 11/21/2022] Open
Abstract
Two D-π-A'-π-A organic dyes with triazatruxene (TAT) as the electron donor, thiophene as the π-spacer, benzoic acid as the anchor group, and benzothiadiazole (BT) or difluorobenzo[c][1,2,5]thiadiazole (DFBT) as the additional acceptor, namely LS101 and LS102, respectively, were applied to dye-sensitized solar cells (DSSCs). As fluorine substituents are usually strong electron-withdrawing groups, introducing two fluorine atoms into BT was expected to strengthen the electron-withdrawing ability of the auxiliary acceptor, resulting in DSSCs with a broader light capture region and further improved power conversion efficiency (PCE). Fluorine is the smallest electron-withdrawing group with an induction effect, but can also act as an electron-donating group owing to its conjugation effect. When the conjugation effect is dominant, the electron-withdrawing ability of additional acceptor DFBT decreases instead. Accordingly, the band gap of LS102 was broadened and the UV-vis absorption spectrum was blue-shifted. In the end, DSSCs based on LS101 achieved a champion PCE of 10.2% (J sc = 15.1 mA cm-2, V oc = 966 mV, FF = 70.1%) while that based on LS102 gave a PCE of only 8.6% (J sc = 13.4 mA cm-2, V oc = 934 mV, FF = 69.1%) under standard AM 1.5G solar irradiation (100 mW cm-2) with Co2+/Co3+ as the electrolyte.
Collapse
Affiliation(s)
- Shuping Li
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT) 2 Linggong Rd 116024 Dalian China
| | - Xichuan Yang
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT) 2 Linggong Rd 116024 Dalian China
| | - Li Zhang
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT) 2 Linggong Rd 116024 Dalian China
| | - Jincheng An
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT) 2 Linggong Rd 116024 Dalian China
| | - Bin Cai
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT) 2 Linggong Rd 116024 Dalian China
| | - XiuNa Wang
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT) 2 Linggong Rd 116024 Dalian China
| |
Collapse
|
21
|
Heintges GL, Bolduc A, Meskers SCJ, Janssen RAJ. Relation between the Electronic Properties of Regioregular Donor-Acceptor Terpolymers and Their Binary Copolymers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:3503-3516. [PMID: 32089763 PMCID: PMC7027170 DOI: 10.1021/acs.jpcc.9b11562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/22/2020] [Indexed: 06/10/2023]
Abstract
By analyzing the optical band gap and energy levels of seven different regioregular terpolymers in which two different electron-rich donor moieties are alternating with a common electron-deficient acceptor unit along the backbone, we establish a direct correlation with the properties of the corresponding binary copolymers in which one donor and one acceptor are combined. For this study, we use diketopyrrolopyrrole as the common acceptor and different π-conjugated aromatic oligomers as donors. We find that the optical band gap and frontier orbital energies of the terpolymers are the arithmetic average of those of the parent copolymers with remarkable accuracy. The same relationship is also found for the open-circuit voltage of the bulk heterojunction solar cells made with the ter- and copolymers in combination with [6,6]-phenyl-C71-butyric acid methyl ester. Comparison of these findings with data in the literature suggests that this is a universal rule that can be used as a tool when designing new π-conjugated polymers. The experimental results are supported by a semiempirical quantum chemical model that accurately describes the energy levels of the terpolymers after parametrization on the energy levels of the copolymers and also provides a theoretical explanation for the observed arithmetic relations.
Collapse
Affiliation(s)
- Gaël
H. L. Heintges
- Molecular
Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic
Semiconductors (DSOS), Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Andréanne Bolduc
- Molecular
Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Stefan C. J. Meskers
- Molecular
Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - René A. J. Janssen
- Molecular
Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The Netherlands
| |
Collapse
|
22
|
Spectroscopic, quantum mechanical studies, ligand protein interactions and photovoltaic efficiency modeling of some bioactive benzothiazolinone acetamide analogs. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01047-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Wang K, Li Y, Li Y. Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromol Rapid Commun 2020; 41:e1900437. [DOI: 10.1002/marc.201900437] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kun Wang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 451191 China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
24
|
Jung J, Suh EH, Jeong YJ, Yang HS, Lee T, Jang J. Efficient Debundling of Few-Walled Carbon Nanotubes by Wrapping with Donor-Acceptor Polymers for Improving Thermoelectric Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47330-47339. [PMID: 31741375 DOI: 10.1021/acsami.9b16012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic thermoelectric (TE) materials have great potential as sustainable energy sources for powering flexible and wearable electronic devices via harvesting of human body heat. Recent advances in soluble conjugated polymer/carbon nanotube (CNT) composites have facilitated achievement of high TE power factors. However, the effects of conjugated polymers on the debundling and electrical percolation of CNTs and on the TE properties of their composites are not yet fully understood. Herein, we introduce a novel type of polymer/CNT composite composed of a donor-acceptor (D-A)-type polymer and few-walled CNTs (FWCNTs). Three kinds of D-A polymers are employed to disperse FWCNTs, and the photophysical, morphological, and TE properties of the resulting polymer/FWCNT composites are compared with those of composites composed of FWCNTs dispersed with conventional donor-only poly(3-hexylthiophene). The results reveal that the strong intermolecular interaction forces and high backbone planarity of the D-A polymers facilitate effective debundling of FWCNTs, which results in much smaller bundle sizes. Consequently, the D-A polymer/FWCNT composite films show superior electrical percolation and TE performances with improved power factors of up to 459 μW/mK2. Finally, we demonstrate the feasibility of the D-A polymer/FWCNT composites for use in the fabrication of a flexible TE generator, which shows a maximum power output of 210 nW at a temperature gradient of 20 K.
Collapse
Affiliation(s)
- Jaemin Jung
- Department of Energy Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Eui Hyun Suh
- Department of Energy Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Yong Jin Jeong
- Department of Energy Engineering , Hanyang University , Seoul 04763 , Republic of Korea
- Department of Materials Science & Engineering , Korea National University of Transportation , Chungju 27469 , Republic of Korea
| | - Han Sol Yang
- Department of Energy Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Taekseong Lee
- Department of Energy Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jaeyoung Jang
- Department of Energy Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| |
Collapse
|
25
|
Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101175] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Peng X, Zhang X, Qian Y, Lai T, Zhu X, Tu B, Peng X, Xie J, Zeng Q. Selective Adsorption of C 60 in the Supramolecular Nanopatterns of Donor-Acceptor Porphyrin Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14511-14516. [PMID: 31630522 DOI: 10.1021/acs.langmuir.9b02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nanostructure of active layers consisting of donor and acceptor molecules is responsible for the separation and transfer processes of charge carriers, which may result in different photoelectric conversion efficiencies of organic photovoltaic cells (OPVCs). Therefore, intensive study on the relationships among nanostructures, intermolecular interactions, and molecular chemical skeletons is necessary for preparing controlled nanostructures of active layers by designing photovoltaic molecules. In this research, the self-assembled nanopatterns of three (DPP-ZnP-E)2-based molecules on highly oriented pyrolytic graphite surface were probed by scanning tunneling microscopy and analyzed by density functional theory calculations. The results indicated that different bridges, diethynylene, diethynylene-dithienyl, and diethynylene-phenylene, in (DPP-ZnP-E)2-based molecules not only made a difference to intermolecular interactions and cooperated with molecule-substrate interactions, consequently affecting the packed nanopattern, but also influenced the adsorption of fullerene acceptors in the nanopatterns of (DPP-ZnP-E)2-based molecules. C60 molecules were found to be selectively adsorbed atop the dithienyl groups of (DPP-ZnP-E)2-2T donor molecules probably by S···π interactions compared with (DPP-ZnP-E)2 or (DPP-ZnP-E)2-Ph molecules. This study on the assembled nanopatterns of the three (DPP-ZnP-E)2-based molecules would be conductive to (DPP-ZnP-E)2-based optoelectronic materials design in OPVCs.
Collapse
Affiliation(s)
- Xuan Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
- Center of Materials Science and Optoelectronic Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaojin Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Yuxin Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Taiqi Lai
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Xiaoyang Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Jingli Xie
- College of Biological, Chemical Science and Engineering , Jiaxing University , Jiaxing 314001 , China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
- Center of Materials Science and Optoelectronic Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
27
|
Kaiser W, Gagliardi A. Kinetic Monte Carlo Study of the Role of the Energetic Disorder on the Open-Circuit Voltage in Polymer/Fullerene Solar Cells. J Phys Chem Lett 2019; 10:6097-6104. [PMID: 31533434 DOI: 10.1021/acs.jpclett.9b02144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One major factor limiting the efficiency in organic solar cells (OSCs) is the low open-circuit voltage (Voc). Existing theoretical studies link the Voc with the charge transfer (CT) state and nonradiative recombination. However, also morphology and energetic disorder can have a strong impact on the Voc within realistic bulk-heterojunction OSCs. In this work, we present a kinetic Monte Carlo study on the role of the energetic disorder on the maximum Voc. We compute the quasi-Fermi level splitting for different energetic disorder and analyze the impact of the energetic disorder at the donor-acceptor interface as well as correlations in the site energies on the Voc. Our results show that the interface strongly controls the maximum Voc. For a higher interface disorder, charge densities and nongeminate recombination increase and the Voc is reduced. Furthermore, the correlated morphologies show an increase in the maximum Voc and a reduced impact of the energetic disorder.
Collapse
Affiliation(s)
- W Kaiser
- Department of Electrical and Computer Engineering , Technical University of Munich , Karlstraße 45 , 80333 Munich , Germany
| | - A Gagliardi
- Department of Electrical and Computer Engineering , Technical University of Munich , Karlstraße 45 , 80333 Munich , Germany
| |
Collapse
|
28
|
Roy JK, Kar S, Leszczynski J. Optoelectronic Properties of C 60 and C 70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2282. [PMID: 31315218 PMCID: PMC6678454 DOI: 10.3390/ma12142282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022]
Abstract
Ten novel fullerene-derivatives (FDs) of C60 and C70 had been designed as acceptor for polymer solar cell (PSC) by employing the quantitative structure-property relationship (QSPR) model, which was developed strategically with a reasonably big pool of experimental power conversion efficiency (PCE) data. The QSPR model was checked and validated with stringent parameter and reliability of predicted PCE values of all designed FDs. They were assessed by the applicability domain (AD) and process randomization test. The predicted PCE of FDs range from 7.96 to 23.01. The obtained encouraging results led us to the additional theoretical analysis of the energetics and UV-Vis spectra of isolated dyes employing Density functional theory (DFT) and Time-dependent-DFT (TD-DFT) calculations using PBE/6-31G(d,p) and CAM-B3LYP/6-311G(d,p) level calculations, respectively. The FD4 is the best C60-derivatives candidates for PSCs as it has the lowest exciton binding energy, up-shifted lowest unoccupied molecular orbital (LUMO) energy level to increase open-circuit voltage (VOC) and strong absorption in the UV region. In case of C70-derivatives, FD7 is potential candidate for future PSCs due to its strong absorption in UV-Vis region and lower exciton binding energy with higher VOC. Our optoelectronic results strongly support the developed QSPR model equation. Analyzing QSPR model and optoelectronic parameters, we concluded that the FD1, FD2, FD4, and FD10 are the most potential candidates for acceptor fragment of fullerene-based PSC. The outcomes of tactical molecular design followed by the investigation of optoelectronic features are suggested to be employed as a significant resource for the synthesis of FDs as an acceptor of PSCs.
Collapse
Affiliation(s)
- Juganta K Roy
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA.
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
29
|
Zhang C, Liu Y, Tu J, Ming S, Xu X, Bo Z. Fluoro-Modulated Molecular Geometry in Diketopyrrolopyrrole-Based Low-Bandgap Copolymers for Tuning the Photovoltaic Performance. Front Chem 2019; 7:333. [PMID: 31157206 PMCID: PMC6530256 DOI: 10.3389/fchem.2019.00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Fluorination of conjugated polymers is an effective strategy to tune the energy levels for obtaining high power conversion efficiency (PCE) in organic solar cells. In this work, we have developed fluoro-modulated molecular geometries in diketopyrrolopyrrole based low-bandgap copolymers. In these polymers, planar conformation can be locked by intramolecular non-covalent interaction (intramolecular supramolecular interaction) between the sulfur atoms and the introduced F atoms (F···S interaction). By varying the fluorinated moieties, such a planarity can be disturbed and the molecular geometry is tuned. As a result, the polymer' properties can be modulated, including the ultraviolet-visible absorption spectrum to become broaden, charge mobility to be enhanced, open-circuit voltage (V oc) and short-circuited current (J sc) to be elevated, and thus photovoltaic performance to be improved. The photovoltaic device based on PCFB, one of the fluorinated terpolymers, exhibited a high PCE near 8.5% with simultaneously enhanced V oc and J sc relative to the non-fluorinated one (PCB).
Collapse
Affiliation(s)
- Cai'e Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yahui Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jia Tu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shouli Ming
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
30
|
Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Sun L, Xu X, Song S, Zhang Y, Miao C, Liu X, Xing G, Zhang S. Medium‐Bandgap Conjugated Polymer Donors for Organic Photovoltaics. Macromol Rapid Commun 2019; 40:e1900074. [DOI: 10.1002/marc.201900074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/30/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Liya Sun
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xiangfei Xu
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Shan Song
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Yangqian Zhang
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chunyang Miao
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xiang Liu
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Guichuan Xing
- Institute of Applied Physics and Materials EngineeringUniversity of Macau Macao SAR 999078 China
| | - Shiming Zhang
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
32
|
Gusain A, Faria RM, Miranda PB. Polymer Solar Cells-Interfacial Processes Related to Performance Issues. Front Chem 2019; 7:61. [PMID: 30809519 PMCID: PMC6379278 DOI: 10.3389/fchem.2019.00061] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/22/2019] [Indexed: 12/03/2022] Open
Abstract
Harnessing solar energy with solar cells based on organic materials (in particular polymeric solar cells) is an attractive alternative to silicon-based solar cells due to the advantages of lower weight, flexibility, lower manufacturing costs, easier integration with other products, low environmental impact during manufacturing and operations and short energy payback times. However, even with the latest efficiencies reported up to 17%, the reproducibility of these efficiencies is not up to par, with a significant variation in the efficiencies reported across the literature. Since these devices are based on ultrathin multilayer organic films, interfaces play a major role in their operation and performance. This review gives a concise account of the major interfacial issues that are responsible for influencing the device performance, with emphasis on their physical mechanisms. After an introduction to the basic principles of polymeric solar cells, it briefly discusses charge generation and recombination occurring at the donor-acceptor bulk heterojunction interface. It then discusses interfacial morphology for the active layer and how it affects the performance and stability of these devices. Next, the formation of injection and extraction barriers and their role in the device performance is discussed. Finally, it addresses the most common approaches to change these barriers for improving the solar cell efficiency, including the use of interface dipoles. These issues are interrelated to each other and give a clear and concise understanding of the problem of the underperformance due to interfacial phenomena occurring within the device. This review not only discusses some of the implemented approaches that have been adopted in order to address these problems, but also highlights interfacial issues that are yet to be fully understood in organic solar cells.
Collapse
Affiliation(s)
- Abhay Gusain
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Roberto M Faria
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Paulo B Miranda
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
33
|
Lu Z, Wang S, Liu H, Feng F, Li W. Improved Efficiency of Perovskite Solar Cells by the Interfacial Modification of the Active Layer. NANOMATERIALS 2019; 9:nano9020204. [PMID: 30764481 PMCID: PMC6410319 DOI: 10.3390/nano9020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022]
Abstract
As the most promising material for thin-film solar cells nowadays, perovskite shine for its unique optical and electronic properties. Perovskite-based solar cells have already been demonstrated with high efficiencies. However, it is still very challenging to optimize the morphology of perovskite film. In this paper we proposed a smooth and continuous perovskite active layer by treating the poly (3, 4-ethylenedioxythiophene): poly (styrenesulphonate) (PEDOT:PSS) with pre-perovskite deposition and dimethylsulfoxide (DMSO) rinse. The scanning electron microscope (SEM) and atomic force microscope (AFM) images confirmed a perovskite active layer consisting of large crystal grains with less grain boundary area and enhanced crystallinity. The perovskite devices fabricated by this method feature a high power conversion efficiency (PCE) of 11.36% and a short-circuit current (Jsc) of 21.9 mA·cm−2.
Collapse
Affiliation(s)
- Zhen Lu
- College of Chemistry and Environmental Engineering, ShanXi DaTong University, Datong 037009, China; (Z.L.); (S.W.); (H.L.)
| | - Shangzhi Wang
- College of Chemistry and Environmental Engineering, ShanXi DaTong University, Datong 037009, China; (Z.L.); (S.W.); (H.L.)
| | - Huijun Liu
- College of Chemistry and Environmental Engineering, ShanXi DaTong University, Datong 037009, China; (Z.L.); (S.W.); (H.L.)
| | - Feng Feng
- College of Chemistry and Environmental Engineering, ShanXi DaTong University, Datong 037009, China; (Z.L.); (S.W.); (H.L.)
- Correspondence: (F.F.); (W.L.)
| | - Wenhua Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Correspondence: (F.F.); (W.L.)
| |
Collapse
|
34
|
Wang X, Jiang B, Du C, Ren X, Duan Z, Wang H. Fluorinated dithienyl-diketopyrrolopyrrole: a new building block for organic optoelectronic materials. NEW J CHEM 2019. [DOI: 10.1039/c9nj04060a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of monofluorinated and difluorinated dithienyl-DPP was reported using a stepwise synthesis method starting from the preparation of pyrrolinone followed by condensation with methyl thiophene-2-carbimidate derivatives.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Chemistry
- College of Science, and Center for Supramolecular Chemistry & Catalysis
- Shanghai University
- Shanghai
- P. R. China
| | - Bin Jiang
- Department of Chemistry
- College of Science, and Center for Supramolecular Chemistry & Catalysis
- Shanghai University
- Shanghai
- P. R. China
| | - Chenchen Du
- Department of Chemistry
- College of Science, and Center for Supramolecular Chemistry & Catalysis
- Shanghai University
- Shanghai
- P. R. China
| | - Xiaolei Ren
- Department of Chemistry
- College of Science, and Center for Supramolecular Chemistry & Catalysis
- Shanghai University
- Shanghai
- P. R. China
| | - Zhiming Duan
- Department of Chemistry
- College of Science, and Center for Supramolecular Chemistry & Catalysis
- Shanghai University
- Shanghai
- P. R. China
| | - Hongyu Wang
- Department of Chemistry
- College of Science, and Center for Supramolecular Chemistry & Catalysis
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|
35
|
Lee J, Kang SH, Lee SM, Lee KC, Yang H, Cho Y, Han D, Li Y, Lee BH, Yang C. An Ultrahigh Mobility in Isomorphic Fluorobenzo[ c
][1,2,5]thiadiazole-Based Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junghoon Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
- Division of Chemical Engineering; Dongseo University; 47, Jurye-ro, Sasang-gu Busan 47011 Republic of Korea
| | - So-Huei Kang
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Sang Myeon Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Kyu Cheol Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Heesoo Yang
- Division of Chemical Engineering and Materials Science; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Yongjoon Cho
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Daehee Han
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Byoung Hoon Lee
- Division of Chemical Engineering and Materials Science; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Changduk Yang
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| |
Collapse
|
36
|
Lee J, Kang SH, Lee SM, Lee KC, Yang H, Cho Y, Han D, Li Y, Lee BH, Yang C. An Ultrahigh Mobility in Isomorphic Fluorobenzo[c
][1,2,5]thiadiazole-Based Polymers. Angew Chem Int Ed Engl 2018; 57:13629-13634. [DOI: 10.1002/anie.201808098] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Junghoon Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
- Division of Chemical Engineering; Dongseo University; 47, Jurye-ro, Sasang-gu Busan 47011 Republic of Korea
| | - So-Huei Kang
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Sang Myeon Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Kyu Cheol Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Heesoo Yang
- Division of Chemical Engineering and Materials Science; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Yongjoon Cho
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Daehee Han
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Byoung Hoon Lee
- Division of Chemical Engineering and Materials Science; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Changduk Yang
- Department of Energy Engineering; School of Energy and Chemical Engineering, Perovtronics Research Center; Low Dimensional Carbon Materials Center; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil, Ulju-gun Ulsan 44919 Republic of Korea
| |
Collapse
|
37
|
Kurpiers J, Ferron T, Roland S, Jakoby M, Thiede T, Jaiser F, Albrecht S, Janietz S, Collins BA, Howard IA, Neher D. Probing the pathways of free charge generation in organic bulk heterojunction solar cells. Nat Commun 2018; 9:2038. [PMID: 29795114 PMCID: PMC5966440 DOI: 10.1038/s41467-018-04386-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges. Contradictory models are being debated on the dominant pathways of charge generation in organic solar cells. Here Kurpiers et al. determine the activation energy for this fundamental process and reveal that the main channel is via thermalized charge transfer states instead of hot exciton dissociation.
Collapse
Affiliation(s)
- Jona Kurpiers
- Institute of Physics and Astronomy, Soft Matter Physics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Thomas Ferron
- Department of Physics and Astronomy, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Steffen Roland
- Institute of Physics and Astronomy, Soft Matter Physics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Marius Jakoby
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Tobias Thiede
- Institute of Physics and Astronomy, Soft Matter Physics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Frank Jaiser
- Institute of Physics and Astronomy, Soft Matter Physics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Steve Albrecht
- Helmholtz-Zentrum Berlin für Materialien und Energie, Nachwuchsgruppe Perowskit Tandemsolarzellen, Kekuléstraße 5, 12489, Berlin, Germany
| | - Silvia Janietz
- Fraunhofer IAP, Polymere und Elektronik, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Brian A Collins
- Department of Physics and Astronomy, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Ian A Howard
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dieter Neher
- Institute of Physics and Astronomy, Soft Matter Physics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
38
|
Rahimi Chatri A, Torabi S, Le Corre VM, Koster LJA. Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12013-12020. [PMID: 29546982 PMCID: PMC5997384 DOI: 10.1021/acsami.7b19234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/16/2018] [Indexed: 05/31/2023]
Abstract
In recent years, the efficiency of organic solar cells (OSCs) has increased to more than 13%, although different barriers are on the way for reaching higher efficiencies. One crucial barrier is the recombination of charge carriers, which can either occur as the bulk recombination of photogenerated charges or the recombination of photogenerated charges and electrodic induced charges (EICs). This work studies the impact of EICs on the recombination lifetime in OSCs. To this end, the net recombination lifetime of photogenerated charge carriers in the presence of EICs is measured by means of conventional and newly developed transient photovoltage techniques. Moreover, a new approach has been introduced to exclusively measure the bulk recombination lifetime, i.e., in the absence of EICs; this approach was conducted by depositing transparent insulating layers on both sides of the OSC active layer. An examination of these approaches on OSCs with different active layer materials, thicknesses, and varying light intensities determined that the EICs can only reduce the recombination lifetime of the photogenerated charges in OSCs with very weak recombination strength. This work supports that for OSCs with highly reduced recombination strength, eliminating the recombination of photogenerated charges and EICs is critical for achieving better performance. Therefore, the use of a proper blocking layer suppresses EIC recombination in systems with very weak recombination.
Collapse
|
39
|
Higashino T, Kurumisawa Y, Nimura S, Iiyama H, Imahori H. Enhanced Donor-π-Acceptor Character of a Porphyrin Dye Incorporating Naphthobisthiadiazole for Efficient Near-Infrared Light Absorption. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomohiro Higashino
- Department of Molecular Engineering; Graduate School of Engineering; Kyoto University; Nishikyo-ku 615-8510 Kyoto Japan
| | - Yuma Kurumisawa
- Department of Molecular Engineering; Graduate School of Engineering; Kyoto University; Nishikyo-ku 615-8510 Kyoto Japan
| | - Shimpei Nimura
- Department of Molecular Engineering; Graduate School of Engineering; Kyoto University; Nishikyo-ku 615-8510 Kyoto Japan
| | - Hitomi Iiyama
- Department of Molecular Engineering; Graduate School of Engineering; Kyoto University; Nishikyo-ku 615-8510 Kyoto Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering; Graduate School of Engineering; Kyoto University; Nishikyo-ku 615-8510 Kyoto Japan
- Institute for Integrated Cell-Material Sciences; Kyoto University; Sakyo-ku 606-8501 Kyoto Japan
| |
Collapse
|
40
|
Thu C, Ehrenreich P, Wong KK, Zimmermann E, Dorman J, Wang W, Fakharuddin A, Putnik M, Drivas C, Koutsoubelitis A, Vasilopoulou M, Palilis LC, Kennou S, Kalb J, Pfadler T, Schmidt-Mende L. Role of the Metal-Oxide Work Function on Photocurrent Generation in Hybrid Solar Cells. Sci Rep 2018; 8:3559. [PMID: 29476065 PMCID: PMC5824951 DOI: 10.1038/s41598-018-21721-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
Abstract
ZnO is a widely used metal-oxide semiconductor for photovoltaic application. In solar cell heterostructures they not only serve as a charge selective contact, but also act as electron acceptor. Although ZnO offers a suitable interface for exciton dissociation, charge separation efficiencies have stayed rather poor and conceptual differences to organic acceptors are rarely investigated. In this work, we employ Sn doping to ZnO nanowires in order to understand the role of defect and surface states in the charge separation process. Upon doping we are able to modify the metal-oxide work function and we show its direct correlation with the charge separation efficiency. For this purpose, we use the polymer poly(3-hexylthiophene) as donor and the squaraine dye SQ2 as interlayer. Interestingly, neither mobilities nor defects are prime performance limiting factor, but rather the density of available states around the conduction band is of crucial importance for hybrid interfaces. This work highlights crucial aspects to improve the charge generation process of metal-oxide based solar cells and reveals new strategies to improve the power conversion efficiency of hybrid solar cells.
Collapse
Affiliation(s)
- Chawloon Thu
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany
| | - Philipp Ehrenreich
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany.
| | - Ka Kan Wong
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany
| | - Eugen Zimmermann
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany
| | - James Dorman
- Cain Department of Chemical Engineering, 3307 Patrick Taylor Hall, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Wei Wang
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany
| | - Azhar Fakharuddin
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany
| | - Martin Putnik
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany
| | - Charalampos Drivas
- Department of Chemical Engineering, University of Patras, Patras, 26504, Greece
| | | | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research, Demokritos, Agia Paraskevi, 15310, Athens, Greece
| | | | - Stella Kennou
- Department of Chemical Engineering, University of Patras, Patras, 26504, Greece
| | - Julian Kalb
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany
| | - Thomas Pfadler
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany
| | - Lukas Schmidt-Mende
- Department of Physics, University of Konstanz, POB 680, 78457, Konstanz, Germany.
| |
Collapse
|
41
|
Deshmukh KD, Matsidik R, Prasad SKK, Chandrasekaran N, Welford A, Connal LA, Liu ACY, Gann E, Thomsen L, Kabra D, Hodgkiss JM, Sommer M, McNeill CR. Impact of Acceptor Fluorination on the Performance of All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:955-969. [PMID: 29206027 DOI: 10.1021/acsami.7b14582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we systematically study the effect of fluorination on the performance of all-polymer solar cells by employing a naphthalene diimide (NDI)-based polymer acceptor with thiophene-flanked phenyl co-monomer. Fluorination of the phenyl co-monomer with either two or four fluorine units is used to create a series of acceptor polymers with either no fluorination (PNDITPhT), bifluorination (PNDITF2T), or tetrafluorination (PNDITF4T). In blends with the donor polymer PTB7-Th, fluorination results in an increase in power conversion efficiency from 3.1 to 4.6% despite a decrease in open-circuit voltage from 0.86 V (unfluorinated) to 0.78 V (tetrafluorinated). Countering this decrease in open-circuit voltage is an increase in short-circuit current from 7.7 to 11.7 mA/cm2 as well as an increase in fill factor from 0.45 to 0.53. The origin of the improvement in performance with fluorination is explored using a combination of morphological, photophysical, and charge-transport studies. Interestingly, fluorination is found not to affect the ultrafast charge-generation kinetics, but instead is found to improve charge-collection yield subsequent to charge generation, linked to improved electron mobility and improved phase separation. Fluorination also leads to improved light absorption, with the blue-shifted absorption profile of the fluorinated polymers complementing the absorption profile of the low-band gap PTB7-Th.
Collapse
Affiliation(s)
| | | | - Shyamal K K Prasad
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington , Wellington 6140, New Zealand
| | | | | | - Luke A Connal
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Melbourne 3010, Victoria, Australia
| | | | - Eliot Gann
- Australian Synchrotron , 800 Blackburn Road, Clayton 3168, Victoria, Australia
| | - Lars Thomsen
- Australian Synchrotron , 800 Blackburn Road, Clayton 3168, Victoria, Australia
| | | | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington , Wellington 6140, New Zealand
| | | | | |
Collapse
|
42
|
Reichenberger M, Kroh D, Matrone GMM, Schötz K, Pröller S, Filonik O, Thordardottir ME, Herzig EM, Bässler H, Stingelin N, Köhler A. Controlling aggregate formation in conjugated polymers by spin-coating below the critical temperature of the disorder-order transition. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Daniel Kroh
- Experimental Physics II, University of Bayreuth; Bayreuth 95440 Germany
| | - Giovanni M. M. Matrone
- Department of Materials and Center for Plastic Electronics; Imperial College London; London SW7 2AZ United Kingdom
| | - Konstantin Schötz
- Experimental Physics II, University of Bayreuth; Bayreuth 95440 Germany
| | - Stephan Pröller
- Herzig Group, Munich School of Engineering (MSE), Technische Universität München, Lichtenbergstr. 4a; Garching 85748 Germany
| | - Oliver Filonik
- Herzig Group, Munich School of Engineering (MSE), Technische Universität München, Lichtenbergstr. 4a; Garching 85748 Germany
| | - Margret E. Thordardottir
- Herzig Group, Munich School of Engineering (MSE), Technische Universität München, Lichtenbergstr. 4a; Garching 85748 Germany
| | - Eva M. Herzig
- Dynamics and Structure Formation; University of Bayreuth; Bayreuth 95440 Germany
| | - Heinz Bässler
- Bayreuth Institute of Macromolecular Research (BIMF), University of Bayreuth; Bayreuth 95440 Germany
| | - Natalie Stingelin
- Department of Materials and Center for Plastic Electronics; Imperial College London; London SW7 2AZ United Kingdom
- School of Materials Science & Engineering and School of Chemical & Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332
| | - Anna Köhler
- Experimental Physics II, University of Bayreuth; Bayreuth 95440 Germany
- Bayreuth Institute of Macromolecular Research (BIMF), University of Bayreuth; Bayreuth 95440 Germany
| |
Collapse
|
43
|
Busireddy MR, Madhu C, Chereddy NR, Appalanaidu E, Sharma GD, Vaidya JR. Optimization of the Donor Material Structure and Processing Conditions to Obtain Efficient Small-Molecule Donors for Bulk Heterojunction Solar Cells. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Manohar Reddy Busireddy
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka, Hyderabad 500007 India
- AcSIR; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Chakali Madhu
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka, Hyderabad 500007 India
- AcSIR; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Narendra Reddy Chereddy
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka, Hyderabad 500007 India
| | - Ejjurothu Appalanaidu
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka, Hyderabad 500007 India
- AcSIR; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Ganesh Datt Sharma
- Department of Physics; The LNM Institute of Information Technology; Jamdoli, Jaipur IIndia
| | - Jayathirtha Rao Vaidya
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka, Hyderabad 500007 India
- AcSIR; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| |
Collapse
|
44
|
Abstract
Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).
Collapse
|
45
|
Smith BH, Zhang Q, Kelly MA, Litofsky JH, Kumar D, Hexemer A, You W, Gomez ED. Fluorination of Donor-Acceptor Copolymer Active Layers Enhances Charge Mobilities in Thin-Film Transistors. ACS Macro Lett 2017; 6:1162-1167. [PMID: 35650936 DOI: 10.1021/acsmacrolett.7b00716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several recent reports have demonstrated that fluorinated analogues of donor/acceptor copolymers surpass nonfluorinated counterparts in terms of performance in electronic devices. Using a copolymer series consisting of fluorinated, partially fluorinated, and nonfluorinated benzotriazole, we confirm that the addition of fluorine substituents beneficially impacts charge transport in polymer semiconductors. Transistor measurements demonstrated a factor of 5 increase in carrier mobilities with the degree of fluorination of the backbone. Furthermore, grazing-incidence X-ray diffraction data indicates progressively closer packing between the conjugated cores and an overall greater amount of π-stacking in the fluorinated materials. It is likely that attractive interactions between the electron-rich donor and fluorinated electron-deficient acceptor units induce very tightly stacking crystallites, which reduce the energetic barrier for charge hopping. In addition, a change in crystallite orientation was observed from primarily edge-on without fluorine substituents to mostly face-on with fluorinated benzotriazole.
Collapse
Affiliation(s)
| | - Qianqian Zhang
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Mary Allison Kelly
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | | | - Dinesh Kumar
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander Hexemer
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wei You
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | | |
Collapse
|
46
|
Sharma A, Chauhan M, Bharti V, Kumar M, Chand S, Tripathi B, Tiwari JP. Revealing the correlation between charge carrier recombination and extraction in an organic solar cell under varying illumination intensity. Phys Chem Chem Phys 2017; 19:26169-26178. [PMID: 28930319 DOI: 10.1039/c7cp05235a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The design and fabrication of better excitonic solar cells are the need of the hour for futuristic energy solutions. This designing needs a better understanding of the charge transport properties of excitonic solar cells. One of the popular methods of understanding the charge transport properties is the analysis of the J-V characteristics of a device through theoretical simulation at varied illumination intensity. Herein, a J-V characteristic of a polymer:fullerene based bulk heterojunction (BHJ) organic solar cells (OSCs) of structure ITO/PEDOT:PSS (∼40 nm)/PTB7:PC71BM (∼100 nm)/Al (∼120 nm) is analyzed using one- and two-diode models at varied illumination intensity in the range of 0.1-2.33 Sun. It was found that the double diode model is better with respect to the single diode model and can explain the J-V characteristics of the OSCs correctly. Further, the recombination mechanism is investigated thoroughly and it was observed that fill factor (FF) is in the range of 62.5%-41.4% for the corresponding values of the recombination-to-extraction ratio (θ) varying from 0.001 to 0.023. These findings are attributed to the change in charge transport mechanism from trap-assisted to bimolecular recombination with the variation of illumination intensity.
Collapse
Affiliation(s)
- Abhishek Sharma
- Advanced Materials and Devices Division, CSIR-National Physical Laboratory, New Delhi 110012, India.
| | | | | | | | | | | | | |
Collapse
|
47
|
Yan Y, Cai F, Yang L, Li W, Gong Y, Cai J, Liu S, Gurney RS, Liu D, Wang T. Versatile Device Architectures for High-Performing Light-Soaking-Free Inverted Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32678-32687. [PMID: 28870067 DOI: 10.1021/acsami.7b08130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal oxide charge transport layers have been widely employed to prepare inverted polymer solar cells with high efficiency and long lifetime. However, the intrinsic defects in the metal oxide layers, especially those prepared from low-temperature routes, overshadow the high efficiency that can be achieved and also introduce "light-soaking" issues to these devices. In this work, we have employed polyethyleneimine (PEI) and poly(9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis-(3-ethyl(oxetane-3-ethyloxy)-hexyl)-fluorene] (PFN-OX) to modify our low-temperature-processed TiO2 electron transport layer (ETL) and demonstrated that the light-soaking issue can be effectively eliminated by PEI modifications because of the formation of abundant dipole moments, whereas PFN-OX was ineffective as a result of deficient dipole moments at the interface. Excitingly, PEI modifications enable versatile device architectures to obtain light-soaking-free, inverted PTB7-Th:PC71BM solar cells with efficiencies of over 10%, by adding PEI either in the bulk or as an adjacent layer below or above the TiO2 ETL.
Collapse
Affiliation(s)
- Yu Yan
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Feilong Cai
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Liyan Yang
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Wei Li
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Yanyan Gong
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Jinlong Cai
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Shuang Liu
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Robert S Gurney
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Dan Liu
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| | - Tao Wang
- School of Materials Science and Engineering and ‡State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology , Wuhan 430070, China
| |
Collapse
|
48
|
Wagenpfahl A. Mobility dependent recombination models for organic solar cells. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:373001. [PMID: 28612756 DOI: 10.1088/1361-648x/aa7952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modern solar cell technologies are driven by the effort to enhance power conversion efficiencies. A main mechanism limiting power conversion efficiencies is charge carrier recombination which is a direct function of the encounter probability of both recombination partners. In inorganic solar cells with rather high charge carrier mobilities, charge carrier recombination is often dominated by energetic states which subsequently trap both recombination partners for recombination. Free charge carriers move fast enough for Coulomb attraction to be irrelevant for the encounter probability. Thus, charge carrier recombination is independent of charge carrier mobilities. In organic semiconductors charge carrier mobilities are much lower. Therefore, electrons and holes have more time react to mutual Coulomb-forces. This results in the strong charge carrier mobility dependencies of the observed charge carrier recombination rates. In 1903 Paul Langevin published a fundamental model to describe the recombination of ions in gas-phase or aqueous solutions, known today as Langevin recombination. During the last decades this model was used to interpret and model recombination in organic semiconductors. However, certain experiments especially with bulk-heterojunction solar cells reveal much lower recombination rates than predicted by Langevin. In search of an explanation, many material and device properties such as morphology and energetic properties have been examined in order to extend the validity of the Langevin model. A key argument for most of these extended models is, that electron and hole must find each other at a mutual spatial location. This encounter may be limited for instance by trapping of charges in trap states, by selective electrodes separating electrons and holes, or simply by the morphology of the involved semiconductors, making it impossible for electrons and holes to recombine at high rates. In this review, we discuss the development of mobility limited recombination models from the early Langevin theory to state-of-the art models for charge carrier recombination in organic solar cells.
Collapse
|
49
|
Liu G, Weng C, Yin P, Tan S, Shen P. Impact of the number of fluorine atoms on crystalline, physicochemical and photovoltaic properties of low bandgap copolymers based on 1,4-dithienylphenylene and diketopyrrolopyrrole. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Busireddy MR, Chereddy NR, Shanigaram B, Kotamarthi B, Biswas S, Sharma GD, Vaidya JR. Dithieno[3,2-b:2',3'-d]pyrrole-benzo[c][1,2,5]thiadiazole conjugate small molecule donors: effect of fluorine content on their photovoltaic properties. Phys Chem Chem Phys 2017; 19:20513-20522. [PMID: 28730205 DOI: 10.1039/c7cp02729j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new small molecule donors, namely ICT4 and ICT6 with D1-A-D2-A-D1 architecture having 2,4-bis(2-ethylhexyl)-4H-dithieno[3,2-b:2',3'-d]pyrrole (EHDTP, D1) and 4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene (OBDT, D2) as the terminal and central donor, and benzo[c][1,2,5]thiadiazole (BT for ICT4) and 5,6-difluorobenzo[c][1,2,5]thiadiazole (F2BT for ICT6) as the acceptor (A) moieties, are synthesized and their optical, electronic and photovoltaic properties are investigated. Both ICT4 and ICT6 have considerable solubility in various solvents and possess efficient light absorption ability [ε (×105 mol-1 cm-1) is 0.99 and 1.06, respectively for ICT4 and ICT6] and appropriate frontier molecular orbital energy offsets with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). Bulk heterojunction solar cells (BHJSCs) are fabricated using ICT4/ICT6 and PC71BM as donors and acceptors, respectively and BHJSCs with two-step annealed (thermal followed by solvent vapor annealing) active layers of ICT4 and ICT6 show overall power conversion efficiencies (PCEs) of 5.46% and 7.91%, respectively. The superior photovoltaic performance of the ICT6 based BHJSCs is due to the favourable morphology with a nanoscale interpenetrating network in the ICT6:PC71BM active layer induced by the fluorine atoms on the BT acceptor, which significantly enhances the dissociation of excitons, charge transport and the charge collection efficiency, and suppresses bimolecular recombination in the BHJ. The observed higher PCE of 7.91% indicates that ICT6 is one of the best BT based donor material for small molecular BHJSCs.
Collapse
Affiliation(s)
- Manohar Reddy Busireddy
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
| | | | | | | | | | | | | |
Collapse
|