1
|
Pathak B, Boda M, Patwari GN. Probing the Role of Solvent Configurations and Local Electric Fields on HX (X = F, Cl, Br and I) Dissociation in Water Clusters. J Phys Chem B 2024; 128:9829-9836. [PMID: 39347838 DOI: 10.1021/acs.jpcb.4c04472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The acidity of hydrohalic acids increases down the group, with HF and HI being the weakest and strongest acids. Electronic structure calculations suggest that the critical electric fields required for the dissociation of HF, HCl, HBr, and HI are 347, 193, 163, and 153 MV cm-1, respectively, which are proportional to their corresponding pKa values and emphasize that in these systems the bond dissociation energy determines the pKa. The solvent configuration plays a significant role in the acid dissociation process, which is illustrated by a particular configuration of three water molecules around HX and favors dissociation of only HBr, even though the critical electric field required for the dissociation of HI is lower than that of HBr, as depicted in the graphical abstract. Further, the Born-Oppenheimer molecular dynamics (BOMD) simulations suggest that the spontaneity of HX dissociation depends on both the solvent configuration and thermal fluctuations, which hold higher significance in the case of weaker acids. In general, it was observed that the solvent electric field required for the acid dissociation process is marginally lower at higher temperatures.
Collapse
Affiliation(s)
- Bijaya Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Manjusha Boda
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Torre MF, Amadeo A, Cassone G, Tommasini M, Mráziková K, Saija F. Water Dimer under Electric Fields: An Ab Initio Investigation up to Quantum Accuracy. J Phys Chem A 2024; 128:5490-5499. [PMID: 38976361 DOI: 10.1021/acs.jpca.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
It is well-established that strong electric fields (EFs) can align water dipoles, partially order the H-bond network of liquid water, and induce water splitting and proton transfers. To illuminate the fundamental behavior of water under external EFs, we present the first benchmark, to the best of our knowledge, of DFT calculations of the water dimer exposed to intense EFs against coupled cluster calculations. The analyses of the vibrational Stark effect and electron density provide a consistent picture of the intermolecular charge transfer effects driven along the H-bond by the increasing applied field at all theory levels. However, our findings prove that at extreme field regimes (∼1-2 V/Å) DFT calculations significantly exaggerate by ∼10-30% the field-induced strengthening of the H-bond, both within the GGA, hybrid GGA, and hybrid meta-GGA approximations. Notably, a linear correlation emerges between the vibrational Stark effect on OH stretching and H-bond strengthening: a 1 kcal mol-1 increase corresponds to an 80 cm-1 red-shift in OH stretching frequency.
Collapse
Affiliation(s)
- Marco Francesco Torre
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Alessandro Amadeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ing. Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Klaudia Mráziková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| |
Collapse
|
3
|
Chen Z, Dong R, Wang X, Huang L, Qiu L, Zhang M, Mi N, Xu M, He H, Gu C. Efficient Decomposition of Perfluoroalkyl Substances by Low Concentration Indole: New Insights into the Molecular Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38329941 DOI: 10.1021/acs.est.3c08453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Perfluoroalkyl substances (PFAS) are a class of persistent organic pollutants known as "forever chemicals". Currently, the hydrated electron-based advanced reduction process (ARP) holds promise for the elimination of PFAS. However, the efficiency of ARP is often challenged by an oxygen-rich environment, resulting in the consumption of hydrated electron source materials in exchange for the high PFAS decomposition efficiency. Herein, we developed a ternary system constructed by indole and isopropyl alcohol (IPA), and the addition of IPA significantly enhanced the PFOA degradation and defluorination efficiency in the presence of low-concentration indole (<0.4 mM). Meanwhile, opposite results were obtained with a higher amount of indole (>0.4 mM). Further exploring the molecular mechanism of the reaction system, the addition of IPA played two roles. On one hand, IPA built an anaerobic reaction atmosphere and improved the yield and utilization efficiency of hydrated electrons with a low concentration of indole. On the other hand, IPA suppressed the attraction between indole and PFOA, thus reducing the hydrated electron transfer efficiency, especially with more indole. In general, the indole/PFAS/IPA system significantly improved the PFAS destruction efficiency with a small amount of hydrated electron donors, which provided new insights for development of simple and efficient techniques for the treatment of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ruochen Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Liuqing Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Longlong Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Na Mi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing 210042, P. R. China
| | - Min Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Pathak B, Kesari S, Patwari GN. Enticing a Proton using Single Ammonia Molecule as Bait. J Phys Chem B 2024; 128:1022-1028. [PMID: 38240575 DOI: 10.1021/acs.jpcb.3c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In microhydrated acid-solvent clusters, deprotonation of an acid is assisted by a critical number of solvent molecules and a solvent electric field. Born-Oppenheimer molecular dynamics simulations reveal that trifluoroacetic acid undergoes spontaneous proton transfer in water clusters, with the critical number being five. Acetic acid and phenol, on the other hand, do not dissociate even in the presence of a large number of water molecules (in excess of 40). The addition of a single ammonia molecule to the water cluster, which interacts directly with the protic group, lowers the critical number of solvent water molecules required for proton transfer to three and seven in the case of acetic acid and phenol, respectively. The population of the undissociated and the proton-transferred structures get dispersed to form separate islands on the electric field versus the O-H distance representation with the cusp representing the critical values. The critical electric fields for the spontaneous proton transfer are around 254, 237, and 318 MV cm-1 for trifluoroacetic acid, acetic acid, and phenol, respectively. In the case of phenol, the free energy profiles suggest that proton transfer to the ammonia moiety embedded in water promotes proton transfer efficiently due to the higher basicity of ammonia and enhanced hydrogen bonding network of solvent water, vis-à-vis phenol-ammonia clusters.
Collapse
Affiliation(s)
- Bijaya Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shaivi Kesari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Gopakumar K, Samantaray V, Prusty MK, Swain L, Ramanan R. Internal charge-transfer in a metal-catalyzed oxidative addition reaction turns an inhibitive electric field stimulus to catalytic. Chem Commun (Camb) 2023; 59:13054-13057. [PMID: 37846773 DOI: 10.1039/d3cc04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In a metal-catalyzed oxidative addition, an oriented external electric field (EEF) catalyzes the reaction along one direction and inhibits it when applied in the opposite direction. Beyond a threshold value, the inhibitory direction becomes catalyzing by swapping the metal-to-ligand charge transfer (MLCT) to ligand-to-metal charge-transfer (LMCT) or vice versa. The change in direction of the charge-transfer mechanism triggers the inversion of the dipole moment along the reaction axis, that results in the resurgence of catalysis. The charge-transfer mechanism in metal-catalyzed oxidative addition is tunable by EEF.
Collapse
Affiliation(s)
- Karthik Gopakumar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Vivekananda Samantaray
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Mithun Kumar Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Lopita Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Rajeev Ramanan
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
6
|
Gopakumar K, Shaik S, Ramanan R. Two-Way Catalysis in a Diels-Alder Reaction Limits Inhibition Induced by an External Electric Field. Angew Chem Int Ed Engl 2023; 62:e202307579. [PMID: 37530131 DOI: 10.1002/anie.202307579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Oriented external electric fields (EEFs) act as catalysts that can induce selectivity in chemical reactions. The responses of the Diels-Alder (DA) reaction between butadiene and ethylene (BDE-DA) as well as cyclopentadiene and ethylene (CPDE-DA) towards EEF stimuli are investigated here using density functional theory (B3LYP) calculations. EEF is a vector that catalyzes the reaction in one direction while inhibiting it in the opposite direction. Here we report that the inhibitive direction becomes rate-enhancing after some increase in the EEF. The EEF value that brings about the maximum possible inhibition for the reaction is defined as the electrostatic resistance point (ERP). The possibility of both normal and inverse electron-demand DA reactions causes catalytic activity in both directions of the EEF starting at a unique ERP value. The C5 substituents of cyclopentadiene control the ERP values depending upon the resistance power that the functional group provides against the EEF. The endo and exo diastereomeric transition states of the DA reaction have distinct ERP values and the difference (ΔERP) provides the through-space electrostatic contribution to the stereoselectivity on a relative scale. Thus, the ERP values can be used as a gauge for the electrostatic interactions between substituent groups and external stimuli.
Collapse
Affiliation(s)
- Karthik Gopakumar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407, Jerusalem, Israel
| | - Rajeev Ramanan
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
7
|
Cassone G, Saija F, Sponer J, Shaik S. The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions. J Phys Chem Lett 2023; 14:7808-7813. [PMID: 37623433 PMCID: PMC10494223 DOI: 10.1021/acs.jpclett.3c01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Among the many prototypical acid-base systems, ammonia aqueous solutions hold a privileged place, owing to their omnipresence in various planets and their universal solvent character. Although the theoretical optimal water-ammonia molar ratio to form NH4+ and OH- ion pairs is 50:50, our ab initio molecular dynamics simulations show that the tendency of forming these ionic species is inversely (directly) proportional to the amount of ammonia (water) in ammonia aqueous solutions, up to a water-ammonia molar ratio of ∼75:25. Here we prove that the reactivity of these liquid mixtures is rooted in peculiar microscopic patterns emerging at the H-bonding scale, where the highly orchestrated motion of 5 solvating molecules modulates proton transfer events through local electric fields. This study demonstrates that the reaction of water with NH3 is catalyzed by a small cluster of water molecules, in which an H atom possesses a high local electric field, much like the effect observed in catalysis by water droplets [ PNAS 2023, 120, e2301206120].
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute
for Physical-Chemical Processes, Italian
National Research Council (CNR-IPCF), Viale Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Franz Saija
- Institute
for Physical-Chemical Processes, Italian
National Research Council (CNR-IPCF), Viale Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czechia
| | - Sason Shaik
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
8
|
Shooto N. Application of carbon from pomegranate husk for the removal of ibuprofen, cadmium and methylene blue from water. Heliyon 2023; 9:e20268. [PMID: 37810158 PMCID: PMC10560030 DOI: 10.1016/j.heliyon.2023.e20268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
The presence of pharmaceutical products, dyes, and toxic metal ions in water is a major problem worldwide. This work developed low-cost pomegranate-based materials to uptake ibuprofen, cadmium and methylene blue from water. Pomegranate husks (PPH) were carbonized at 400 °C to form carbonized pomegranate husk (CPH), and nanoparticles were loaded into the carbon surface (NPH) by co-precipitation. SEM micrographs showed that the morphology of carbon was highly porous compared to pristine pomegranate husk. The data for BET revealed that CPH and NPH, had about a 20-fold increase in surface area of 142 m2/g and 190 m2/g respectively compared with 9.27 m2/g for PPH. The composites exhibited larger pore sizes and volumes. TEM images confirmed the loading of nanoparticles. The FTIR results showed that the materials had on their surface oxygenated groups such as -OH, -C]O, -COC and other groups like -NH and -C]C which are anticipated to play an essential role in the sorption of the pollutants. It was found that removal efficiency increased when there was a progressive increase in pollutant concentration for all adsorbents. The best pH value of the solution for the sorption processes was pH 8. The recorded adsorption capacities at pH 8 for Cd(II), IBU and MB were 92.85, 39.77 and 95.89 mg/g for NPH, 72.60, 32.58 and 80.59 mg/g for CPH and 32.78, 16.12 and 40.79 mg/g for PPH. Contact time studies showed three sorption steps. Step 1: rapid increase at the initial stage. Step 2: marginal uptake. Step 3: plateau. The trends indicated that sorption was influenced by temperature variation. The data for the thermodynamic parameter △Ho suggest that all the sorption processes were endothermic; the obtained positive values indicate this. The △Ho for PPH was between (64.33-69.08 kJ/mol), 82.84-86.03 kJ/mol for CPH and 87.17-88.96 kJ/mol for NPH. For PPH, molecular interactions were physisorption, and chemisorption for CPH and NPH. The △So has positive values, showing increased freedom during the sorption. The adsorbents followed PSO based on uptake processes involving syngenetic mechanisms.
Collapse
Affiliation(s)
- N.D. Shooto
- Adsorption Laboratory, Natural Sciences Department, Vaal University of Technology, P.O. Box X021, Vanderbijlpark, 1900, South Africa
| |
Collapse
|
9
|
Conti Nibali V, Maiti S, Saija F, Heyden M, Cassone G. Electric-field induced entropic effects in liquid water. J Chem Phys 2023; 158:2889002. [PMID: 37154276 DOI: 10.1063/5.0139460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
Abstract
Externally applied electric fields in liquid water can induce a plethora of effects with wide implications in electrochemistry and hydrogen-based technologies. Although some effort has been made to elucidate the thermodynamics associated with the application of electric fields in aqueous systems, to the best of our knowledge, field-induced effects on the total and local entropy of bulk water have never been presented so far. Here, we report on classical TIP4P/2005 and ab initio molecular dynamics simulations measuring entropic contributions carried by diverse field intensities in liquid water at room temperature. We find that strong fields are capable of aligning large fractions of molecular dipoles. Nevertheless, the order-maker action of the field leads to quite modest entropy reductions in classical simulations. Albeit more significant variations are recorded during first-principles simulations, the associated entropy modifications are small compared to the entropy change involved in the freezing phenomenon, even at intense fields slightly beneath the molecular dissociation threshold. This finding further corroborates the idea that electrofreezing (i.e., the electric-field-induced crystallization) cannot take place in bulk water at room temperature. In addition, here, we propose a molecular-dynamics-based analysis (3D-2PT) that spatially resolves the local entropy and the number density of bulk water under an electric field, which enables us to map their field-induced changes in the environment of reference H2O molecules. By returning detailed spatial maps of the local order, the proposed approach is capable of establishing a link between entropic and structural modifications with atomistic resolution.
Collapse
Affiliation(s)
- Valeria Conti Nibali
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, 98166 Messina, Italy
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Sthitadhi Maiti
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| |
Collapse
|
10
|
Ghosh R, Datta S, Mora AK, Modak B, Nath S, Palit DK. Dynamics of hydrogen bond reorganization in the S1(ππ*) state of 9-Anthracenecarboxaldehyde. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Fica-Contreras SM, Charnay AP, Pan J, Fayer MD. Rethinking Vibrational Stark Spectroscopy: Peak Shifts, Line Widths, and the Role of Non-Stark Solvent Coupling. J Phys Chem B 2023; 127:717-731. [PMID: 36629314 DOI: 10.1021/acs.jpcb.2c06071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A vibration's transition frequency is partly determined by the first-order Stark effect, which accounts for the electric field experienced by the mode. Using ultrafast infrared pump-probe and FT-IR spectroscopies, we characterized both the 0 → 1 and 1 → 2 vibrational transitions' field-dependent peak positions and line widths of the CN stretching mode of benzonitrile (BZN) and phenyl selenocyanate (PhSeCN) in ten solvents. We present a theoretical model that decomposes the observed line width into a field-dependent Stark contribution and a field-independent non-Stark solvent coupling contribution (NSC). The model demonstrates that the field-dependent peak position is independent of the line width, even when the NSC dominates the latter. Experiments show that when the Stark tuning rate is large compared to the NSC (PhSeCN), the line width has a field dependence, albeit with major NSC-induced excursions from linearity. When the Stark tuning rate is small relative to the NSC (BZN), the line width is field-independent. BZN's line widths are substantially larger for the 1 → 2 transition, indicating a 1 → 2 transition enhancement of the NSC. Additionally, we examine, theoretically and experimentally, the difference in the 0 → 1 and 1 → 2 transitions' Stark tuning rates. Second-order perturbation theory combined with density functional theory explain the difference and show that the 1 → 2 transition's Stark tuning rate is ∼10% larger. The Stark tuning rate of PhSeCN is larger than BZN's for both transitions, consistent with the theoretical calculations. This study provides new insights into vibrational line shape components and a more general understanding of the vibrational response to external electric fields.
Collapse
Affiliation(s)
| | - Aaron P Charnay
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| |
Collapse
|
12
|
Oliveira BGD. Why much of Chemistry may be indisputably non-bonded? SEMINA: CIÊNCIAS EXATAS E TECNOLÓGICAS 2023. [DOI: 10.5433/1679-0375.2022v43n2p211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this compendium, the wide scope of all intermolecular interactions ever known has been revisited, in particular giving emphasis the capability of much of the elements of the periodic table to form non-covalent contacts. Either hydrogen bonds, dihydrogen bonds, halogen bonds, pnictogen bonds, chalcogen bonds, triel bonds, tetrel bonds, regium bonds, spodium bonds or even the aerogen bond interactions may be cited. Obviously that experimental techniques have been used in some works, but it was through the theoretical methods that these interactions were validate, wherein the QTAIM integrations and SAPT energy partitions have been useful in this regard. Therefore, the great goal concerns to elucidate the interaction strength and if the intermolecular system shall be total, partial or non-covalently bonded, wherein this last one encompasses the most majority of the intermolecular interactions what leading to affirm that chemistry is debatably non-bonded.
Collapse
|
13
|
Kilpeläinen T, Ervasti T, Uurasjärvi E, Koistinen A, Ketolainen J, Korhonen O, Pajula K. Detecting different amorphous - amorphous phase separation patterns in co-amorphous mixtures with high resolution imaging FTIR spectroscopy. Eur J Pharm Biopharm 2022; 180:161-169. [PMID: 36122786 DOI: 10.1016/j.ejpb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022]
Abstract
Many active pharmaceutical ingredients (API) in development suffer from low aqueous solubilities. Instead of the crystal form, the amorphous state can be used to improve the API's apparent solubility. However, the amorphous state has a higher Gibb's free energy and is inherently unstable and tends to transform back to the more stable crystal form. In co-amorphous mixtures, phase separation needs to occur before there can be crystallization. The aim of this study was to devise a method to study amorphous-amorphous phase separation with high resolution imaging Fourier transform infrared (FTIR) spectroscopy with seven 1:1 molar ratio API-API binary mixtures being examined. The binary mixtures were amorphized by melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermodynamic properties (crystallization tendency, melting point (Tm) and Tg) of these mixtures were measured with differential scanning calorimetry (DSC) to verify the amorphization method and to assess the optimal storage temperature. The phase separation was examined with FTIR imaging in the transmission mode. Furthermore, measurements with two pure APIs were performed to ensure that the alterations occurring in the spectra were caused by phase separation not storage stress. In addition, the reproducibility of the imaging FTIR spectrometer was verified. The spectra were analyzed with principal component analysis (PCA) and a characteristic peak comparison method. Scatter-plots were produced from the amount of phase separated pixels in the measurement area as a way of visualizing the progress of phase separation. The results indicated that imaging with FTIR spectroscopy can produce reproducible results and the progress of phase separation can be detected as either a sigmoidal or as a start-to-finish linear pattern depending on the substances.
Collapse
Affiliation(s)
- Tuomas Kilpeläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Tuomas Ervasti
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Emilia Uurasjärvi
- SIB Labs, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Arto Koistinen
- SIB Labs, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Ketolainen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Katja Pajula
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
14
|
Priola E, Conterosito E, Giordana A, Volpi G, Garino C, Andreo L, Diana E, Barolo C, Milanesio M. Polymorphism and solid state peculiarities in imidazo[1,5-a]pyridine core deriving compounds: An analysis of energetic and structural driving forces. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Boda M, Patwari GN. Vibrational Stark fields in carboxylic acid dimers. Phys Chem Chem Phys 2022; 24:5879-5885. [PMID: 35195127 DOI: 10.1039/d1cp02211c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxylic acids form exceptionally stable dimers and have been used to model proton and double proton transfer processes. The stabilization energies of the carboxylic acid dimers are very weakly dependent on the nature of substitution. However, the electric field experienced by the OH group of a particular carboxylic acid is dependent more on the nature of the substitution on the dimer partner. In general, the electric field was higher when the partner was substituted with an electron-donating group and lower with an electron-withdrawing substituent on the partner. The Stark tuning rate (Δ) of the O-H stretching vibrations calculated at the MP2/aug-cc-pVDZ level was found to be weakly dependent on the nature of substitution on the carboxylic acid. The average Stark tuning rate of O-H stretching vibrations of a particular carboxylic acid when paired with other acids was 5.7 cm-1 (MV cm-1)-1, while the corresponding average Stark tuning rate of the partner acids due to a particular carboxylic acid was 21.9 cm-1 (MV cm-1)-1. The difference in the Stark tuning rate is attributed to the primary and secondary effects of substitution on the carboxylic acid. The average Stark tuning rate for the anharmonic O-D frequency shifts is about 40-50% higher than the corresponding harmonic O-D frequency shifts calculated at the B3LYP/aug-cc-pVDZ level, much greater than the typical scaling factors used, indicating the strong anharmonicity of O-H/O-D oscillators in carboxylic acid dimers. Finally, the linear correlation observed between pKa and the electric field was used to estimate the pKa of fluoroformic acid to be around 0.9.
Collapse
Affiliation(s)
- Manjusha Boda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| |
Collapse
|
16
|
Singh RK, Pant R, Patwari GN. Ultrafast Proton-Transfer Reaction in Phenol–(Ammonia)n Clusters: An Ab Initio Molecular Dynamics Investigation. J Phys Chem B 2022; 126:1590-1597. [DOI: 10.1021/acs.jpcb.1c09700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reman Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rakesh Pant
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - G. Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
17
|
Photosynthetic reaction center variants made via genetic code expansion show Tyr at M210 tunes the initial electron transfer mechanism. Proc Natl Acad Sci U S A 2021; 118:2116439118. [PMID: 34907018 DOI: 10.1073/pnas.2116439118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine (M210) close to an essential electron transfer component via its replacement with site-specific, genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and X-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild type (WT). Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via a ∼4-ps and a ∼20-ps population to produce the charge-separated state P+HA - in all variants. Global analysis indicates that in the ∼4-ps population, P+HA - forms through a two-step process, P*→ P+BA -→ P+HA -, while in the ∼20-ps population, it forms via a one-step P* → P+HA - superexchange mechanism. The percentage of the P* population that decays via the superexchange route varies from ∼25 to ∼45% among variants, while in WT, this percentage is ∼15%. Increases in the P* population that decays via superexchange correlate with increases in the free energy of the P+BA - intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an ∼110-meV increase in the free energy of P+BA - along with a dramatic diminution of the 1,030-nm transient absorption band indicative of P+BA - formation. Collectively, this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.
Collapse
|
18
|
Sadhukhan D, Hsu PJ, Kuo JL, Patwari GN. Is Dissociation of HCl in DMSO Clusters Bistable? J Phys Chem A 2021; 125:10351-10358. [PMID: 34821498 DOI: 10.1021/acs.jpca.1c08627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dissociation of HCl embedded in dimethyl sulfoxide (DMSO) clusters was investigated by projecting the solvent electric field along the HCl bond using B3LYP-D3/6-31+G(d) and MP2/6-31+G(d,p) levels of theory. A large number of distinct structures (about 1500) consisting of up to five DMSO molecules were considered in the present work for statistical reliability. The B3LYP-D3 calculations reveal that the dissociation of HCl embedded in DMSO clusters requires a critical electric field of 138 MV cm-1 along the H-Cl bond. However, a large number of exceptions wherein the electric field values much higher than the critical electric field of 138 MV cm-1 did not result in dissociation of HCl were observed, in addition to several cases wherein the HCl dissociates with an electric field less than the critical electric field. On the other hand, the MP2 level calculations reveal that the critical electric field for HCl dissociation is about 181 MV cm-1 with almost no exceptions. A comparison of calculations carried out using the MP2 and the B3LYP-D3 levels suggests that the dissociation of HCl embedded in DMSO clusters is bistable at the B3LYP-D3 level, which is an artifact, suggesting that care must be exercised in interpreting the processes of proton transfer. The answer to the question raised as the title of this paper is NO.
Collapse
Affiliation(s)
- Debopriya Sadhukhan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
19
|
Monu, Oram BK, Bandyopadhyay B. A unified cost-effective method for the construction of reliable potential energy surfaces for H 2S and H 2O clusters. Phys Chem Chem Phys 2021; 23:18044-18057. [PMID: 34387290 DOI: 10.1039/d1cp01544c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A DFT-based methodology has been used to construct the potential energy surface of H2S clusters up to pentamers. Geometrical parameters and energetics show very good agreement with the existing experimental and high-level theoretical results. Distinct stable conformers of three dimers, six trimers, eleven tetramers and twenty-three pentamers have been identified. Both S-HS H-bond and SS interactions are identified in dimers, trimers and pentamers, while no SS interactions could be found in any of the 11 tetramer conformers. The binding energies of the most stable dimer, trimer, tetramer and pentamer are -1.66, -5.21, -8.57 and -12.54 kcal mol-1, respectively. The PES has been found to be exceedingly flat and the energy gap between the most and the least stable conformers was found to be only 0.09, 2.13, 1.65 and 1.13 kcal mol-1, from the dimer to the pentamer, respectively. The proposed method has also been used for water clusters up to the pentamer. The results obtained were found to agree closely with the existing results. Only one conformer was found for the water dimer, whereas four, five and fifteen conformers were obtained for the trimer, tetramer and pentamer, respectively. Atoms in molecular calculations were found to corroborate with the geometric and energetic results for both clusters.
Collapse
Affiliation(s)
- Monu
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur - 302017, India.
| | - Binod Kumar Oram
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur - 302017, India.
| | - Biman Bandyopadhyay
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur - 302017, India.
| |
Collapse
|
20
|
Fernández-Alarcón A, Guevara-Vela JM, Casals-Sainz JL, Francisco E, Costales A, Martín Pendás Á, Rocha-Rinza T. The nature of the intermolecular interaction in (H 2X) 2 (X = O, S, Se). Phys Chem Chem Phys 2021; 23:10097-10107. [PMID: 33876160 DOI: 10.1039/d1cp00047k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonds (HBs) are crucial non-covalent interactions in chemistry. Recently, the occurrence of an HB in (H2S)2 has been reported (Arunan et al., Angew. Chem., Int. Ed., 2018, 57, 15199), challenging the textbook view of H2S dimers as mere van der Waals clusters. We herein try to shed light on the nature of the intermolecular interactions in the H2O, H2S, and H2Se dimers via correlated electronic structure calculations, Symmetry Adapted Perturbation Theory (SAPT) and Quantum Chemical Topology (QCT). Although (H2S)2 and (H2Se)2 meet some of the criteria for the occurrence of an HB, potential energy curves as well as SAPT and QCT analyses indicate that the nature of the interaction in (H2O)2 is substantially different (e.g. more anisotropic) from that in (H2S)2 and (H2Se)2. QCT reveals that the HB in (H2O)2 includes substantial covalent, dispersion and electrostatic contributions, while the last-mentioned component plays only a minor role in (H2S)2 and (H2Se)2. The major contributions to the interactions of the dimers of H2S and H2Se are covalency and dispersion as revealed by the exchange-correlation components of QCT energy partitions. The picture yielded by SAPT is somewhat different but compatible with that offered by QCT. Overall, our results indicate that neither (H2S)2 nor (H2Se)2 are hydrogen-bonded systems, showing how the nature of intermolecular contacts involving hydrogen atoms evolves in a group down the periodic table.
Collapse
Affiliation(s)
- Alberto Fernández-Alarcón
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang X, Yan J, Zhang H, Xu Z, Zhang JZH. An electrostatic energy-based charge model for molecular dynamics simulation. J Chem Phys 2021; 154:134107. [PMID: 33832260 DOI: 10.1063/5.0043707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The interactions of the polar chemical bonds such as C=O and N-H with an external electric field were investigated, and a linear relationship between the QM/MM interaction energies and the electric field along the chemical bond is established in the range of weak to intermediate electrical fields. The linear relationship indicates that the electrostatic interactions of a polar group with its surroundings can be described by a simple model of a dipole with constant moment under the action of an electric field. This relationship is employed to develop a general approach to generating an electrostatic energy-based charge (EEC) model for molecules containing single or multiple polar chemical bonds. Benchmark test studies of this model were carried out for (CH3)2-CO and N-methyl acetamide in explicit water, and the result shows that the EEC model gives more accurate electrostatic energies than those given by the widely used charge model based on fitting to the electrostatic potential (ESP) in direct comparison to the energies computed by the QM/MM method. The MD simulations of the electric field at the active site of ketosteroid isomerase based on EEC demonstrated that EEC gave a better representation of the electrostatic interaction in the hydrogen-bonding environment than the Amber14SB force field by comparison with experiment. The current study suggests that EEC should be better suited for molecular dynamics study of molecular systems with polar chemical bonds such as biomolecules than the widely used ESP or RESP (restrained ESP) charge models.
Collapse
Affiliation(s)
- Xianwei Wang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Jinhua Yan
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Hang Zhang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Zhousu Xu
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
22
|
Chen Z, Teng Y, Mi N, Jin X, Yang D, Wang C, Wu B, Ren H, Zeng G, Gu C. Highly Efficient Hydrated Electron Utilization and Reductive Destruction of Perfluoroalkyl Substances Induced by Intermolecular Interaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3996-4006. [PMID: 33635627 DOI: 10.1021/acs.est.0c07927] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl substances (PFASs) are highly toxic synthetic chemicals, which are considered the most persistent organic contaminants in the environment. Previous studies have demonstrated that hydrated electron based techniques could completely destruct these compounds. However, in the reactions, alkaline and anaerobic conditions are generally required or surfactants are involved. Herein, we developed a simple binary composite, only including PFAS and hydrated electron source chemical. The system exhibited high efficiency for the utilization of hydrated electrons to decompose PFASs. By comparing the degradation processes of perfluorooctanoic acid (PFOA) in the presence of seven indole derivatives with different chemical properties, we could conclude that the reaction efficiency was dependent on not only the yield of hydrated electrons but also the interaction between PFOA and indole derivative. Among these derivatives, indole showed the highest degradation performance due to its relatively high ability to generate hydrated electrons, and more importantly, indole could form a hydrogen bonding with PFOA to accelerate the electron transfer. Moreover, the novel composite demonstrated high reaction efficiency even with coexisting humic substance and in a wide pH range (4-10). This study would deepen our understanding of the design of hydrated electron based techniques to treat PFAS-containing wastewater.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Teng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Na Mi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, P. R. China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Deshuai Yang
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Guixiang Zeng
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
23
|
Mishra KK, Borish K, Singh G, Panwaria P, Metya S, Madhusudhan MS, Das A. Observation of an Unusually Large IR Red-Shift in an Unconventional S-H···S Hydrogen-Bond. J Phys Chem Lett 2021; 12:1228-1235. [PMID: 33492971 DOI: 10.1021/acs.jpclett.0c03183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The S-H···S non-covalent interaction is generally known as an extremely unconventional weak hydrogen-bond in the literature. The present gas-phase spectroscopic investigation shows that the S-H···S hydrogen-bond can be as strong as any conventional hydrogen-bond in terms of the IR red-shift in the stretching frequency of the hydrogen-bond donor group. Herein, the strength of the S-H···S hydrogen-bond has been determined by measuring the red-shift (∼150 cm-1) of the S-H stretching frequency in a model complex of 2-chlorothiophenol and dimethyl sulfide using isolated gas-phase IR spectroscopy coupled with quantum chemistry calculations. The observation of an unusually large IR red-shift in the S-H···S hydrogen-bond is explained in terms of the presence of a significant amount of charge-transfer interactions in addition to the usual electrostatic interactions. The existence of ∼750 S-H···S interactions between the cysteine and methionine residues in 642 protein structures determined from an extensive Protein Data Bank analysis also indicates that this interaction is important for the structures of proteins.
Collapse
Affiliation(s)
- Kamal K Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Gulzar Singh
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Surajit Metya
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - M S Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| |
Collapse
|
24
|
Mollica Nardo V, Cassone G, Ponterio RC, Saija F, Sponer J, Tommasini M, Trusso S. Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the Centrosymmetric Indigo Molecule. J Phys Chem A 2020; 124:10856-10869. [PMID: 33306380 DOI: 10.1021/acs.jpca.0c09791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intense static electric fields can strongly perturb chemical bonds and induce frequency shifts of the molecular vibrations in the so-called vibrational Stark effect. Based on a density functional theory (DFT) approach, here, we report a detailed investigation of the influence of oriented external electric fields (OEEFs) on the dipole moment and infrared (IR) spectrum of the nonpolar centrosymmetric indigo molecule. When an OEEF as intense as ∼0.1 V Å-1 is applied, several modifications in the IR spectrum are observed. Besides the notable frequency shift of some modes, we observe the onset of new bands-forbidden by the selection rules in the zero-field case. Such a neat field-induced modification of the vibrational selection rules, and the subsequent variations of the peaks' intensities in the IR spectrum, paves the way toward the design of smart tools employing centrosymmetric molecules as proxies for mapping local electric fields. In fact, here, we show that the ratio between the IR and the Raman intensities of selected modes is proportional to the square of the local field. This indicator can be used to quantitatively measure local fields, not only in condensed matter systems under standard conditions but also in field-emitting-tip apparatus.
Collapse
Affiliation(s)
- Viviana Mollica Nardo
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Giuseppe Cassone
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Rosina Celeste Ponterio
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Franz Saija
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ing. Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Sebastiano Trusso
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
25
|
Cassone G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J Phys Chem Lett 2020; 11:8983-8988. [PMID: 33035059 DOI: 10.1021/acs.jpclett.0c02581] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proton transfer in liquid water controls acid-base chemistry, crucial enzyme reactions, and the functioning of fuel cells. Externally applied static electric fields in water are capable of dissociating molecules and transferring protons across the H-bond network. However, the impact of nuclear quantum effects (NQEs) on these fundamental field-induced phenomena has not yet been reported. By comparing state-of-the-art ab initio molecular dynamics (AIMD) and path integral AIMD simulations of water under electric fields, I show that quantum delocalization of the proton lowers the molecular ionization threshold to approximately one-third. Moreover, also the water behavior as a protonic semiconductor is considerably modified by the inclusion of NQEs. In fact, when the quantum nature of the nuclei is taken into account, the proton conductivity is ∼50% larger. This work proves that NQEs sizably affect the protolysis phenomenon and proton transfer in room-temperature liquid water.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
26
|
Kazim M, Guan L, Chopra A, Sun R, Siegler MA, Lectka T. Switching a HO···π Interaction to a Nonconventional OH···π Hydrogen Bond: A Completed Crystallographic Puzzle. J Org Chem 2020; 85:9801-9807. [PMID: 32633510 DOI: 10.1021/acs.joc.0c01121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this article, we present crystallographic and spectroscopic evidence of a tunable system wherein a HO···π interaction switches incrementally to a nonconventional OH···π hydrogen bonding (HB) interaction. More specifically, we report the synthesis of substituted forms of model system 1 to study the effects of aryl ring electronic density on the qualitative characteristics of OH···π hydrogen bonds therein. The OH stretch in experimental infrared data, in agreement with density-functional theory (DFT) calculations, shows continuous red-shifts as the adjacent ring becomes more electron rich. For example, the OH stretch of an amino-substituted analogue is red-shifted by roughly 50 cm-1 compared to the same stretch in the CF3 analogue, indicating a significantly stronger HB interaction in the former. Moreover, DFT calculations (ωB97XD/6-311+G**) predict that increasing electronic density on the adjacent top ring reduces the aryl π-OH σ* energy gap with a concomitant enhancement of the OH n-π* energy gap. Consequently, a dominant π-σ* interaction in the amino substituted analogue locks the system in the in-form while a favorable n-π* interaction reverses the orientation of the oxygen-bound hydrogen in its protonated form. Additionally, the 1H NMR data of various analogues reveal that stronger OH···π interactions in systems with electron-rich aromatic rings slow exchange of the alcoholic proton, thereby revealing coupling with the geminal proton. Finally, X-ray crystallographic analyses of a spectrum of analogues clearly visualize the three distinct stages of "switch"-starting with exclusive HO···π, to partitioned HO···π/OH···π, and finally to achieving exclusive OH···π forms. Furthermore, the crystal structure of the amino analogue reveals an interesting feature in which an extended HB network, involving two conventional (NH···O) and two nonconventional (OH···π) HBs, dimerizes and anchors the molecule in the unit cell.
Collapse
Affiliation(s)
- Muhammad Kazim
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Liangyu Guan
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Calibr-A Division of Scripps Research, 11119 N Torrey Pines Rd, La Jolla, San Diego, California 92037, United States
| | - Anant Chopra
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Roy Sun
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
27
|
The Impact of Electron Correlation on Describing QM/MM Interactions in the Attendant Molecular Dynamics Simulations of CO in Myoglobin. Sci Rep 2020; 10:8539. [PMID: 32444817 PMCID: PMC7244521 DOI: 10.1038/s41598-020-65475-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of the dispersion and electron correlation effects on describing quantum mechanics/molecular mechanics (QM/MM) interactions in QM/MM molecular dynamics (MD) simulations was explored by performing a series of up to 2 ns QM/MM MD simulations on the B states of the myoglobin-carbon monoxide (MbCO) system. The results indicate that both dispersion and electron correlations play significant roles in the simulation of the ratios of two B states (B1/B2), which suggests that the inclusion of the electron correlation effects is essential for accurately modeling the interactions between QM and MM subsystems. We found that the QM/MM interaction energies between the CO and the surroundings statistically present a linear correlation with the electric fields along the CO bond. This indicates that QM/MM interactions can be described by a simple physical model of a dipole with constant moment under the action of the electric fields. The treatment provides us with an accurate and effective approach to account for the electron correlation effects in QM/MM MD simulations.
Collapse
|
28
|
Boda M, Patwari GN. Internal electric fields in methanol [MeOH] 2-6 clusters. Phys Chem Chem Phys 2020; 22:10917-10923. [PMID: 32373804 DOI: 10.1039/c9cp04571f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water and methanol are well known solvents showing cooperative hydrogen bonding, however the differences in the hydrogen bonding pattern in water and methanol are due to the presence of the methyl group in methanol. The presence of the methyl group leads to formation of C-HO hydrogen bonds apart from the usual O-HO hydrogen bonds. The electric fields evaluated along the hydrogen bonded donor OH and CH groups reveal that the C-HO hydrogen bonds can significantly influence the structure and energetics (by about 20%) of methanol clusters. A linear Stark effect was observed on the hydrogen bonded OH groups in methanol clusters with a Stark tuning rate of 3.1 cm-1 (MV cm-1)-1 as an average behaviour. Furthermore, the Stark tuning of the OH oscillators in methanol depends on their hydrogen bonding environment wherein molecules with the DAA motif show higher rates than the rest. The present work suggests that the OH group of methanol has higher sensitivity as a vibrational probe relative to the OH group of water.
Collapse
Affiliation(s)
- Manjusha Boda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | |
Collapse
|
29
|
Sadhukhan D, Hazra A, Patwari GN. Bend-to-Break: Curvilinear Proton Transfer in Phenol-Ammonia Clusters. J Phys Chem A 2020; 124:3101-3108. [PMID: 32227953 DOI: 10.1021/acs.jpca.0c00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electric field experienced by the OH group of phenol embedded in the cluster of ammonia molecules depends on the relative orientation of the ammonia molecules, and a critical field of 236 MV cm-1 is essential for the transfer of a proton from phenol to the surrounding ammonia cluster. However, exceptions to this rule were observed, which indicates that the projection of the solvent electric field over the O-H bond is not a definite descriptor of the proton transfer reaction. Therefore, a critical electric field is necessary, but it is not a sufficient condition for the proton abstraction. This, in combination with an adequate solvation of the acceptor ammonia molecule in a triple donor motif that energetically favors the proton transfer process, constitutes necessary and sufficient conditions for the spontaneous proton abstraction. The proton transfer process in phenol-(ammonia)n clusters is statistically favored to occur away from the plane of the phenyl ring and follows a curvilinear path which includes the O-H bond elongation and out-of-plane movement of the proton. Colloquially, this proton transfer can be referred to as a "bend-to-break" process.
Collapse
Affiliation(s)
- Debopriya Sadhukhan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anirban Hazra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
30
|
Tian Y, Wang L, Fu G, Zhang C, Lu R, Dong X. Theoretical investigation on the substituent effects of the C–H/π interaction. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02595-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
32
|
Chand A, Biswal HS. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Zhang J, Li X. Hydrogen bonding in the complexes formed by arsine and H-X molecules: A theoretical study. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Wang D, Chopra P, Wategaonkar S, Fujii A. Electronic and Infrared Spectroscopy of Benzene-(H2S)n (n = 1 and 2): The Prototype of the SH-π Interaction. J Phys Chem A 2019; 123:7255-7260. [DOI: 10.1021/acs.jpca.9b02199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dandan Wang
- Department of Chemistry, Graduate school of Science, Tohoku University, Sendai 980-8578, Japan
| | - Pragya Chopra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | - Asuka Fujii
- Department of Chemistry, Graduate school of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
35
|
Liu ZY, Hu JW, Huang CH, Huang TH, Chen DG, Ho SY, Chen KY, Li EY, Chou PT. Sulfur-Based Intramolecular Hydrogen-Bond: Excited-State Hydrogen-Bond On/Off Switch with Dual Room-Temperature Phosphorescence. J Am Chem Soc 2019; 141:9885-9894. [DOI: 10.1021/jacs.9b02765] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zong-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| | - Jiun-Wei Hu
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724 Taiwan, Republic of China
| | - Chun-Hao Huang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, Republic of China
| | - Teng-Hsing Huang
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724 Taiwan, Republic of China
| | - Deng-Gao Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| | - Ssu-Yu Ho
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| | - Kew-Yu Chen
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724 Taiwan, Republic of China
| | - Elise Y. Li
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, Republic of China
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| |
Collapse
|
36
|
Xia J, Zhu Y, He Z, Wang F, Wu H. Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17068-17078. [PMID: 30998319 DOI: 10.1021/acsami.9b02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There have been growing academic interests in the study of strong organic molecule-graphene [or graphene oxide (GO)] systems, owing to their essential noncovalent nature and the consequent chemomechanical behavior within the interface. A more recent experimental measurement [ Chem 2018, 4, 896-910] reported that the melamine-GO interface exhibits a remarkable noncovalent binding strength up to ∼1 nN, even comparable with typical covalent bonds. But the poor understanding on the complex noncovalent nature in particular makes it challenging to unveil the mystery of this high-performance interface. Herein, we carry out first-principles calculations to investigate the atomistic origin of ultrastrong noncovalent interaction between the melamine molecule and the GO sheet, as well as the chemomechanical synergy in interfacial behavior. The anomalous O-H···N hydrogen bonding, formed between the triazine moiety of melamine and the -OH in GO, is found cooperatively enhanced by the pin-like NH2-π interaction, which is responsible for the strong interface. Following static pulling simulations validates the 1 nN level rupture strength and the contribution of each noncovalent interaction within the interface. Moreover, our results show that the -OH hydrogen bonding will mainly augment the interfacial adhesion strength, whereas the -NH2 group cooperating with the -OH hydrogen bonding and conjugating with the GO surface will greatly improve the interfacial shear performance. Our work deepens the understanding on the chemomechanical behaviors within the noncovalent interface, which is expected to provide new potential strategies in designing high-performance graphene-based artificial nacreous materials.
Collapse
Affiliation(s)
- Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - ZeZhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - FengChao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| |
Collapse
|
37
|
Carvalho LC, Bueno MA, de Oliveira BG. The interplay and strength of the π⋯HF, C⋯HF, F⋯HF and F⋯HC hydrogen bonds upon the formation of multimolecular complexes based on C 2H 2⋯HF and C 2H 4⋯HF small dimers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:438-455. [PMID: 30738351 DOI: 10.1016/j.saa.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The conception of this theoretical research was idealized aiming to unveil the intermolecular structures of complexes formed by acetylene or ethylene and hydrofluoric acid. At light of computational calculations by using the B3LYP/6-311++G(d,p) method, the geometries of the C2H2⋯(HF), C2H2⋯2(HF), C2H2⋯4(HF), C2H4⋯(HF), C2H4⋯2(HF) and C2H4⋯4(HF) hydrogen-bonded complexes were fully optimized. Moreover, the Post-Hartree-Fock calculations MP2/6-311++G(d,p), MP2/aug-cc-pVTZ, MP4(SDQ)/6-311++G(d,p) and CCSD/6-311++G(d,p) also were also used. The infrared spectra were analyzed in order to identify the new vibrational modes and frequencies of the proton donors shifted to red region. Through the modeling of charge-fluxes on the basis of the Quantum Theory of Atoms In Molecules (QTAIM) and, by contradicting the expectation of the hydrofluorination mechanisms of acetylene or ethylene, C⋯HF was recognized as a new type of hydrogen bond instead of the already well known π⋯H. The calculations of the Natural Bonding Orbital (NBO) and Charges derived from the Electrostatic Potential Grid-based (ChElPG) were also applied to interpret the shifting frequencies as well as measuring of the punctual charge-transfer after the formation of the complexes. Finally, the determination of the stabilization energy was carried out through the arguments of the Fock matrix in NBO basis and through the supermolecule approach. Also it is worthwhile to notice that some algebraic formulations were used for determining the electronic cooperative effect (CE).
Collapse
|
38
|
Despotović V, Kordić B, Kovačević M, Petrović S, Jović B. Investigation of N H⋯O interactions in N-monosubstituted caproamide – Ether systems: FT–IR and FT–NIR spectroscopic study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Saggu M, Fried SD, Boxer SG. Local and Global Electric Field Asymmetry in Photosynthetic Reaction Centers. J Phys Chem B 2019; 123:1527-1536. [PMID: 30668130 DOI: 10.1021/acs.jpcb.8b11458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of unidirectional electron transfer in photosynthetic reaction centers (RCs) has been widely discussed. Despite the high level of structural similarity between the two branches of pigments that participate in the initial electron transfer steps of photosynthesis, electron transfer only occurs along one branch. One possible explanation for this functional asymmetry is the differences in the electrostatic environment between the active and the inactive branches arising from the charges and dipoles of the organized protein structure. We present an analysis of electric fields in the RC of the purple bacterium Rhodobacter sphaeroides using the intrinsic carbonyl groups of the pigments as vibrational reporters whose vibrational frequency shifts can be converted into electric fields based on the vibrational Stark effect and also provide Stark effect data for plant pigments that can be used in future studies. The carbonyl stretches of the isolated pigments show pronounced Stark effects. We use these data, solvatochromism, molecular dynamics simulations, and data in the literature from IR and Raman spectra to evaluate differences in fields at symmetry-related positions, in particular at the 9-keto and 2-acetyl positions of the pigments involved in primary charge separation.
Collapse
Affiliation(s)
- Miguel Saggu
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Stephen D Fried
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Steven G Boxer
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| |
Collapse
|
40
|
Galabov B, Koleva G, Hadjieva B, Schaefer HF. π-Hydrogen Bonding Probes the Reactivity of Aromatic Compounds: Nitration of Substituted Benzenes. J Phys Chem A 2019; 123:1069-1076. [PMID: 30624929 DOI: 10.1021/acs.jpca.8b12508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The shifts of phenol O-H stretching vibration frequencies [Δν(OH)exp] upon π-hydrogen bonding with aromatic compounds is proposed as a spectroscopic probe of the reactivity of aromatic substrates toward electrophiles. A single infrared spectrum reflecting the Δν(OH)exp shift for an aromatic species in a reference solvent (CCl4 in this study) provides a good estimate of reactivity. The methodology is applied in rationalizing reactivity trends for the BF3 catalyzed nitration by methylnitrate in nitromethane of 20 aromatic reactants, including benzene, 11 methylbenzenes, several monoalkyl benzenes, the four halobenzenes, and anisole. Literature kinetic data are employed in the analysis. Very good correlations between relative rates of nitration and Δν(OH)exp are obtained. The approach is best applied to reactions, where the initial interactions between the reactants controls the rates. A new theoretical quantity, the shifts (with respect to benzene) of the molecular electrostatic potential at 1.5 Å over the centroid of the aromatic ring [Δ V(1.5)] is defined and shown to provide a good description of substituent effects on properties of the aromatic species. B3LYP density functional and MP2 ab initio methods combined with the 6-311++G(3df,2pd) basis set are employed in evaluating the Δ V(1.5) values.
Collapse
Affiliation(s)
- Boris Galabov
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Gergana Koleva
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Boriana Hadjieva
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
41
|
Nekoei AR, Vatanparast M. π-Hydrogen bonding and aromaticity: a systematic interplay study. Phys Chem Chem Phys 2019; 21:623-630. [PMID: 30540313 DOI: 10.1039/c8cp07003b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Quantum DFT calculations, corrected for long-range interactions, have been carried out on complex models formed between HF as a proton donor and 2-methylene-2H-indene derivatives as proton acceptors. Using various exocyclic X substitutions, mutual effects of the aromaticity and the strength of the resulting π-hydrogen bond (after its evaluation by AIM methodology) have been investigated. The results show that the aromaticity of 6-membered rings and the hydrogen bond strength increase upon increasing the electron-donating character of the X-substituents. Based on some aromaticity indices (HOMA, FLU, SA and NICS(1)zz), it has been shown that the formation of a π-hydrogen bond causes an increase of aromaticity of the 6-membered ring. Also, the strength of the resulting π-hydrogen bond (with an energy of about 4.0 to 7.0 kcal mol-1) depends on the aromaticity of the 6-membered ring and increases with an increase in the aromaticity. In addition, a linear relationship was found between the most negative value of the molecular electrostatic potential (Vmin) and the HOMA, which confirms that the Vmin in the region of the studied ring could be used as a new index to estimate the amount of aromaticity. The electronic properties of the complexes have also been evaluated by means of the molecular electrostatic potential (MEP), the atoms in molecules (AIM) and the natural bond orbital (NBO) analyses.
Collapse
Affiliation(s)
- A-Reza Nekoei
- Department of Chemistry, Shiraz University of Technology, Shiraz 71555-313, Iran.
| | | |
Collapse
|
42
|
Matamoros E, Cintas P, Palacios JC. Tautomerism and stereodynamics in Schiff bases from gossypol and hemigossypol with N-aminoheterocycles. Org Biomol Chem 2019; 17:6229-6250. [DOI: 10.1039/c9ob01011d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gossypol, a natural male contraceptive, can be functionalized via dynamic imine linkages, whose tautomerism has been explored in detail.
Collapse
Affiliation(s)
- Esther Matamoros
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias
- and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- 06006 Badajoz
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias
- and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- 06006 Badajoz
| | - Juan Carlos Palacios
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias
- and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- 06006 Badajoz
| |
Collapse
|
43
|
Ocola EJ, Laane J. Theoretical investigation of intramolecular π-type hydrogen bonding and internal rotation of 2-cyclopropen-1-ol, 2-cyclopropen-1-thiol and 2-cyclopropen-1-amine. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1554192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Esther J. Ocola
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Jaan Laane
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
44
|
Isaev AN. syn- and anti-H Bonds in Ammonia and Phosphine Complexes with Proton Donors. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Isaev AN. Ammonia and phosphine complexes with proton donors. Hydrogen bonding from the backside of the N(P) lone pair. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Wang Y, Yang Q, Zhao M, Wu J, Su B. Silica-Nanochannel-Based Interferometric Sensor for Selective Detection of Polar and Aromatic Volatile Organic Compounds. Anal Chem 2018; 90:10780-10785. [DOI: 10.1021/acs.analchem.8b01681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yafeng Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qian Yang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Meijiao Zhao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianmin Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Zheng D, Yuan XA, Ma H, Li X, Wang X, Liu Z, Ma J. Unexpected solvent effects on the UV/Vis absorption spectra of o-cresol in toluene and benzene: in contrast with non-aromatic solvents. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171928. [PMID: 29657794 PMCID: PMC5882718 DOI: 10.1098/rsos.171928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/09/2018] [Indexed: 06/07/2023]
Abstract
Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o-cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o-cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o-cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260-280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o-cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o-cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Ma
- Author for correspondence: Jing Ma e-mail:
| |
Collapse
|
48
|
Eijsink LE, Perdriau SCP, de Vries JG, Otten E. Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand. Dalton Trans 2018; 45:16033-16039. [PMID: 27727356 DOI: 10.1039/c6dt02478e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition products, the ketimido complexes 3, have a Brønsted basic (nitrile-derived) Ru-N fragment. This is able to deprotonate a CH2 side-arm of the pincer ligand to give ketimine complexes (4) with a de-aromatized pyridine backbone. Alternatively, the presence of a CH2 group adjacent to the nitrile functionality can lead to tautomerization to an enamido complex (5). Variable-temperature NMR studies and DFT calculations provide insight in the relative stability of these compounds and highlight the importance of their facile interconversion in the context of subsequent nitrile transformations.
Collapse
Affiliation(s)
- Linda E Eijsink
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Sébastien C P Perdriau
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Johannes G de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. and Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
49
|
Galabov B, Nikolova V, Cheshmedzhieva D, Hadjieva B, Schaefer HF. Hyperconjugative effects in π-hydrogen bonding: Theory and experiment. J Comput Chem 2017; 39:527-534. [DOI: 10.1002/jcc.25088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Boris Galabov
- Department of Chemistry and Pharmacy; University of Sofia; Sofia 1164 Bulgaria
- Center for Computational Quantum Chemistry, University of Georgia; Athens Georgia 30602
| | - Valia Nikolova
- Department of Chemistry and Pharmacy; University of Sofia; Sofia 1164 Bulgaria
| | | | - Boriana Hadjieva
- Department of Chemistry and Pharmacy; University of Sofia; Sofia 1164 Bulgaria
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia; Athens Georgia 30602
| |
Collapse
|
50
|
Kordić B, Kovačević M, Sloboda T, Vidović A, Jović B. FT-IR and NIR spectroscopic investigation of hydrogen bonding in indole-ether systems. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|