1
|
Gao Y, Yang J, Zhang Y, Zhao Y, Zhao X, Zhang X, Zhang J, Mao L, Wang H, Wang H, Wang L. In vitro and in vivo evaluation of immune response of poly(lactic acid) nanoparticles with different end groups. Int J Biol Macromol 2023; 253:126593. [PMID: 37659499 DOI: 10.1016/j.ijbiomac.2023.126593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Poly(lactic acid) (PLA) has excellent properties of biodegradability and biocompatibility, which is a US Food and Drug Administration (FDA) approved biopolymer for the preparation of safe and effective vaccines, drugs, and gene delivery systems. However, there still exists a great problem whether and how the end group affects the immune response of PLA vaccines. Therefore, the aim of this study was to evaluate the in vitro and in vivo of immune response of PLA nanoparticles (NPs) with carboxyl (COOH) and ester (COOR) end groups. In vitro experiments suggested COOH NPs could promote the higher phagocytosis and activation of bone marrow dendritic cells (BMDCs) with a lower cytotoxicity. In vivo experiments showed that COOR NPs and COOH NPs could strongly elicit IgG, IgG1, and IgG2a responses both in the short and long-terms. However, the highest T cell and B cell activation, and central memory T cells response was induced by COOH NPs. In addition, the COOH NPs could significantly enhance splenocytes proliferation and cytokines secretion. Thus, the PLA with the COOH end group shows greater potential as efficient carrier materials of NPs for enhancing cellular and humoral immune responses.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jun Yang
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Econnomi Technological Development Area (BDA), Beijing 100176, China
| | - Yaru Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xin Zhao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Xining Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Mao
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Econnomi Technological Development Area (BDA), Beijing 100176, China.
| | - Hongjun Wang
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Econnomi Technological Development Area (BDA), Beijing 100176, China.
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Marlow JB, Atkin R, Warr GG. How Does Nanostructure in Ionic Liquids and Hybrid Solvents Affect Surfactant Self-Assembly? J Phys Chem B 2023; 127:1490-1498. [PMID: 36786772 DOI: 10.1021/acs.jpcb.2c07458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Ionic liquids (ILs) have recently emerged as novel classes of solvents that support surfactant self-assembly into micelles, liquid crystals, and microemulsions. Their low volatility and wide liquid stability ranges make them attractive for many diverse applications, especially in extreme environments. However, the number of possible ion combinations makes systematic investigations both challenging and rare; this is further amplified when mixtures are considered, whether with water or other H-bonding components such as those found in deep eutectics. In this Perspective we examine what factors determine amphiphilicity, solvophobicity and solvophilicity, in ILs and related exotic environments, in what ways these differ from water, and how the underlying nanostructure of the liquid itself affects the formation and structure of micelles and other self-assembled materials.
Collapse
Affiliation(s)
- Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Pan Y, Tong K, Lin M, Zhuang W, Zhu W, Chen X, Li Q. Aggregation behaviours of sulfobetaine zwitterionic surfactants in EAN. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Li J, Chen SL, Hou Y, Yuan Q, Gan W. Revealing the mechanisms of vesicle formation with multiple spectral methods. Phys Chem Chem Phys 2022; 24:12465-12475. [PMID: 35575256 DOI: 10.1039/d2cp01183b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The investigation of the self-assembly of amphiphilic molecules and the formation of micelles/vesicles has attracted significant attention. However, in situ and real-time methods for such studies are rare. Here, a surface-sensitive second harmonic generation (SHG) technique was applied to study the formation of vesicles in solutions of an anti-cancer drug, doxorubicin (DOX), and a generally used surfactant (sodium bis (2-ethylhexyl) sulfosuccinate, AOT). With the aid of two-photon fluorescence (TPF), Rayleigh scattering and TEM, we revealed the structural evolution of the aggregated micelles/vesicles. It was found that AOT and DOX molecules rapidly aggregated and formed micelles in the solution. The residual DOX then acted as a "glue" that induced the aggregating/growing of the micelles and the transformation from aggregates to vesicles. The existence of lipid films, which was considered as the necessary intermediate state for vesicle formation, was excluded via the SHG observations, indicating that hollow shells may be directly transformed from solid aggregated micelles in the self-assembly formation of complex vesicles. The combined spectroscopic methods were also used to investigate the formation of vesicles from a commonly used lipid (i.e., 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt, DOPG) from its stacked bilayers. The swelling, curving and sealing of the DOPG bilayers for vesicle formation was monitored and clear dynamics were revealed. This work shows that the vesicle formation mechanism varies with the initial state of the surfactant/lipid molecules. It not only demonstrates the capability of the combined spectroscopic methods in investigating the aggregated systems but also provides new insight for understanding the formation of vesicles.
Collapse
Affiliation(s)
- Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Shun-Li Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Yi Hou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Agrawal NR, Omarova M, Burni F, John VT, Raghavan SR. Spontaneous Formation of Stable Vesicles and Vesicle Gels in Polar Organic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7955-7965. [PMID: 34169719 DOI: 10.1021/acs.langmuir.1c00628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The self-assembly of lipids into nanoscale vesicles (liposomes) is routinely accomplished in water. However, reports of similar vesicles in polar organic solvents like glycerol, formamide, and ethylene glycol (EG) are scarce. Here, we demonstrate the formation of nanoscale vesicles in glycerol, formamide, and EG using the common phospholipid lecithin (derived from soy). The samples we study are simple binary mixtures of lecithin and the solvent, with no additional cosurfactants or salt. Lecithin dissolves readily in the solvents and spontaneously gives rise to viscous fluids at low lipid concentrations (∼2-4%), with structures ∼200 nm detected by dynamic light scattering. At higher concentrations (>10%), lecithin forms clear gels that are strongly birefringent at rest. Dynamic rheology confirms the elastic response of gels, with their elastic modulus being ∼20 Pa at ∼10% lipid. Images from cryo-scanning electron microscopy (cryo-SEM) indicate that concentrated samples are "vesicle gels," where multilamellar vesicles (MLVs, also called "onions"), with diameters between 50 and 600 nm, are close-packed across the sample volume. This structure can explain both the elastic rheology as well as the static birefringence of the samples. The discovery of vesicles and vesicle gels in polar solvents widens the scope of systems that can be created by self-assembly. Interestingly, it is much easier to form vesicles in polar solvents than in water, and the former are stable indefinitely, whereas the latter tend to aggregate or coalesce over time. The stability is attributed to refractive index-matching between lipid bilayers and the solvents, i.e., these vesicles are relatively "invisible" and thus experience only weak attractions. The ability to use lipids (which are "green" or eco-friendly molecules derived from renewable natural sources) to thicken and form gels in polar solvents could also prove useful in a variety of areas, including cosmetics, pharmaceuticals, and lubricants.
Collapse
Affiliation(s)
- Niti R Agrawal
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Marzhana Omarova
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Faraz Burni
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Vijay T John
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Bryant SJ, Atkin R, Gradzielski M, Warr GG. Catanionic Surfactant Self-Assembly in Protic Ionic Liquids. J Phys Chem Lett 2020; 11:5926-5931. [PMID: 32628489 DOI: 10.1021/acs.jpclett.0c01608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mixing of cationic and anionic surfactants in water can result in pseudo-double-tailed catanionic surfactant ion pairs that form lamellar phases or vesicles that are unstable toward electrolyte addition. Here we show that despite the very high ionic strengths, catanionic surfactants counterintuitively form a wider variety of self-assembled aggregates in pure ionic liquids (ILs, pure salts in a liquid phase) than in water, including micelles, vesicles, and lyotropic phases. Self-assembled structures only form when the IL is sufficiently polar to drive self-assembly through electrostatic interactions and/or H-bond networks, but the catanionic effect is manifested only when the IL does not itself exhibit pronounced amphiphilic nanostructure. This enables the type of catanionic aggregate formed to be designed by changing the hydrogen bonds between the ions through variation of the structures of the cation and anion. These results reveal an entirely new way of controlling catanionic surfactant self-assembly under nonaqueous and high-salt conditions.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Michael Gradzielski
- Institute for Chemistry, Technische Universität Berlin, Strasse des 17 Juni 124, D-10623 Berlin, Germany
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
|
8
|
Lu T, Hu F, Yue H, Yang T, Ma G. The incorporation of cationic property and immunopotentiator in poly (lactic acid) microparticles promoted the immune response against chronic hepatitis B. J Control Release 2020; 321:576-588. [PMID: 32112853 DOI: 10.1016/j.jconrel.2020.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Biodegradable microparticles (MPs) as vaccine adjuvants have sparked the passion of researchers in recent decades. However, it is still a huge challenge to develop an efficient vaccine delivery system to reverse chronic hepatitis B (CHB). Herein, we integrated a physiochemical merit and an immunopotentiator property in poly (lactic acid) (PLA) MPs and verified the therapeutic effect on CHB model mice. We prepared uniform MPs with insertion of cationic lipid didodecyldimethylammonium bromide (DDAB), which endowed a physiochemical merit for MPs. Such a DDAB-PLA (DP) group raised the recruitment of immune cells to the injection site along with the secretion of chemokines and pro-inflammatory cytokines, promoting the activation of antigen-presenting cells (APCs). Further combination of stimulator of interferon genes (STING) agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) (DP-D) elevated 5.8-fold higher interferon regulatory factor 7 (IRF-7) expression compared to that for DP group. The DP group showed preferred lysosome escape advantage, which was in line with the DMXAA release behavior and the intracellular target of DMXAA. In addition, DP-D vaccine augmented the IFN-γ secreting splenocytes and motivated Th1-biased antibodies in a more efficient way than that for the DP group. In the CHB model, the MPs based vaccines achieved 50% HBsAg seroconversion rate, and HBcAg in the liver also got a reduction. DP-D produced higher amount of memory T/B cells to confer protection in a sustained manner. Present work thus provided a promising strategy, via integrating a fine-tuned physiochemical property and an immunopotentiator virtue in the MPs, which synergistically reinforced both humoral and cellular immune responses against CHB.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fumin Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 211816, PR China.
| |
Collapse
|
9
|
Catanionic and chain-packing effects on surfactant self-assembly in the ionic liquid ethylammonium nitrate. J Colloid Interface Sci 2019; 540:515-523. [DOI: 10.1016/j.jcis.2019.01.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/19/2022]
|
10
|
Sprakel L, Schuur B. Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Mal A, Bag S, Ghosh S, Moulik SP. Physicochemistry of CTAB-SDS interacted catanionic micelle-vesicle forming system: An extended exploration. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Pyne A, Kundu S, Banerjee P, Sarkar N. Unveiling the Aggregation Behavior of Doxorubicin Hydrochloride in Aqueous Solution of 1-Octyl-3-methylimidazolium Chloride and the Effect of Bile Salt on These Aggregates: A Microscopic Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3296-3306. [PMID: 29474788 DOI: 10.1021/acs.langmuir.8b00029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this article, we have unveiled the aggregation behavior of a potent chemotherapeutic drug, doxorubicin hydrochloride (Dox) in a well-known imidazolium based surface active ionic liquid (SAIL), 1-octyl-3-methylimidazolium chloride (C8mimCl). The aggregates formed by Dox in C8mimCl have been characterized using dynamic light scattering (DLS), fluorescence lifetime imaging microscopy (FLIM), high-resolution transmission electron microscopy (HR-TEM), analytical transmission electron microscopy (analytical TEM), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) measurements. It is found that Dox forms large spherical aggregates in the presence of C8mimCl SAIL. We have also explored the driving force behind this aggregation behavior of Dox in C8mimCl. Furthermore, it is observed that in the presence of a common bile salt, sodium cholate (NaCh), Dox/C8mimCl spherical aggregates disrupt to form rodlike fibrillar aggregates. Therefore, formation of spherical aggregates and also its disruption into rodlike fibrillar aggregates have been performed, and this is expected to open a new scope for the design of a new generation smart drug delivery system where the drug itself aggregates to form the delivery system.
Collapse
Affiliation(s)
- Arghajit Pyne
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| | - Sangita Kundu
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| | - Pavel Banerjee
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| | - Nilmoni Sarkar
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| |
Collapse
|
13
|
Rivera JL, Molina-Rodríguez L, Ramos-Estrada M, Navarro-Santos P, Lima E. Interfacial properties of the ionic liquid [bmim][triflate] over a wide range of temperatures. RSC Adv 2018; 8:10115-10123. [PMID: 35540813 PMCID: PMC9078723 DOI: 10.1039/c8ra00915e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 12/25/2022] Open
Abstract
We carried out molecular dynamics simulations of the liquid/vacuum equilibrium of the ionic liquid [bmim][triflate] in a wide range of temperatures (323.15 to 573.15 K). The results showed liquid phases with high densities even at temperatures close to the decomposition temperature of the liquid. The density and surface tension behaviors are linear across this wide range of temperatures, which is an extension of the behaviors of these systems at low temperatures, where these properties have been experimentally measured. The interfacial region shows peaks of adsorption of the ions; they are ordered, with the alkyl chains of the [bmim] cations pointing out of the liquid, and the tailing angle of the chains becomes 90° at higher temperatures. The alkyl chains are part of the outermost interfacial region, where intra- and intermolecular tangential forces are in equilibrium; thus, they do not contribute to the total surface tension. Unlike simpler organic liquids, the surface tension is composed of positive normal contributions of intermolecular interactions; these are almost in equilibrium with the negative normal contributions of intramolecular interactions, which are mainly vibrations of the distance and the angle of valence. The pressure profiles show that the molecules are in 'crushed' conformations internally in the bulk liquid and even more so in the normal direction at the interface. The total pressure profiles show values with physical meaning, where the tangential peaks show higher values than normal pressures and give rise to the surface tension. Short cutoff radii for the calculation of intermolecular forces (less than 16.5 Å) produce a system that is not mechanically stable in the region of the bulk liquid (confirmed by radial distribution function calculations); this produces a difference between the normal pressure and the average of the tangential pressures, which affects the calculation of the surface tension due to overestimation by up to 20% when using the global expression, which is extensively used for the calculation of surface tension. The use of a sufficiently long cutoff radius avoids these mechanical balance problems.
Collapse
Affiliation(s)
- José L Rivera
- Graduate School of Physics Engineering, Universidad Michoacana de San Nicolás de Hidalgo Morelia C.P. 58000 Michoacán Mexico
- Faculty of Chemical Engineering, Universidad Michoacana de San Nicolás de Hidalgo Morelia C.P. 58000 Michoacán Mexico
| | - Luis Molina-Rodríguez
- Faculty of Chemical Engineering, Universidad Michoacana de San Nicolás de Hidalgo Morelia C.P. 58000 Michoacán Mexico
| | - Mariana Ramos-Estrada
- Faculty of Chemical Engineering, Universidad Michoacana de San Nicolás de Hidalgo Morelia C.P. 58000 Michoacán Mexico
| | - Pedro Navarro-Santos
- Institute of Chemical Biology Sciences, Universidad Michoacana de San Nicolás de Hidalgo Morelia C.P. 58000 Michoacán Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior S/N, CU, Del. Coyoacán Ciudad de México Mexico
| |
Collapse
|
14
|
Pei Y, Hao L, Ru J, Zhao Y, Wang H, Bai G, Wang J. The self-assembly of ionic liquids surfactants in ethanolammonium nitrate ionic liquid. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Chowdhury MP, Chakraborty G, Bardhan S, Saha SK. Polarity tuned unusual six-step self assembly of didodecyldimethyl ammonium bromide in acetonitrile. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Kong Q, Zhuang W, Li G, Jiang Q, Wang Y. Cation–anion interaction-directed formation of functional vesicles and their biological application for nucleus-specific imaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj01503a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for the construction of counterion-induced vesicles in aqueous media has been described. Furthermore, the imidazolium salt with an AIE fluorophore exhibits highly specific nucleus imaging in the living cells.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
17
|
Li Q, Yao M, Yue X, Chen X. Effects of a Spacer on the Phase Behavior of Gemini Surfactants in Ethanolammonium Nitrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4328-4336. [PMID: 28415837 DOI: 10.1021/acs.langmuir.7b00927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aggregation behavior of quaternary ammonium gemini surfactants (12-s-12) in a protic ionic liquid, ethanolammonium nitrate (EOAN), was investigated by small-angle X-ray scattering, freeze-fracture transmission electron microscopy, polarized optical microscopy, and rheological measurements. The rarely reported nonaqueous two phases in the ionic liquid were observed at lower 12-s-12 concentrations. The upper phase was composed of micelles, whereas only the surfactant unimers or multimers were detected in the low phase. At higher 12-s-12 concentrations, different aggregates were formed. The lamellar phase was observed in the 12-2-12/EOAN system, whereas the normal hexagonal phases in 12-s-12/EOAN (s = 3, 4, 5, 6, 8) systems and the micellar phase in the 12-10-12/EOAN system were observed. Such a dramatic phase transition induced by the spacer chain length was due to the unique solvent characteristics of EOAN compared to those of water and its counterpart ethylammonium nitrate.
Collapse
Affiliation(s)
- Qintang Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Meihuan Yao
- School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang 453007, China
| | - Xiu Yue
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi 830011, China
| | - Xiao Chen
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| |
Collapse
|
18
|
Wang X, Zhang Z, Cao Y, Hao J. Ionogels of pseudogemini supra-amphiphiles in ethylammonium nitrate: Structures and properties. J Colloid Interface Sci 2017; 491:64-71. [DOI: 10.1016/j.jcis.2016.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/28/2022]
|
19
|
Bryant SJ, Wood K, Atkin R, Warr GG. Effect of protic ionic liquid nanostructure on phospholipid vesicle formation. SOFT MATTER 2017; 13:1364-1370. [PMID: 28111683 DOI: 10.1039/c6sm02652d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The formation of bilayer-based lyotropic liquid crystals and vesicle dispersions by phospholipids in a range of protic ionic liquids has been investigated by polarizing optical microscopy using isothermal penetration scans, differential scanning calorimetry, and small angle X-ray and neutron scattering. The stability and structure of both lamellar phases and vesicle dispersions is found to depend primarily on the underlying amphiphilic nanostructure of the ionic liquid itself. This finding has significant implications for the use of ionic liquids in soft and biological materials and for biopreservation, and demonstrates how vesicle structure and properties can be controlled through selection of cation and anion. For a given ionic liquid, systematic trends in bilayer thickness, chain-melting temperature and enthalpy increase with phospholipid acyl chain length, paralleling behaviour in aqueous systems.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Chemistry, F11, The University of Sydney, NSW 2006, Australia.
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232, Australia
| | - Rob Atkin
- Discipline of Chemistry, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Gregory G Warr
- School of Chemistry, F11, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
20
|
Drücker P, Rühling A, Grill D, Wang D, Draeger A, Gerke V, Glorius F, Galla HJ. Imidazolium Salts Mimicking the Structure of Natural Lipids Exploit Remarkable Properties Forming Lamellar Phases and Giant Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1333-1342. [PMID: 27935708 DOI: 10.1021/acs.langmuir.6b03182] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tailor-made ionic liquids based on imidazolium salts have recently attracted a large amount of attention because of their extraordinary properties and versatile functionality. An intriguing ability to interact with and stabilize membranes has already been reported for 1,3-dialkylimidazolium compounds. We now reveal further insights into the field by investigating 1,3-dimethyl-4,5-dialkylimidazolium (Cn-IMe·HI, n = 7, 11, 15) and 1,3-dibenzyl-4,5-dialkylimidazolium (Cn-IBn·HBr, n = 7, 11, 15) salts. Diverse alkyl chain lengths and headgroups differing in their steric demand were employed for the membrane interface interaction with bilayer membranes imitating the cellular plasma membrane. Membrane hydration properties and domain fluidization were analyzed by fluorescent bilayer probes in direct comparison to established model membranes in a buffered aqueous environment, which resembles the salt content and pH of the cytosol of living cells. Membrane binding and insertion was analyzed via a quartz crystal microbalance and confocal laser scanning microscopy. We show that short-chain 4,5-dialkylimidazolium salts with a bulky headgroup were able to disintegrate membranes. Long-chain imidazolium salts form bilayer membrane vesicles spontaneously and autonomously without the addition of other lipids. These 4,5-dialkylimidazolium salts are highly eligible for further biochemical engineering and drug delivery.
Collapse
Affiliation(s)
- Patrick Drücker
- Institute of Biochemistry, University of Münster , Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
- Department of Cell Biology, Institute of Anatomy, University of Bern , Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Andreas Rühling
- Organic Chemistry Institute, University of Münster , Corrensstrasse 40, D-48149 Münster, Germany
| | - David Grill
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster , Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Da Wang
- Institute of Biochemistry, University of Münster , Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern , Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster , Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Frank Glorius
- Organic Chemistry Institute, University of Münster , Corrensstrasse 40, D-48149 Münster, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, University of Münster , Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| |
Collapse
|
21
|
Russina O, Triolo A. Ionic Liquids and Neutron Scattering. NEUTRON SCATTERING - APPLICATIONS IN BIOLOGY, CHEMISTRY, AND MATERIALS SCIENCE 2017. [DOI: 10.1016/b978-0-12-805324-9.00004-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Hao LS, Jia YF, Liu Q, Wang Y, Xu GY, Nan YQ. Influences of molecular structure of the cationic surfactant, additives and medium on the micellization of cationic/anionic surfactant mixed systems. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Mariani A, Dattani R, Caminiti R, Gontrani L. Nanoscale Density Fluctuations in Ionic Liquid Binary Mixtures with Nonamphiphilic Compounds: First Experimental Evidence. J Phys Chem B 2016; 120:10540-10546. [DOI: 10.1021/acs.jpcb.6b07295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Mariani
- Department
of Chemistry, “La Sapienza” University of Rome, Piazzale
Aldo Moro 5, 00185 Rome, Italy
| | - Rajeev Dattani
- Beamline
ID02, ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| | - Ruggero Caminiti
- Department
of Chemistry, “La Sapienza” University of Rome, Piazzale
Aldo Moro 5, 00185 Rome, Italy
- Centro
di Ricerca per le Nanotecnologie Applicate all’Ingegneria,
Laboratorio per le Nanotecnologie e le Nanoscienze, “La Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Gontrani
- Department
of Chemistry, “La Sapienza” University of Rome, Piazzale
Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
24
|
Bryant SJ, Atkin R, Warr GG. Spontaneous vesicle formation in a deep eutectic solvent. SOFT MATTER 2016; 12:1645-1648. [PMID: 26701210 DOI: 10.1039/c5sm02660a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Solvent penetration experiments and small-angle X-ray scattering reveal that phospholipids dissolved in a deep eutectic solvent (DES) spontaneously self-assemble into vesicles above the lipid chain melting temperature. This means DESs are one of the few nonaqueous solvents that mediate amphiphile self-assembly, joining a select set of H-bonding molecular solvents and ionic liquids.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia2006.
| | | | | |
Collapse
|
25
|
Bharmoria P, Kumar A. Unusually high thermal stability and peroxidase activity of cytochrome c in ionic liquid colloidal formulation. Chem Commun (Camb) 2016; 52:497-500. [DOI: 10.1039/c5cc05722a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All ionic liquid-based colloidal formulation as a thermally stable medium for enzyme biocatalysis.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- AcSIR
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavangar-364002
- India
| | - Arvind Kumar
- AcSIR
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavangar-364002
- India
- Salt and Marine Chemicals Division
| |
Collapse
|
26
|
Kang X, Ma X, Zhang J, Xing X, Mo G, Wu Z, Li Z, Han B. Formation of large nanodomains in liquid solutions near the phase boundary. Chem Commun (Camb) 2016; 52:14286-14289. [DOI: 10.1039/c6cc08015d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large nanodomains were formed in liquid solutions near the phase separation point where the size of nanodomains increased dramatically.
Collapse
Affiliation(s)
- Xinchen Kang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xiaoxue Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xueqing Xing
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Guang Mo
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhonghua Wu
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhihong Li
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
27
|
Murphy T, Callear SK, Warr GG, Atkin R. Dissolved chloride markedly changes the nanostructure of the protic ionic liquids propylammonium and ethanolammonium nitrate. Phys Chem Chem Phys 2016; 18:17169-82. [DOI: 10.1039/c5cp06947e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bulk nanostructure of 15 mol% propylammonium chloride (PACl) dissolved in propylammonium nitrate (PAN) and 15 mol% ethanolammonium chloride (EtACl) in ethanolammonium nitrate (EtAN) has been determined using neutron diffraction with empirical potential structure refinement fits.
Collapse
Affiliation(s)
- Thomas Murphy
- Priority Research Centre for Advanced Fluids and Interfaces
- The University of Newcastle
- Callaghan
- Australia
| | | | | | - Rob Atkin
- Priority Research Centre for Advanced Fluids and Interfaces
- The University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
28
|
Li Q, Wang X, Yue X, Chen X. Unique Phase Behaviors in the Gemini Surfactant/EAN Binary System: The Role of the Hydroxyl Group. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13511-13518. [PMID: 26634877 DOI: 10.1021/acs.langmuir.5b03809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hydroxyl group in the spacer of a cationic Gemini surfactant (12-3OH-12) caused dramatic changes of the phase behaviors in a protic ionic liquid (EAN). Here, the effects of the hydroxyl group on micellization and lyotropic liquid crystal formation were investigated through the surface tension, small-angle X-ray scattering, polarized optical microscopy, and rheological measurements. With the hydroxyl group in the spacer, the critical micellization concentration of 12-3OH-12 was found to be lower than that of the homologue without hydroxyl (12-3-12) and the 12-3OH-12 molecules packed more densely at the air/EAN interface. It was then interesting to observe a coexistence of two separated phases at wide concentration and temperature ranges in this 12-3OH-12/EAN system. Such a micellar phase separation was rarely observed in the ionic surfactant binary system. With the increase of surfactant concentration, the reverse hexagonal and bicontinuous cubic phases appeared in sequence, whereas only a reverse hexagonal phase was found in 12-3-12/EAN system. But, the hexagonal phases formed with 12-3OH-12 exhibited lower viscoelasticity and thermostability than those observed in 12-3-12/EAN system. Such unique changes in phase behaviors of 12-3OH-12 were ascribed to their enhanced solvophilic interactions of 12-3OH-12 and relatively weak solvophobic interactions in EAN.
Collapse
Affiliation(s)
- Qintang Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan, 250100, China
| | - Xudong Wang
- Drilling Engineering and Technology Company, Shengli Petroleum Engineering Corporation Limited of SINOPEC , Dongying, 257064, China
| | | | - Xiao Chen
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan, 250100, China
| |
Collapse
|
29
|
Dolan A, Atkin R, Warr GG. The origin of surfactant amphiphilicity and self-assembly in protic ionic liquids. Chem Sci 2015; 6:6189-6198. [PMID: 30090234 PMCID: PMC6054141 DOI: 10.1039/c5sc01202c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022] Open
Abstract
The nature of amphiphilic self-assembly in alkylammonium protic ionic liquids (PILs) is examined by systematically varying the ionic structure and composition, H-bonding capacity, and nanostructure of both the PIL and micelle-forming cationic surfactant, and contrasted with self-assembly in water. Using small-angle neutron scattering, micelle structure and concentrations are determined for primary - quaternary dodecylammonium salts in nitrate and thiocyanate PILs. While the solvophobic driving force depends only on the average polarity of the PIL, surprisingly strong, specific interactions of the head group and counterion with the PIL H-bond network are found. This suggests the importance of developing designer amphiphiles for assembling soft matter structures in PILs.
Collapse
Affiliation(s)
- Andrew Dolan
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia .
| | - Rob Atkin
- Centre for Advanced Particle Processing and Transport , Chemistry Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Gregory G Warr
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia .
| |
Collapse
|
30
|
Wang X, Hao J. Ionogels of Sugar Surfactant in Ethylammonium Nitrate: Phase Transition from Closely Packed Bilayers to Right-Handed Twisted Ribbons. J Phys Chem B 2015; 119:13321-9. [DOI: 10.1021/acs.jpcb.5b07712] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaolin Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| |
Collapse
|
31
|
Greaves TL, Drummond CJ. Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications. Chem Rev 2015; 115:11379-448. [PMID: 26426209 DOI: 10.1021/acs.chemrev.5b00158] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tamar L Greaves
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
32
|
|
33
|
Affiliation(s)
- Robert Hayes
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Gregory G. Warr
- School
of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia
| | - Rob Atkin
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| |
Collapse
|
34
|
Gao J, Ndong RS, Shiflett MB, Wagner NJ. Creating nanoparticle stability in ionic liquid [C4mim][BF4] by inducing solvation layering. ACS NANO 2015; 9:3243-3253. [PMID: 25758381 DOI: 10.1021/acsnano.5b00354] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The critical role of solvation forces in dispersing and stabilizing nanoparticles and colloids in 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim][BF4] is demonstrated. Stable silica nanoparticle suspensions over 60 wt % solids are achieved by particle surface chemical functionalization with a fluorinated alcohol. A combination of techniques including rheology, dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle neutron scattering (SANS) are employed to determine the mechanism of colloidal stability. Solvation layers of ∼5 nm at room temperature are measured by multiple techniques and are thought to be initiated by hydrogen bonds between the anion [BF4](-) and the fluorinated group on the surface coating. Inducing structured solvation layering at particle surfaces through hydrogen bonding is demonstrated as a method to stabilize particles in ionic liquids.
Collapse
Affiliation(s)
- Jingsi Gao
- †Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rose S Ndong
- †Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mark B Shiflett
- ‡Central Research and Development, DuPont Company, Wilmington, Delaware 19880, United States
| | - Norman J Wagner
- †Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
35
|
Klee A, Prevost S, Gasser U, Gradzielski M. Understanding and Optimizing Microemulsions with Magnetic Room Temperature Ionic Liquids (MRTILs). J Phys Chem B 2015; 119:4133-42. [DOI: 10.1021/jp512545c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Andreas Klee
- Stranski-Laboratorium
für Physikalische und Theoretische Chemie, Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr.
TC7, 10623 Berlin, Germany
| | - Sylvain Prevost
- Stranski-Laboratorium
für Physikalische und Theoretische Chemie, Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr.
TC7, 10623 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Urs Gasser
- Laboratory
for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Michael Gradzielski
- Stranski-Laboratorium
für Physikalische und Theoretische Chemie, Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr.
TC7, 10623 Berlin, Germany
| |
Collapse
|
36
|
Wang H, Tan B, Zhang H, Wang J. pH triggered self-assembly structural transition of ionic liquids in aqueous solutions: smart use of pH-responsive additives. RSC Adv 2015. [DOI: 10.1039/c5ra12010a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pH responsive fluids consisting of single-chain ionic liquid surfactants [Cnmim]Br (n = 12, 14) and hydrotropes can reversibly transform from spherical micelles to vesicles then to spherical micelles again with the change of the solution pH value.
Collapse
Affiliation(s)
- Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| | - Bo Tan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| | - Hucheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| |
Collapse
|
37
|
López-Barrón CR, Li D, Wagner NJ, Caplan JL. Triblock Copolymer Self-Assembly in Ionic Liquids: Effect of PEO Block Length on the Self-Assembly of PEO–PPO–PEO in Ethylammonium Nitrate. Macromolecules 2014. [DOI: 10.1021/ma501238w] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos R. López-Barrón
- ExxonMobil
Chemical Company, Baytown Technology and Engineering Complex, Baytown, Texas 77520, United States
| | | | | | | |
Collapse
|
38
|
Zhang J, Peng L, Han B. Amphiphile self-assemblies in supercritical CO2 and ionic liquids. SOFT MATTER 2014; 10:5861-5868. [PMID: 25000970 DOI: 10.1039/c4sm00890a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Supercritical (sc) CO2 and ionic liquids (ILs) are very attractive green solvents with tunable properties. Using scCO2 and ILs as alternatives of conventional solvents (water and oil) for forming amphiphile self-assemblies has many advantages. For example, the properties and structures of the amphiphile self-assemblies in these solvents can be easily modulated by tuning the properties of solvents; scCO2 has excellent solvation power and mass-transfer characteristics; ILs can dissolve both organic and inorganic substances and their properties are designable to satisfy the requirements of various applications. Therefore, the amphiphile self-assemblies in scCO2 and ILs have attracted considerable attention in recent years. This review describes the advances of using scCO2 or/and ILs as amphiphile self-assembly media in the last decade. The amphiphile self-assemblies in scCO2 and ILs are first reviewed, followed by the discussion on combination of scCO2 and ILs in creating microemulsions or emulsions. Some future directions on the amphiphile self-assemblies in scCO2 and ILs are highlighted.
Collapse
Affiliation(s)
- Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, China.
| | | | | |
Collapse
|
39
|
Wang H, Tan B, Wang J, Li Z, Zhang S. Anion-based pH responsive ionic liquids: design, synthesis, and reversible self-assembling structural changes in aqueous solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3971-3978. [PMID: 24673329 DOI: 10.1021/la500030k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The creation of pH responsive materials that undergo morphological transitions between micelle and vesicle induced by solution pH change is of great importance for their potential application in drug delivery and biochemical engineering. Here, we have developed a series of 18 pH responsive ionic liquids composed of 1-alkyl-3-methylimidazolium cation, [C(n)mim](+) (n = 4, 6, 8, 10, 12, 14), and different pH responsive anions such as potassium phthalic acid ([C6H4COOKCOO](-)), sodium sulfosalicylic acid ([C6H3OHCOOSO3Na](-)), and sodium m-carboxylbenzenesulfonate ([C6H4COOSO3Na](-)). The aggregation behavior and self-assembly structures of the ILs in aqueous solution have been investigated by surface tension, dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, and nuclear magnetic resonance spectroscopy. It was found for the first time that single tail ionic liquids, [C(n)mim]X (n = 12 and 14, X = [C6H4COOKCOO], [C6H3OHCOOSO3Na], and [C6H4COOSO3Na]) could form vesicles without any additives, and reversible transition was observed between spherical micelles and vesicles with the change of solution pH value. The transition in self-assembly structures is suggested to be driven by the variation in molecular structure and hydrophilicity/hydrophobicity of anions of the ILs.
Collapse
Affiliation(s)
- Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | | | | | | | | |
Collapse
|
40
|
Li Q, Wang X, Yue X, Chen X. Phase transition of a quaternary ammonium Gemini surfactant induced by minor structural changes of protic ionic liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1522-1530. [PMID: 24455981 DOI: 10.1021/la404826k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aggregation behaviors of a Gemini surfactant [C12H25(CH3)2N(+)(CH2)2N(+)(CH3)2C12H25]Br2(-) (12-2-12) in two protic ionic liquids (PILs), propylammonium nitrate (PAN) and butylammonium nitrate (BAN), were investigated by means of several experimental techniques including small and wide-angle X-ray scattering, the polarized optical microscopy and the rheological measurement. Compared to those in ethylammonium nitrate (EAN), the minor structural changes with only one or two methylene units (-CH2-) increase in cationic chain length of PIL, result in a dramatic phase transition of formed aggregates. The critical micellization concentration was increased in PAN, while no micelle formation was detected in BAN. A normal hexagonal phase was observed in the 12-2-12/PAN system, while the normal hexagonal, bicontinuous cubic, and lamellar phases were mapped in the 12-2-12/BAN system. Such aggregation behavior changes can be ascribed to the weaker solvophobic interactions of 12-2-12 in PAN and BAN. The unique molecular structure of 12-2-12 is also an important factor to highlight such a dramatic phase transition due to the PIL structure change.
Collapse
Affiliation(s)
- Qintang Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University Ministry of Education , Jinan, 250100, China
| | | | | | | |
Collapse
|
41
|
Wang X, Long P, Dong S, Hao J. First fluorinated zwitterionic micelle with unusually slow exchange in an ionic liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14380-14385. [PMID: 24175708 DOI: 10.1021/la402937w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The micellization of a fluorinated zwitterionic surfactant in ethylammonium nitrate (EAN) was investigated. The freeze-fracture transmission electron microscope (FF-TEM) observations confirm the formation of spherical micelles with the average diameter 25.45 ± 3.74 nm. The micellization is an entropy-driven process at low temperature but an enthalpy-driven process at high temperature. Two sets of (19)F NMR signals above the critical micelle concentration (cmc) indicate that the unusually slow exchange between micelles and monomers exists in ionic liquid; meanwhile, surfactant molecules are more inclined to stay in micelle states instead of monomer states at higher concentration. Through the analysis of the half line width (Δν1/2), we can obtain the kinetic information of fluorinated zwitterionic micellization in an ionic liquid.
Collapse
Affiliation(s)
- Xiaolin Wang
- Key Laboratory of Colloid and Interface Chemistry and Key Laboratory of Special Aggregated Materials, Shandong University , Ministry of Education, Jinan 250100, China
| | | | | | | |
Collapse
|
42
|
Wang H, Zhang L, Wang J, Li Z, Zhang S. The first evidence for unilamellar vesicle formation of ionic liquids in aqueous solutions. Chem Commun (Camb) 2013; 49:5222-4. [DOI: 10.1039/c3cc41908h] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Rao KS, So S, Kumar A. Vesicles and reverse vesicles of an ionic liquid in ionic liquids. Chem Commun (Camb) 2013; 49:8111-3. [DOI: 10.1039/c3cc44462g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|