1
|
Diao W, Farrell JD, Wang B, Ye F, Wang Z. Preorganized Internal Electric Field Promotes a Double-Displacement Mechanism for the Adenine Excision Reaction by Adenine DNA Glycosylase. J Phys Chem B 2023; 127:8551-8564. [PMID: 37782825 DOI: 10.1021/acs.jpcb.3c04928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Adenine DNA glycosylase (MutY) is a monofunctional glycosylase, removing adenines (A) misinserted opposite 8-oxo-7,8-dihydroguanine (OG), a common product of oxidative damage to DNA. Through multiscale calculations, we decipher a detailed adenine excision mechanism of MutY that is consistent with all available experimental data, involving an initial protonation step and two nucleophilic displacement steps. During the first displacement step, N-glycosidic bond cleavage is accompanied by the attack of the carboxylate group of residue Asp144 at the anomeric carbon (C1'), forming a covalent glycosyl-enzyme intermediate to stabilize the fleeting oxocarbenium ion. After departure of the excised base, water nucleophiles can be recruited to displace Asp144, completing the catalytic cycle with retention of stereochemistry at the C1' position. The two displacement reactions are found to mostly involve the movement of the oxocarbenium ion, occurring with large charge reorganization and thus sensitive to the internal electric field (IEF) exerted by the polar protein environment. Intriguingly, we find that the negatively charged carboxylate group is a good nucleophile for the oxocarbenium ion, yet an unactivated water molecule is not, and that the electric field catalysis strategy is used by the enzyme to enable its unique double-displacement reaction mechanism. A strong IEF, pointing toward 5' direction of the substrate sugar ring, greatly facilitates the second displacement reaction at the expense of elevating the barrier of the first one, thereby allowing both reactions to occur. These findings not only increase our understanding of the strategies used by DNA glycosylases to repair DNA lesions, but also have important implications for how internal/external electric field can be applied to modulate chemical reactions.
Collapse
Affiliation(s)
- Wenwen Diao
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - James D Farrell
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Zhang L, Ding X, Kratka CR, Levine A, Lee JK. Gas Phase Experimental and Computational Studies of AlkB Substrates: Intrinsic Properties and Biological Implications. J Org Chem 2023; 88:13115-13124. [PMID: 37651719 DOI: 10.1021/acs.joc.3c01335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The gas phase acidity and proton affinity of nucleobases that are substrates for the DNA repair enzyme AlkB have been examined using both computational and experimental methods. These thermochemical values have not heretofore been measured and provide experimental data that help benchmark the theoretical results. We also use our gas phase results to lend insight into the AlkB mechanism, particularly in terms of the role AlkB plays in DNA repair, versus its complementary enzyme AlkA.
Collapse
Affiliation(s)
- Lanxin Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Xiao Ding
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Catherine R Kratka
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Alec Levine
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
3
|
Zhang L, Kiruba GSM, Lee JK. Gas-Phase Studies of Hypoxanthine-Guanine-(Xanthine) Phosphoribosyltransferase (HG(X)PRT) Substrates. J Org Chem 2023. [PMID: 37220241 DOI: 10.1021/acs.joc.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The gas-phase acidity and proton affinity of nucleobases that are substrates for the enzyme Plasmodium falciparum hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (Pf HG(X)PRT) have been examined using both computational and experimental methods. These thermochemical values have not heretofore been measured and provide experimental data to benchmark the theoretical results. Pf HG(X)PRT is a target of interest in the development of antimalarials. We use our gas-phase results to lend insight into the Pf HG(X)PRT mechanism, and also propose kinetic isotope studies that could potentially differentiate between possible mechanisms.
Collapse
Affiliation(s)
- Lanxin Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - G S M Kiruba
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
4
|
Lotsof ER, Krajewski AE, Anderson-Steele B, Rogers J, Zhang L, Yeo J, Conlon SG, Manlove AH, Lee JK, David SS. NEIL1 Recoding due to RNA Editing Impacts Lesion-Specific Recognition and Excision. J Am Chem Soc 2022; 144:14578-14589. [PMID: 35917336 DOI: 10.1021/jacs.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A-to-I RNA editing is widespread in human cells but is uncommon in the coding regions of proteins outside the nervous system. An unusual target for recoding by the adenosine deaminase ADAR1 is the pre-mRNA of the base excision DNA repair enzyme NEIL1 that results in the conversion of a lysine (K) to arginine (R) within the lesion recognition loop and alters substrate specificity. Differences in base removal by unedited (UE, K242) vs edited (Ed, R242) NEIL1 were evaluated using a series of oxidatively modified DNA bases to provide insight into the chemical and structural features of the lesion base that impact isoform-specific repair. We find that UE NEIL1 exhibits higher activity than Ed NEIL1 toward the removal of oxidized pyrimidines, such as thymine glycol, uracil glycol, 5-hydroxyuracil, and 5-hydroxymethyluracil. Gas-phase calculations indicate that the relative rates in excision track with the more stable lactim tautomer and the proton affinity of N3 of the base lesion. These trends support the contribution of tautomerization and N3 protonation in NEIL1 excision catalysis of these pyrimidine base lesions. Structurally similar but distinct substrate lesions, 5-hydroxycytosine and guanidinohydantoin, are more efficiently removed by the Ed NEIL1 isoform, consistent with the inherent differences in tautomerization, proton affinities, and lability. We also observed biphasic kinetic profiles and lack of complete base removal with specific combinations of the lesion and NEIL1 isoform, suggestive of multiple lesion binding modes. The complexity of NEIL1 isoform activity implies multiple roles for NEIL1 in safeguarding accurate repair and as an epigenetic regulator.
Collapse
Affiliation(s)
- Elizabeth R Lotsof
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Allison E Krajewski
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Brittany Anderson-Steele
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - JohnPatrick Rogers
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lanxin Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Jongchan Yeo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Savannah G Conlon
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Amelia H Manlove
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Hinz DJ, Zhang L, Lee JK. Mass spectrometry in organic and bio-organic catalysis: Using thermochemical properties to lend insight into mechanism. MASS SPECTROMETRY REVIEWS 2022. [PMID: 35899315 DOI: 10.1002/mas.21797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, we discuss gas phase experimentation centered on the measurement of acidity and proton affinity of substrates that are useful for understanding catalytic mechanisms. The review is divided into two parts. The first covers examples of organocatalysis, while the second focuses on biological catalysis. The utility of gas phase acidity and basicity values for lending insight into mechanisms of catalysis is highlighted.
Collapse
Affiliation(s)
- Damon J Hinz
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Lanxin Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Zhang L, Hinz DJ, Kiruba GSM, Ding X, Lee JK. Gas‐phase experimental and computational studies of human hypoxanthine‐guanine phosphoribosyltransferase substrates: Intrinsic properties and biological implications. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lanxin Zhang
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey New Brunswick NJ USA
| | - Damon J. Hinz
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey New Brunswick NJ USA
| | | | - Xiao Ding
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey New Brunswick NJ USA
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey New Brunswick NJ USA
| |
Collapse
|
7
|
Krajewski AE, Lee JK. Nucleophilicity and Electrophilicity in the Gas Phase: Silane Hydricity. J Org Chem 2022; 87:1840-1849. [PMID: 35044778 DOI: 10.1021/acs.joc.1c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydricity is of great import as hydride transfer reactions are prominent in many processes, including organic synthesis, photoelectrocatalysis, and hydrogen activation. Herein, the kinetic hydricity of a series of silanes is examined in the gas phase. Most of these reactions have not heretofore been studied in vacuo and provide valuable data that can be compared to condensed-phase hydricity, to reveal the effects of solvent. Both experiments and computations are used to gain insight into mechanism and reactivity. In a broader sense, these studies also represent a first step toward systematically understanding nucleophilicity and electrophilicity in the absence of a solvent.
Collapse
Affiliation(s)
- Allison E Krajewski
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
8
|
Krajewski AE, Lee JK. Gas-Phase Experimental and Computational Studies of 5-Halouracils: Intrinsic Properties and Biological Implications. J Org Chem 2021; 86:6361-6370. [PMID: 33891415 DOI: 10.1021/acs.joc.1c00183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gas-phase acidity and proton affinity (PA) of 5-halouracils (5-fluorouracil, 5-chlorouracil, 5-bromouracil, and 5-iodouracil) have been examined using both theoretical and experimental methods. This work represents a comprehensive study of the thermochemical properties of these nucleobases. Other than 5-fluorouracil acidity, the intrinsic acidity and PA of these halouracils have not been heretofore measured; these new experimental data provide a benchmark for the computational values. Furthermore, we examine these 5-halouracils in the context of the enzyme thymine DNA glycosylase (TDG), which is an enzyme that protects the genome by cleaving these substrates from DNA. Our gas-phase results are compared and contrasted to TDG excision rates to afford insights into the TDG mechanism.
Collapse
Affiliation(s)
- Allison E Krajewski
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
9
|
Majumdar C, McKibbin PL, Krajewski AE, Manlove AH, Lee JK, David SS. Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY. J Am Chem Soc 2020; 142:20340-20350. [PMID: 33202125 DOI: 10.1021/jacs.0c06767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA glycosylase MutY prevents deleterious mutations resulting from guanine oxidation by recognition and removal of adenine (A) misincorporated opposite 8-oxo-7,8-dihydroguanine (OG). Correct identification of OG:A is crucial to prevent improper and detrimental MutY-mediatedadenine excision from G:A or T:A base pairs. Here we present a structure-activity relationship (SAR) study using analogues of A to probe the basis for OG:A specificity of MutY. We correlate observed in vitro MutY activity on A analogue substrates with their experimental and calculated acidities to provide mechanistic insight into the factors influencing MutY base excision efficiency. These data show that H-bonding and electrostatic interactions of the base within the MutY active site modulate the lability of the N-glycosidic bond. A analogues that were not excised from duplex DNA as efficiently as predicted by calculations provided insight into other required structural features, such as steric fit and H-bonding within the active site for proper alignment with MutY catalytic residues. We also determined MutY-mediated repair of A analogues paired with OG within the context of a DNA plasmid in bacteria. Remarkably, the magnitudes of decreased in vitro MutY excision rates with different A analogue duplexes do not correlate with the impact on overall MutY-mediated repair. The feature that most strongly correlated with facile cellular repair was the ability of the A analogues to H-bond with the Hoogsteen face of OG. Notably, base pairing of A with OG uniquely positions the 2-amino group of OG in the major groove and provides a means to indirectly select only these inappropriately placed adenines for excision. This highlights the importance of OG lesion detection for efficient MutY-mediated cellular repair. The A analogue SARs also highlight the types of modifications tolerated by MutY and will guide the development of specific probes and inhibitors of MutY.
Collapse
Affiliation(s)
- Chandrima Majumdar
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Paige L McKibbin
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Allison E Krajewski
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Amelia H Manlove
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Sheila S David
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
10
|
Nuñez NN, Majumdar C, Lay KT, David SS. Fe-S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements. Methods Enzymol 2018; 599:21-68. [PMID: 29746241 DOI: 10.1016/bs.mie.2017.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A growing number of iron-sulfur (Fe-S) cluster cofactors have been identified in DNA repair proteins. MutY and its homologs are base excision repair (BER) glycosylases that prevent mutations associated with the common oxidation product of guanine (G), 8-oxo-7,8-dihydroguanine (OG) by catalyzing adenine (A) base excision from inappropriately formed OG:A mispairs. The finding of an [4Fe-4S]2+ cluster cofactor in MutY, Endonuclease III, and structurally similar BER enzymes was surprising and initially thought to represent an example of a purely structural role for the cofactor. However, in the two decades subsequent to the initial discovery, purification and in vitro analysis of bacterial MutYs and mammalian homologs, such as human MUTYH and mouse Mutyh, have demonstrated that proper Fe-S cluster coordination is required for OG:A substrate recognition and adenine excision. In addition, the Fe-S cluster in MutY has been shown to be capable of redox chemistry in the presence of DNA. The work in our laboratory aimed at addressing the importance of the MutY Fe-S cluster has involved a battery of approaches, with the overarching hypothesis that understanding the role(s) of the Fe-S cluster is intimately associated with understanding the biological and chemical properties of MutY and its unique damaged DNA substrate as a whole. In this chapter, we focus on methods of enzyme expression and purification, detailed enzyme kinetics, and DNA affinity assays. The methods described herein have not only been leveraged to provide insight into the roles of the MutY Fe-S cluster but have also been provided crucial information needed to delineate the impact of inherited variants of the human homolog MUTYH associated with a colorectal cancer syndrome known as MUTYH-associated polyposis or MAP. Notably, many MAP-associated variants have been found adjacent to the Fe-S cluster further underscoring the intimate relationship between the cofactor, MUTYH-mediated DNA repair, and disease.
Collapse
Affiliation(s)
| | | | - Kori T Lay
- University of California, Davis, CA, United States
| | | |
Collapse
|
11
|
Manlove AH, McKibbin PL, Doyle EL, Majumdar C, Hamm ML, David SS. Structure-Activity Relationships Reveal Key Features of 8-Oxoguanine: A Mismatch Detection by the MutY Glycosylase. ACS Chem Biol 2017; 12:2335-2344. [PMID: 28723094 PMCID: PMC5603899 DOI: 10.1021/acschembio.7b00389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Base excision repair
glycosylases locate and remove damaged bases
in DNA with remarkable specificity. The MutY glycosylases, unusual
for their excision of undamaged adenines mispaired to the oxidized
base 8-oxoguanine (OG), must recognize both bases of the mispair in
order to prevent promutagenic activity. Moreover, MutY must effectively
find OG:A mismatches within the context of highly abundant and structurally
similar T:A base pairs. Very little is known about the factors that
initiate MutY’s interaction with the substrate when it first
encounters an intrahelical OG:A mispair, or about the order of recognition
checkpoints. Here, we used structure–activity relationships
(SAR) to investigate the features that influence the in vitro measured parameters of mismatch affinity and adenine base excision
efficiency by E. coli MutY. We also evaluated the
impacts of the same substrate alterations on MutY-mediated repair
in a cellular context. Our results show that MutY relies strongly
on the presence of the OG base and recognizes multiple structural
features at different stages of recognition and catalysis to ensure
that only inappropriately mispaired adenines are excised. Notably,
some OG modifications resulted in more dramatic reductions in cellular
repair than in the in vitro kinetic parameters, indicating
their importance for initial recognition events needed to locate the
mismatch within DNA. Indeed, the initial encounter of MutY with its
target base pair may rely on specific interactions with the 2-amino
group of OG in the major groove, a feature that distinguishes OG:A
from T:A base pairs. These results furthermore suggest that inefficient
substrate location in human MutY homologue variants may prove predictive
for the early onset colorectal cancer phenotype known as MUTYH-Associated
Polyposis, or MAP.
Collapse
Affiliation(s)
- Amelia H. Manlove
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Paige L. McKibbin
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Emily L. Doyle
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Chandrima Majumdar
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Michelle L. Hamm
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Sheila S. David
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Banda DM, Nuñez NN, Burnside MA, Bradshaw KM, David SS. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Free Radic Biol Med 2017; 107:202-215. [PMID: 28087410 PMCID: PMC5457711 DOI: 10.1016/j.freeradbiomed.2017.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species (RONS) may infringe on the passing of pristine genetic information by inducing DNA inter- and intra-strand crosslinks, protein-DNA crosslinks, and chemical alterations to the sugar or base moieties of DNA. 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most prevalent DNA lesions formed by RONS and is repaired through the base excision repair (BER) pathway involving the DNA repair glycosylases OGG1 and MUTYH in eukaryotes. MUTYH removes adenine (A) from 8-oxoG:A mispairs, thus mitigating the potential of G:C to T:A transversion mutations from occurring in the genome. The paramount role of MUTYH in guarding the genome is well established in the etiology of a colorectal cancer predisposition syndrome involving variants of MUTYH, referred to as MUTYH-associated polyposis (MAP). In this review, we highlight recent advances in understanding how MUTYH structure and related function participate in the manifestation of human disease such as MAP. Here we focus on the importance of MUTYH's metal cofactor sites, including a recently discovered "Zinc linchpin" motif, as well as updates to the catalytic mechanism. Finally, we touch on the insight gleaned from studies with MAP-associated MUTYH variants and recent advances in understanding the multifaceted roles of MUTYH in the cell, both in the prevention of mutagenesis and tumorigenesis.
Collapse
Affiliation(s)
- Douglas M Banda
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Nicole N Nuñez
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Michael A Burnside
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Katie M Bradshaw
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Sheila S David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
13
|
Raczyńska ED, Gal JF, Maria PC. Enhanced Basicity of Push-Pull Nitrogen Bases in the Gas Phase. Chem Rev 2016; 116:13454-13511. [PMID: 27739663 DOI: 10.1021/acs.chemrev.6b00224] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen bases containing one or more pushing amino-group(s) directly linked to a pulling cyano, imino, or phosphoimino group, as well as those in which the pushing and pulling moieties are separated by a conjugated spacer (C═X)n, where X is CH or N, display an exceptionally strong basicity. The n-π conjugation between the pushing and pulling groups in such systems lowers the basicity of the pushing amino-group(s) and increases the basicity of the pulling cyano, imino, or phosphoimino group. In the gas phase, most of the so-called push-pull nitrogen bases exhibit a very high basicity. This paper presents an analysis of the exceptional gas-phase basicity, mostly in terms of experimental data, in relation with structure and conjugation of various subfamilies of push-pull nitrogen bases: nitriles, azoles, azines, amidines, guanidines, vinamidines, biguanides, and phosphazenes. The strong basicity of biomolecules containing a push-pull nitrogen substructure, such as bioamines, amino acids, and peptides containing push-pull side chains, nucleobases, and their nucleosides and nucleotides, is also analyzed. Progress and perspectives of experimental determinations of GBs and PAs of highly basic compounds, termed as "superbases", are presented and benchmarked on the basis of theoretical calculations on existing or hypothetical molecules.
Collapse
Affiliation(s)
- Ewa D Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW) , ul. Nowoursynowska 159c, 02-776 Warszawa, Poland
| | - Jean-François Gal
- Institut de Chimie de Nice (ICN) - UMR CNRS 7272, University Nice Sophia Antipolis , Parc Valrose, 06108 Nice Cedex 2, France
| | - Pierre-Charles Maria
- Institut de Chimie de Nice (ICN) - UMR CNRS 7272, University Nice Sophia Antipolis , Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
14
|
Kiruba GSM, Xu J, Zelikson V, Lee JK. Gas-Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates. Chemistry 2016; 22:3881-90. [DOI: 10.1002/chem.201505003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- G. S. M. Kiruba
- Department of Chemistry and Chemical Biology; Rutgers; The State University of New Jersey; New Brunswick NJ 08901 USA
| | - Jiahui Xu
- Department of Chemistry and Chemical Biology; Rutgers; The State University of New Jersey; New Brunswick NJ 08901 USA
| | - Victoria Zelikson
- Department of Chemistry and Chemical Biology; Rutgers; The State University of New Jersey; New Brunswick NJ 08901 USA
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology; Rutgers; The State University of New Jersey; New Brunswick NJ 08901 USA
| |
Collapse
|
15
|
Woods RD, O'Shea VL, Chu A, Cao S, Richards JL, Horvath MP, David SS. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases. Nucleic Acids Res 2015; 44:801-10. [PMID: 26673696 PMCID: PMC4737165 DOI: 10.1093/nar/gkv1469] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for 'retaining' O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer.
Collapse
Affiliation(s)
- Ryan D Woods
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Valerie L O'Shea
- Department of Chemistry, University of California, Davis, CA 95616, USA Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Aurea Chu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Sheng Cao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Jody L Richards
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Martin P Horvath
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Drohat AC, Maiti A. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA. Org Biomol Chem 2015; 12:8367-78. [PMID: 25181003 DOI: 10.1039/c4ob01063a] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by the properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes.
Collapse
Affiliation(s)
- Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
17
|
Ervin KM, Nickel AA, Lanorio JG, Ghale SB. Anchoring the Gas-Phase Acidity Scale from Hydrogen Sulfide to Pyrrole. Experimental Bond Dissociation Energies of Nitromethane, Ethanethiol, and Cyclopentadiene. J Phys Chem A 2015; 119:7169-79. [DOI: 10.1021/jp510137g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kent M. Ervin
- Department of Chemistry and
Chemical Physics Program, University of Nevada, Reno, 1664 North
Virginia Street MS 216, Reno, Nevada 89557-0216, United States
| | - Alex A. Nickel
- Department of Chemistry and
Chemical Physics Program, University of Nevada, Reno, 1664 North
Virginia Street MS 216, Reno, Nevada 89557-0216, United States
| | - Jerry G. Lanorio
- Department of Chemistry and
Chemical Physics Program, University of Nevada, Reno, 1664 North
Virginia Street MS 216, Reno, Nevada 89557-0216, United States
| | - Surja B. Ghale
- Department of Chemistry and
Chemical Physics Program, University of Nevada, Reno, 1664 North
Virginia Street MS 216, Reno, Nevada 89557-0216, United States
| |
Collapse
|
18
|
Tang W, Jiménez-Osés G, Houk KN, van der Donk WA. Substrate control in stereoselective lanthionine biosynthesis. Nat Chem 2015; 7:57-64. [PMID: 25515891 PMCID: PMC4270103 DOI: 10.1038/nchem.2113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022]
Abstract
Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example in which the substrate controls the stereoselectivity of an enzyme-catalysed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by a cysteine attack on dehydrated Ser and Thr residues. We demonstrate that several lanthionine synthetases catalyse highly selective anti-additions in which the substrate (and not the enzyme) determines whether the addition occurs from the re or si face. A single point mutation in the peptide substrate completely inverted the stereochemical outcome of the enzymatic modification. Quantum mechanical calculations reproduced the experimentally observed selectivity and suggest that conformational restraints imposed by the amino-acid sequence on the transition states determine the face selectivity of the Michael-type cyclization.
Collapse
Affiliation(s)
- Weixin Tang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gonzalo Jiménez-Osés
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
19
|
Chen M, Lee JK. Computational Studies of the Gas-Phase Thermochemical Properties of Modified Nucleobases. J Org Chem 2014; 79:11295-300. [DOI: 10.1021/jo502058w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mu Chen
- Department of Chemistry and
Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeehiun K. Lee
- Department of Chemistry and
Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
20
|
Xia B, Liu Y, Li W, Brice AR, Dominy BN, Cao W. Specificity and catalytic mechanism in family 5 uracil DNA glycosylase. J Biol Chem 2014; 289:18413-26. [PMID: 24838246 DOI: 10.1074/jbc.m114.567354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily.
Collapse
Affiliation(s)
- Bo Xia
- From the Department of Genetics and Biochemistry, South Carolina Experiment Station and
| | - Yinling Liu
- the Department of Chemistry, Clemson University, Clemson, South Carolina 29634
| | - Wei Li
- From the Department of Genetics and Biochemistry, South Carolina Experiment Station and
| | - Allyn R Brice
- the Department of Chemistry, Clemson University, Clemson, South Carolina 29634
| | - Brian N Dominy
- the Department of Chemistry, Clemson University, Clemson, South Carolina 29634
| | - Weiguo Cao
- From the Department of Genetics and Biochemistry, South Carolina Experiment Station and
| |
Collapse
|
21
|
Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics 2014; 6:1358-81. [DOI: 10.1039/c4mt00057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal ions cause various types of DNA damage by multiple mechanisms, and this damage is a primary cause of cell death and disease.
Collapse
Affiliation(s)
| | - Craig Goodman
- Department of Chemistry
- Clemson University
- Clemson, USA
| | | |
Collapse
|
22
|
Markkanen E, Dorn J, Hübscher U. MUTYH DNA glycosylase: the rationale for removing undamaged bases from the DNA. Front Genet 2013; 4:18. [PMID: 23450852 PMCID: PMC3584444 DOI: 10.3389/fgene.2013.00018] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/01/2013] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genetic stability is crucial for all organisms in order to avoid the onset of deleterious diseases such as cancer. One of the many proveniences of DNA base damage in mammalian cells is oxidative stress, arising from a variety of endogenous and exogenous sources, generating highly mutagenic oxidative DNA lesions. One of the best characterized oxidative DNA lesion is 7,8-dihydro-8-oxoguanine (8-oxo-G), which can give rise to base substitution mutations (also known as point mutations). This mutagenicity is due to the miscoding potential of 8-oxo-G that instructs most DNA polymerases (pols) to preferentially insert an Adenine (A) opposite 8-oxo-G instead of the appropriate Cytosine (C). If left unrepaired, such A:8-oxo-G mispairs can give rise to CG→AT transversion mutations. A:8-oxo-G mispairs are proficiently recognized by the MutY glycosylase homologue (MUTYH). MUTYH can remove the mispaired A from an A:8-oxo-G, giving way to the canonical base-excision repair (BER) that ultimately restores undamaged Guanine (G). The importance of this MUTYH-initiated pathway is illustrated by the fact that biallelic mutations in the MUTYH gene are associated with a hereditary colorectal cancer syndrome termed MUTYH-associated polyposis (MAP). In this review, we will focus on MUTYH, from its discovery to the most recent data regarding its cellular roles and interaction partners. We discuss the involvement of the MUTYH protein in the A:8-oxo-G BER pathway acting together with pol λ, the pol that can faithfully incorporate C opposite 8-oxo-G and thus bypass this lesion in a correct manner. We also outline the current knowledge about the regulation of MUTYH itself and the A:8-oxo-G repair pathway by posttranslational modifications (PTM). Finally, to achieve a clearer overview of the literature, we will briefly touch on the rather confusing MUTYH nomenclature. In short, MUTYH is a unique DNA glycosylase that catalyzes the excision of an undamaged base from DNA.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel Zürich, Switzerland
| | | | | |
Collapse
|