1
|
Hananya N, Koren S, Muir TW. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 2024; 25:255-271. [PMID: 37985791 PMCID: PMC11176933 DOI: 10.1038/s41576-023-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established 'omics' techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein-chromatin interactions.
Collapse
Affiliation(s)
- Nir Hananya
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Shany Koren
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Brown T, Nguyen T, Zhou B, Zheng YG. Chemical probes and methods for the study of protein arginine methylation. RSC Chem Biol 2023; 4:647-669. [PMID: 37654509 PMCID: PMC10467615 DOI: 10.1039/d3cb00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.
Collapse
Affiliation(s)
- Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Bo Zhou
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| |
Collapse
|
4
|
Lin X, Nithun RV, Samanta R, Harel O, Jbara M. Enabling Peptide Ligation at Aromatic Junction Mimics via Native Chemical Ligation and Palladium-Mediated S-Arylation. Org Lett 2023; 25:4715-4719. [PMID: 37318270 PMCID: PMC10324392 DOI: 10.1021/acs.orglett.3c01652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Synthetic strategies to assemble peptide fragments are in high demand to access homogeneous proteins for various applications. Here, we combined native chemical ligation (NCL) and Pd-mediated Cys arylation to enable practical peptide ligation at aromatic junctions. The utility of one-pot NCL and S-arylation at the Phe and Tyr junctions was demonstrated and employed for the rapid chemical synthesis of the DNA-binding domains of the transcription factors Myc and Max. Organometallic palladium reagents coupled with NCL enabled a practical strategy to assemble peptides at aromatic junctions.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raj V. Nithun
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raju Samanta
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Omer Harel
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Berkeley RF, Debelouchina GT. Chemical tools for study and modulation of biomolecular phase transitions. Chem Sci 2022; 13:14226-14245. [PMID: 36545140 PMCID: PMC9749140 DOI: 10.1039/d2sc04907d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Biomolecular phase transitions play an important role in organizing cellular processes in space and time. Methods and tools for studying these transitions, and the intrinsically disordered proteins (IDPs) that often drive them, are typically less developed than tools for studying their folded protein counterparts. In this perspective, we assess the current landscape of chemical tools for studying IDPs, with a specific focus on protein liquid-liquid phase separation (LLPS). We highlight methodologies that enable imaging and spectroscopic studies of these systems, including site-specific labeling with small molecules and the diverse range of capabilities offered by inteins and protein semisynthesis. We discuss strategies for introducing post-translational modifications that are central to IDP and LLPS function and regulation. We also investigate the nascent field of noncovalent small-molecule modulators of LLPS. We hope that this review of the state-of-the-art in chemical tools for interrogating IDPs and LLPS, along with an associated perspective on areas of unmet need, can serve as a valuable and timely resource for these rapidly expanding fields of study.
Collapse
Affiliation(s)
- Raymond F. Berkeley
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaCAUSA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaCAUSA
| |
Collapse
|
6
|
Harel O, Jbara M. Posttranslational Chemical Mutagenesis Methods to Insert Posttranslational Modifications into Recombinant Proteins. Molecules 2022; 27:4389. [PMID: 35889261 PMCID: PMC9316245 DOI: 10.3390/molecules27144389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Posttranslational modifications (PTMs) dramatically expand the functional diversity of the proteome. The precise addition and removal of PTMs appears to modulate protein structure and function and control key regulatory processes in living systems. Deciphering how particular PTMs affect protein activity is a current frontier in biology and medicine. The large number of PTMs which can appear in several distinct positions, states, and combinations makes preparing such complex analogs using conventional biological and chemical tools challenging. Strategies to access homogeneous and precisely modified proteins with desired PTMs at selected sites and in feasible quantities are critical to interpreting their molecular code. Here, we summarize recent advances in posttranslational chemical mutagenesis and late-stage functionalization chemistry to transfer novel PTM mimicry into recombinant proteins with emphasis on novel transformations.
Collapse
Affiliation(s)
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
7
|
Maas MN, Hintzen JCJ, Mecinović J. Probing lysine posttranslational modifications by unnatural amino acids. Chem Commun (Camb) 2022; 58:7216-7231. [PMID: 35678513 DOI: 10.1039/d2cc00708h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Posttranslational modifications, typically small chemical tags attached on amino acids following protein biosynthesis, have a profound effect on protein structure and function. Numerous chemically and structurally diverse posttranslational modifications, including methylation, acetylation, hydroxylation, and ubiquitination, have been identified and characterised on lysine residues in proteins. In this feature article, we focus on chemical tools that rely on the site-specific incorporation of unnatural amino acids into peptides and proteins to probe posttranslational modifications of lysine. We highlight that simple amino acid mimics enable detailed mechanistic and functional assignment of enzymes that install and remove such modifications, and proteins that specifically recognise lysine posttranslational modifications.
Collapse
Affiliation(s)
- Marijn N Maas
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
8
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
9
|
Pan B, Shimogawa M, Zhao J, Rhoades E, Kashina A, Petersson EJ. Cysteine-Based Mimic of Arginylation Reproduces Neuroprotective Effects of the Authentic Post-Translational Modification on α-Synuclein. J Am Chem Soc 2022; 144:7911-7918. [PMID: 35451816 PMCID: PMC9922158 DOI: 10.1021/jacs.2c02499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arginylation is an understudied post-translational modification (PTM) involving the transfer of arginine to aspartate or glutamate sidechains in a protein. Among the targets of this PTM is α-synuclein (αS), a neuronal protein involved in regulating synaptic vesicles. The aggregation of αS is implicated in neurodegenerative diseases, particularly in Parkinson's disease, and arginylation has been found to protect against this pathological process. Arginylated αS has been studied through semisynthesis involving multipart native chemical ligation (NCL), but this can be very labor-intensive with low yields. Here, we present a facile way to introduce a mimic of the arginylation modification into a protein of interest, compatible with orthogonal installation of labels such as fluorophores. We synthesize bromoacetyl arginine and react it with recombinant, site-specific cysteine mutants of αS. We validate the mimic by testing the vesicle binding affinity of mimic-arginylated αS, as well as its aggregation kinetics and monomer incorporation into fibrils, and comparing these results to those of authentically arginylated αS produced through NCL. In cultured neurons, we compare the fibril seeding capabilities of preformed fibrils carrying a small percentage of arginylated αS. We find that, consistent with authentically arginylated αS, mimic-arginylated αS does not perturb the protein's native function but alters aggregation kinetics and monomer incorporation. Both mimic and authentically modified αS suppress aggregation in neuronal cells. Our results provide further insight into the neuroprotective effects of αS arginylation, and our alternative strategy to generate arginylated αS enables the study of this PTM in proteins not accessible through NCL.
Collapse
Affiliation(s)
- Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, Pennsylvania 19104, USA
| | - Marie Shimogawa
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, Pennsylvania 19104, USA
| | - Jun Zhao
- Department of Biomedical Sciences; University of Pennsylvania School of Veterinary Medicine; 3800 Spruce Street; Philadelphia, Pennsylvania, 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, Pennsylvania 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences; University of Pennsylvania School of Veterinary Medicine; 3800 Spruce Street; Philadelphia, Pennsylvania, 19104, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Toyobe M, Yakushiji F. Synthetic modifications of histones and their functional evaluation. Chem Asian J 2022; 17:e202200197. [PMID: 35489041 DOI: 10.1002/asia.202200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Indexed: 11/07/2022]
Abstract
Post-transrational modifications (PTMs) of histones play a key role in epigenetic regulation. Unraveling the roles of each epigenetic mark can provide new insights into their biological mechanisms. On the other hand, it is generally difficult to prepare homogeneously-modified histones/nucleosomes to investigate their specific functions. Therefore, synthetic approaches to acquire precisely mimicked histones/nucleosomes are in great demand, and further development of this research field is anticipated. In this review, synthetic strategies to modify histones/nucleosomes, including cysteine modifications, transformations of dehydroalanine residues and lysine acylation using a catalyst system, are cited. In addition, the functional evaluation of synthetically modified histones/nucleosomes is described.
Collapse
Affiliation(s)
- Moe Toyobe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
11
|
Porzberg MRB, Moesgaard L, Johansson C, Oppermann U, Kongsted J, Mecinović J. Recognition of Dimethylarginine Analogues by Tandem Tudor Domain Protein Spindlin1. Molecules 2022; 27:983. [PMID: 35164245 PMCID: PMC8838590 DOI: 10.3390/molecules27030983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Epigenetic readout of the combinatorial posttranslational modification comprised of trimethyllysine and asymmetric dimethylarginine (H3K4me3R8me2a) takes place via biomolecular recognition of tandem Tudor-domain-containing protein Spindlin1. Through comparative thermodynamic data and molecular dynamics simulations, we sought to explore the binding scope of asymmetric dimethylarginine mimics by Spindlin1. Herein, we provide evidence that the biomolecular recognition of H3K4me2R8me2a is not significantly affected when R8me2a is replaced by dimethylarginine analogues, implying that the binding of K4me3 provides the major binding contribution. High-energy water molecules inside both aromatic cages of the ligand binding sites contribute to the reader-histone association upon displacement by histone peptide, with the K4me3 hydration site being lower in free energy due to a flip of Trp151.
Collapse
Affiliation(s)
- Miriam R. B. Porzberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.R.B.P.); (L.M.); (J.K.)
| | - Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.R.B.P.); (L.M.); (J.K.)
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-Medical Research Centre, University of Oxford, Oxford OX3 7LD, UK; (C.J.); (U.O.)
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-Medical Research Centre, University of Oxford, Oxford OX3 7LD, UK; (C.J.); (U.O.)
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.R.B.P.); (L.M.); (J.K.)
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.R.B.P.); (L.M.); (J.K.)
| |
Collapse
|
12
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Hintzen JCJ, Poater J, Kumar K, Al Temimi AHK, Pieters BJGE, Paton RS, Bickelhaupt FM, Mecinović J. Comparison of Molecular Recognition of Trimethyllysine and Trimethylthialysine by Epigenetic Reader Proteins. Molecules 2020; 25:molecules25081918. [PMID: 32326252 PMCID: PMC7221964 DOI: 10.3390/molecules25081918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/31/2023] Open
Abstract
Gaining a fundamental insight into the biomolecular recognition of posttranslationally modified histones by epigenetic reader proteins is of crucial importance to understanding the regulation of the activity of human genes. Here, we seek to establish whether trimethylthialysine, a simple trimethyllysine analogue generated through cysteine alkylation, is a good trimethyllysine mimic for studies on molecular recognition by reader proteins. Histone peptides bearing trimethylthialysine and trimethyllysine were examined for binding with five human reader proteins employing a combination of thermodynamic analyses, molecular dynamics simulations and quantum chemical analyses. Collectively, our experimental and computational findings reveal that trimethylthialysine and trimethyllysine exhibit very similar binding characteristics for the association with human reader proteins, thereby justifying the use of trimethylthialysine for studies aimed at dissecting the origin of biomolecular recognition in epigenetic processes that play important roles in human health and disease.
Collapse
Affiliation(s)
- Jordi C. J. Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jordi Poater
- ICREA and Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí I Franquès 1–11, 08028 Barcelona, Spain
| | - Kiran Kumar
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Abbas H. K. Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
| | - Bas J. G. E. Pieters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
| | - Robert S. Paton
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| | - F. Matthias Bickelhaupt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| |
Collapse
|
14
|
Al Temimi AHK, van der Wekken-de Bruijne R, Proietti G, Guo H, Qian P, Mecinović J. γ-Thialysine versus Lysine: An Insight into the Epigenetic Methylation of Histones. Bioconjug Chem 2019; 30:1798-1804. [DOI: 10.1021/acs.bioconjchem.9b00313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abbas H. K. Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | - Giordano Proietti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University, Tai’an 271018, P.R. China
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
15
|
Musselman CA, Kutateladze TG. Strategies for Generating Modified Nucleosomes: Applications within Structural Biology Studies. ACS Chem Biol 2019; 14:579-586. [PMID: 30817115 DOI: 10.1021/acschembio.8b01049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Post-translational modifications on histone proteins play critical roles in the regulation of chromatin structure and all DNA-templated processes. Accumulating evidence suggests that these covalent modifications can directly alter chromatin structure, or they can modulate activities of chromatin-modifying and -remodeling factors. Studying these modifications in the context of the nucleosome, the basic subunit of chromatin, is thus of great interest; however, the generation of specifically modified nucleosomes remains challenging. This is especially problematic for most structural biology approaches in which a large amount of material is often needed. Here we discuss the strategies currently available for generation of these substrates. We in particular focus on novel ideas and discuss challenges in the application to structural biology studies.
Collapse
Affiliation(s)
- Catherine A. Musselman
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52246, United States
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
16
|
Nadal S, Raj R, Mohammed S, Davis BG. Synthetic post-translational modification of histones. Curr Opin Chem Biol 2018; 45:35-47. [DOI: 10.1016/j.cbpa.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
|
17
|
Bhat S, Hwang Y, Gibson MD, Morgan MT, Taverna SD, Zhao Y, Wolberger C, Poirier MG, Cole PA. Hydrazide Mimics for Protein Lysine Acylation To Assess Nucleosome Dynamics and Deubiquitinase Action. J Am Chem Soc 2018; 140:9478-9485. [PMID: 29991262 PMCID: PMC6070418 DOI: 10.1021/jacs.8b03572] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A range of acyl-lysine (acyl-Lys) modifications on histones and other proteins have been mapped over the past decade but for most, their functional and structural significance remains poorly characterized. One limitation in the study of acyl-Lys containing proteins is the challenge of producing them or their mimics in site-specifically modified forms. We describe a cysteine alkylation-based method to install hydrazide mimics of acyl-Lys post-translational modifications (PTMs) on proteins. We have applied this method to install mimics of acetyl-Lys, 2-hydroxyisobutyryl-Lys, and ubiquityl-Lys that could be recognized selectively by relevant acyl-Lys modification antibodies. The acyl-Lys modified histone H3 proteins were reconstituted into nucleosomes to study nucleosome dynamics and stability as a function of modification type and site. We also installed a ubiquityl-Lys mimic in histone H2B and generated a diubiquitin analog, both of which could be cleaved by deubiquitinating enzymes. Nucleosomes containing the H2B ubiquityl-Lys mimic were used to study the SAGA deubiquitinating module's molecular recognition. These results suggest that acyl-Lys mimics offer a relatively simple and promising strategy to study the role of acyl-Lys modifications in the function, structure, and regulation of proteins and protein complexes.
Collapse
Affiliation(s)
- Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yousang Hwang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Matthew D. Gibson
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Michael T. Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Philip A. Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Division of Genetics, Brigham and Women’s Hospital; Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Ave Louis Pasteur, HMS New Research Building, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Peptide-based approaches to identify and characterize proteins that recognize histone post-translational modifications. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Picazo E, Morrill LA, Susick RB, Moreno J, Smith JM, Garg NK. Enantioselective Total Syntheses of Methanoquinolizidine-Containing Akuammiline Alkaloids and Related Studies. J Am Chem Soc 2018; 140:6483-6492. [PMID: 29694031 PMCID: PMC6085837 DOI: 10.1021/jacs.8b03404] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The akuammiline alkaloids are a structurally diverse class of bioactive natural products isolated from plants found in various parts of the world. A particularly challenging subset of akuammiline alkaloids are those that contain a methanoquinolizidine core. We describe a synthetic approach to these compounds that has enabled the first total syntheses of (+)-strictamine, (-)-2( S)-cathafoline, (+)-akuammiline, and (-)-Ψ-akuammigine. Our strategy relies on the development of the reductive interrupted Fischer indolization reaction to construct a common pentacyclic intermediate bearing five contiguous stereocenters, in addition to late-stage formation of the methanoquinolizidine framework using a deprotection-cyclization cascade. The total syntheses of (-)-Ψ-akuammigine and (+)-akuammiline mark the first preparations of akuammiline alkaloids containing both a methanoquinolizidine core and vicinal quaternary centers. Lastly, we describe the bioinspired reductive rearrangements of (+)-strictamine and (+)-akuammiline to ultimately provide (-)-10-demethoxyvincorine and a new analogue thereof.
Collapse
Affiliation(s)
- Elias Picazo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Lucas A. Morrill
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Robert B. Susick
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jesus Moreno
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Joel M. Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
20
|
Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP. Cell 2018; 173:1254-1264.e11. [PMID: 29628140 DOI: 10.1016/j.cell.2018.03.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/23/2018] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins.
Collapse
|
21
|
Yang A, Cho K, Park HS. Chemical biology approaches for studying posttranslational modifications. RNA Biol 2017; 15:427-440. [PMID: 28901832 DOI: 10.1080/15476286.2017.1360468] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Posttranslational modification (PTM) is a key mechanism for regulating diverse protein functions, and thus critically affects many essential biological processes. Critical for systematic study of the effects of PTMs is the ability to obtain recombinant proteins with defined and homogenous modifications. To this end, various synthetic and chemical biology approaches, including genetic code expansion and protein chemical modification methods, have been developed. These methods have proven effective for generating site-specific authentic modifications or structural mimics, and have demonstrated their value for in vitro and in vivo functional studies of diverse PTMs. This review will discuss recent advances in chemical biology strategies and their application to various PTM studies.
Collapse
Affiliation(s)
- Aerin Yang
- a Department of Chemistry , Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu , Daejeon , Republic of Korea
| | - Kyukwang Cho
- a Department of Chemistry , Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu , Daejeon , Republic of Korea
| | - Hee-Sung Park
- a Department of Chemistry , Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu , Daejeon , Republic of Korea
| |
Collapse
|
22
|
Ruan PP, Li HH, Liu X, Zhang T, Zuo SX, Zhu C, Ye LW. Synthesis of α,β-Unsaturated Amidines through Gold-Catalyzed Intermolecular Reaction of Azides with Ynamides. J Org Chem 2017; 82:9119-9125. [DOI: 10.1021/acs.joc.7b01689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng-Peng Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hang-Hao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Te Zhang
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shao-Xuan Zuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunyin Zhu
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Lynagh T, Komnatnyy VV, Pless SA. Unique Contributions of an Arginine Side Chain to Ligand Recognition in a Glutamate-gated Chloride Channel. J Biol Chem 2017; 292:3940-3946. [PMID: 28096462 PMCID: PMC5339774 DOI: 10.1074/jbc.m116.772939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/11/2017] [Indexed: 11/06/2022] Open
Abstract
Glutamate recognition by neurotransmitter receptors often relies on Arg residues in the binding site, leading to the assumption that charge-charge interactions underlie ligand recognition. However, assessing the precise chemical contribution of Arg side chains to protein function and pharmacology has proven to be exceedingly difficult in such large and complex proteins. Using the in vivo nonsense suppression approach, we report the first successful incorporation of the isosteric, titratable Arg analog, canavanine, into a neurotransmitter receptor in a living cell, utilizing a glutamate-gated chloride channel from the nematode Haemonchus contortus Our data unveil a surprisingly small contribution of charge at a conserved arginine side chain previously suggested to form a salt bridge with the ligand, glutamate. Instead, our data show that Arg contributes crucially to ligand sensitivity via a hydrogen bond network, where Arg interacts both with agonist and with a conserved Thr side chain within the receptor. Together, the data provide a new explanation for the reliance of neurotransmitter receptors on Arg side chains and highlight the exceptional capacity of unnatural amino acid incorporation for increasing our understanding of ligand recognition.
Collapse
Affiliation(s)
- Timothy Lynagh
- From the Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 H Copenhagen, Denmark
| | - Vitaly V Komnatnyy
- From the Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 H Copenhagen, Denmark
| | - Stephan A Pless
- From the Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 H Copenhagen, Denmark
| |
Collapse
|
24
|
Chuh KN, Batt AR, Pratt MR. Chemical Methods for Encoding and Decoding of Posttranslational Modifications. Cell Chem Biol 2016; 23:86-107. [PMID: 26933738 DOI: 10.1016/j.chembiol.2015.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full complement of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come.
Collapse
Affiliation(s)
- Kelly N Chuh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna R Batt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
25
|
Liokatis S, Klingberg R, Tan S, Schwarzer D. Differentially Isotope-Labeled Nucleosomes To Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stamatios Liokatis
- Department of Structural Biology; Leibniz-Institut für Molekulare Pharmakologie; Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Rebecca Klingberg
- Department of Chemical Biology; Leibniz-Institut für Molekulare Pharmakologie; Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Song Tan
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802-1014 USA
| | - Dirk Schwarzer
- Department of Chemical Biology; Leibniz-Institut für Molekulare Pharmakologie; Robert-Rössle-Strasse 10 13125 Berlin Germany
- Chemische Biologie, Interfakultäres Institut für Biochemie; Universität Tübingen; Hoppe-Seyler-Strasse 4 72076 Tübingen Germany
| |
Collapse
|
26
|
Liokatis S, Klingberg R, Tan S, Schwarzer D. Differentially Isotope-Labeled Nucleosomes To Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:8262-5. [PMID: 27219518 DOI: 10.1002/anie.201601938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 01/09/2023]
Abstract
Post-translational modifications (PTMs) of histones regulate chromatin structure and function. Because nucleosomes contain two copies each of the four core histones, the establishment of different PTMs on individual "sister" histones in the same nucleosomal context, that is, asymmetric histone PTMs, are difficult to analyze. Here, we generated differentially isotope-labeled nucleosomes to study asymmetric histone modification crosstalk by time-resolved NMR spectroscopy. Specifically, we present mechanistic insights into nucleosomal histone H3 modification reactions in cis and in trans, that is, within individual H3 copies or between them. We validated our approach by using the H3S10phK14ac crosstalk mechanism, which is mediated by the Gcn5 acetyltransferase. Moreover, phosphorylation assays on methylated substrates showed that, under certain conditions, Haspin kinase is able to produce nucleosomes decorated asymmetrically with two distinct types of PTMs.
Collapse
Affiliation(s)
- Stamatios Liokatis
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| | - Rebecca Klingberg
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Song Tan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802-1014, USA
| | - Dirk Schwarzer
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Chemische Biologie, Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076, Tübingen, Germany
| |
Collapse
|
27
|
Wright TH, Vallée MRJ, Davis BG. Von der chemischen Mutagenese zur Postexpressions‐Mutagenese: eine 50 Jahre währende Odyssee. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tom H. Wright
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road OX1 3TA Vereinigtes Königreich
| | - M. Robert J. Vallée
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road OX1 3TA Vereinigtes Königreich
| | - Benjamin G. Davis
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road OX1 3TA Vereinigtes Königreich
| |
Collapse
|
28
|
Wright TH, Vallée MRJ, Davis BG. From Chemical Mutagenesis to Post-Expression Mutagenesis: A 50 Year Odyssey. Angew Chem Int Ed Engl 2016; 55:5896-903. [PMID: 27119221 PMCID: PMC5074284 DOI: 10.1002/anie.201509310] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/02/2016] [Indexed: 01/06/2023]
Abstract
Site‐directed (gene) mutagenesis has been the most useful method available for the conversion of one amino acid residue of a given protein into another. Until relatively recently, this strategy was limited to the twenty standard amino acids. The ongoing maturation of stop codon suppression and related technologies for unnatural amino acid incorporation has greatly expanded access to nonstandard amino acids by expanding the scope of the translational apparatus. However, the necessity for translation of genetic changes restricts the diversity of residues that may be incorporated. Herein we highlight an alternative approach, termed post‐expression mutagenesis, which operates at the level of the very functional biomolecules themselves. Using the lens of retrosynthesis, we highlight prospects for new strategies in protein modification, alteration, and construction which will enable protein science to move beyond the constraints of the “translational filter” and lead to a true synthetic biology.
Collapse
Affiliation(s)
- Tom H Wright
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, UK
| | - M Robert J Vallée
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, UK
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, UK.
| |
Collapse
|
29
|
Howard CJ, Yu RR, Gardner ML, Shimko JC, Ottesen JJ. Chemical and biological tools for the preparation of modified histone proteins. Top Curr Chem (Cham) 2015; 363:193-226. [PMID: 25863817 DOI: 10.1007/128_2015_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.
Collapse
Affiliation(s)
- Cecil J Howard
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | |
Collapse
|
30
|
Fischle W, Mootz HD, Schwarzer D. Synthetic histone code. Curr Opin Chem Biol 2015; 28:131-40. [PMID: 26256563 DOI: 10.1016/j.cbpa.2015.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/04/2015] [Accepted: 07/12/2015] [Indexed: 01/17/2023]
Abstract
Chromatin is the universal template of genetic information in all eukaryotic cells. This complex of DNA and histone proteins not only packages and organizes genomes but also regulates gene expression. A multitude of posttranslational histone modifications and their combinations are thought to constitute a code for directing distinct structural and functional states of chromatin. Methods of protein chemistry, including protein semisynthesis, amber suppression technology, and cysteine bioconjugation, have enabled the generation of so-called designer chromatin containing histones in defined and homogeneous modification states. Several of these approaches have matured from proof-of-concept studies into efficient tools and technologies for studying the biochemistry of chromatin regulation and for interrogating the histone code. We summarize pioneering experiments and recent developments in this exciting field of chemical biology.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, 48149 Muenster, Germany.
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
31
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
32
|
Photo-dependent protein biosynthesis using a caged aminoacyl-tRNA. Bioorg Med Chem Lett 2014; 24:5369-72. [DOI: 10.1016/j.bmcl.2014.10.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/01/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
|
33
|
Rowan F, Richards M, Widya M, Bayliss R, Blagg J. Diverse functionalization of Aurora-A kinase at specified surface and buried sites by native chemical modification. PLoS One 2014; 9:e103935. [PMID: 25093837 PMCID: PMC4122486 DOI: 10.1371/journal.pone.0103935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/06/2014] [Indexed: 12/18/2022] Open
Abstract
The ability to obtain a homogeneous sample of protein is invaluable when studying the effect of alterations such as post-translational modifications (PTMs). Selective functionalization of a protein to investigate the effect of PTMs on its structure or activity can be achieved by chemical modification of cysteine residues. We demonstrate here that one such technique, which involves conversion of cysteine to dehydroalanine followed by thiol nucleophile addition, is suitable for the site-specific installation of a wide range of chemical mimics of PTMs, including acetylated and dimethylated lysine, and other unnatural amino acids. These reactions, optimized for the clinically relevant kinase Aurora-A, readily proceed to completion as revealed by intact protein mass spectrometry. Moreover, these reactions proceed under non-denaturing conditions, which is desirable when working with large protein substrates. We have determined reactivity trends for a diverse range of thiol nucleophile addition reactions at two separate sites on Aurora-A, and we also highlight limitations when using thiol nucleophiles that contain basic functional groups. We show that chemical modification of cysteine residues is possible not only on a flexible surface-exposed loop, but also within a deep active site pocket at the conserved DFG motif, which reveals the potential use of this method in exploring enzyme function through modification of catalytic site residues.
Collapse
Affiliation(s)
- Fiona Rowan
- Cancer Research U.K. Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- Division of Structural Biology, The Institute of Cancer Research, London, United Kingdom
- * E-mail: (FR); (JB)
| | - Meirion Richards
- Cancer Research U.K. Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Marcella Widya
- Proteomics Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Richard Bayliss
- Division of Structural Biology, The Institute of Cancer Research, London, United Kingdom
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Julian Blagg
- Cancer Research U.K. Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- * E-mail: (FR); (JB)
| |
Collapse
|
34
|
Gayatri S, Bedford MT. Readers of histone methylarginine marks. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:702-10. [PMID: 24583552 PMCID: PMC4099268 DOI: 10.1016/j.bbagrm.2014.02.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
Abstract
Arginine methylation is a common posttranslational modification (PTM) that alters roughly 0.5% of all arginine residues in the cells. There are three types of arginine methylation: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). These three PTMs are enriched on RNA-binding proteins and on histones, and also impact signal transduction cascades. To date, over thirty arginine methylation sites have been cataloged on the different core histones. These modifications alter protein structure, impact interactions with DNA, and also generate docking sites for effector molecules. The primary "readers" of methylarginine marks are Tudor domain-containing proteins. The complete family of thirty-six Tudor domain-containing proteins has yet to be fully characterized, but at least ten bind methyllysine motifs and eight bind methylarginine motifs. In this review, we will highlight the biological roles of the Tudor domains that interact with arginine methylated motifs, and also address other types of interactions that are regulated by these particular PTMs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Sitaram Gayatri
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
35
|
Pick H, Kilic S, Fierz B. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:644-56. [PMID: 24768924 DOI: 10.1016/j.bbagrm.2014.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/26/2014] [Accepted: 04/16/2014] [Indexed: 01/11/2023]
Abstract
Patterns of histone post-translational modifications (PTMs) and DNA modifications establish a landscape of chromatin states with regulatory impact on gene expression, cell differentiation and development. These diverse modifications are read out by effector protein complexes, which ultimately determine their functional outcome by modulating the activity state of underlying genes. From genome-wide studies employing high-throughput ChIP-Seq methods as well as proteomic mass spectrometry studies, a large number of PTMs are known and their coexistence patterns and associations with genomic regions have been mapped in a large number of different cell types. Conversely, the molecular interplay between chromatin effector proteins and modified chromatin regions as well as their resulting biological output is less well understood on a molecular level. Within the last decade a host of chemical approaches has been developed with the goal to produce synthetic chromatin with a defined arrangement of PTMs. These methods now permit systematic functional studies of individual histone and DNA modifications, and additionally provide a discovery platform to identify further interacting nuclear proteins. Complementary chemical- and synthetic-biology methods have emerged to directly observe and modulate the modification landscape in living cells and to readily probe the effect of altered PTM patterns on biological processes. Herein, we review current methodologies allowing chemical and synthetic biological engineering of distinct chromatin states in vitro and in vivo with the aim of obtaining a molecular understanding of histone and DNA modification function. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Horst Pick
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Sinan Kilic
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Beat Fierz
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Pieters B, Belle R, Mecinović J. The effect of the length of histone H3K4me3 on recognition by reader proteins. Chembiochem 2013; 14:2408-12. [PMID: 24307373 DOI: 10.1002/cbic.201300525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Bas Pieters
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (The Netherlands)
| | | | | |
Collapse
|