1
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
2
|
Shin JH, Park JY, Han SH, Lee YH, Sun J, Choi SS. Color-Tuning Mechanism of Electrically Stretchable Photonic Organogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202897. [PMID: 35798315 PMCID: PMC9443443 DOI: 10.1002/advs.202202897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In contrast to nano-processed rigid photonic crystals with fixed structures, soft photonic organic hydrogel beads with dielectric nanostructures possess advanced capabilities, such as stimuli-responsive deformation and photonic wavelength color changes. Recenlty, advanced from well-investigated mechanochromic method, an electromechanical stress approach is used to demonstrate electrically induced mechanical color shifts in soft organic photonic hydrogel beads. To better understand the electrically stretchable color change functionality in such soft organic photonic hydrogel systems, the electromechanical wavelength-tuning mechanism is comprehensively investigated in this study. By employing controllable electroactive dielectric elastomeric actuators, the discoloration wavelength-tuning process of an electrically stretchable photonic organogel is carefully examined. Based on the experimental in-situ response of electrically stretchable nano-spherical polystyrene hydrogel beads, the color change mechanism is meticulously analyzed. Further, changes in the nanostructure of the symmetrically and electrically stretchable organogel are analytically investigated through simulations of its hexagonal close-packed (HCP) lattice model. Detailed photonic wavelength control factors, such as the refractive index of dielectric materials, lattice diffraction, and bead distance in an organogel lattice, are theoretically studied. Herein, the switcing mechanism of electrically stretchable mechanochromic photonic organogels with photonic stopband-tuning features are suggested for the first time.
Collapse
Affiliation(s)
- Jun Hyuk Shin
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Ji Yoon Park
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Sang Hyun Han
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Yun Hyeok Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong‐Yun Sun
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Korea
| | - Su Seok Choi
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
3
|
Wu S, Xia H, Xu J, Sun X, Liu X. Manipulating Luminescence of Light Emitters by Photonic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803362. [PMID: 30251274 DOI: 10.1002/adma.201803362] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/01/2018] [Indexed: 05/17/2023]
Abstract
The modulation of luminescence is essential because unwanted spontaneous-emission modes have a negative effect on the performance of luminescence-based photonic devices. Photonic crystals are promising materials for the control of light emission because of the variation in the local density of optical modes within them. They have been widely investigated for the manipulation of the emission intensity and lifetime of light emitters. Several groups have achieved greatly enhanced emission by depositing emitters on the surface of photonic crystals. Herein, the different modulating effects of photonic crystal dimensions, light-emitter positions, photonic crystal structure type, and the refractive index of photonic crystal building blocks are highlighted, with the aim of evaluating the fundamental principles that determine light propagation. The applications of using photonic crystals to manipulate spontaneous emission in light-emitting diodes and sensors are also reviewed. In addition, potential future challenges and improvements in this field are presented.
Collapse
Affiliation(s)
- Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road 2#, Dalian, 116023, P. R. China
| | - Hongbo Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road 2#, Dalian, 116023, P. R. China
| | - Jiahui Xu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaoqian Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road 2#, Dalian, 116023, P. R. China
| | - Xiaogang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Center for Functional Materials, NUS Suzhou Research Institute, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
4
|
Lin C, Jiang Y, Tao CA, Yin X, Lan Y, Wang C, Wang S, Liu X, Li G. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11770-11779. [PMID: 28293943 DOI: 10.1021/acsami.6b15619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λmax of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.
Collapse
Affiliation(s)
- Changxu Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University , 361005 Xiamen, P.R. China
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Yin Jiang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- Beilun Science and Technology Bureau , Ningbo, 315800, P. R. China
| | - Cheng-An Tao
- College of Science, National University of Defence Technology , Changsha 410073, P. R. China
| | - Xianpeng Yin
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Yue Lan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Chen Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Shiqiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Xiangyang Liu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University , 361005 Xiamen, P.R. China
| | - Guangtao Li
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| |
Collapse
|
5
|
Jiménez-Solano A, Galisteo-López JF, Míguez H. Fine Tuning the Emission Properties of Nanoemitters in Multilayered Structures by Deterministic Control of their Local Photonic Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2727-2732. [PMID: 25712873 PMCID: PMC4660893 DOI: 10.1002/smll.201402898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Deterministic control on the dynamics of organic nanoemitters is achieved through precise control of its photonic environment. Resonators are fabricated by a combination of spin- and dip-coating techniques, which allows placement of the emitters at different positions within the sample, thus acting as a probe of the local density of states.
Collapse
Affiliation(s)
- Alberto Jiménez-Solano
- Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Juan Francisco Galisteo-López
- Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hernán Míguez
- Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, C/Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
6
|
Khan MK, Bsoul A, Walus K, Hamad WY, MacLachlan MJ. Photonic patterns printed in chiral nematic mesoporous resins. Angew Chem Int Ed Engl 2015; 54:4304-8. [PMID: 25682748 DOI: 10.1002/anie.201410411] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Indexed: 11/07/2022]
Abstract
Chiral nematic mesoporous phenol-formaldehyde resins, which were prepared using cellulose nanocrystals as a template, can be used as a substrate to produce latent photonic images. These resins undergo swelling, which changes their reflected color. By writing on the films with chemical inks, the density of methylol groups in the resin changes, subsequently affecting their degree of swelling and, consequently, their color. Writing on the films gives latent images that are revealed only upon swelling of the films. Using inkjet printing, it is possible to make higher resolution photonic patterns both as text and images that can be visualized by swelling and erased by drying. This novel approach to printing photonic patterns in resin films may be applied to anti-counterfeit tags, signage, and decorative applications.
Collapse
Affiliation(s)
- Mostofa K Khan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada) http://www.chem.ubc.ca/mark-maclachlan
| | | | | | | | | |
Collapse
|
7
|
Khan MK, Bsoul A, Walus K, Hamad WY, MacLachlan MJ. Photonic Patterns Printed in Chiral Nematic Mesoporous Resins. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|