1
|
Xu Q, Tang L, Liu W, Xu N, Hu Y, Zhang Y, Chen S. Phage protein Gp11 blocks Staphylococcus aureus cell division by inhibiting peptidoglycan biosynthesis. mBio 2024; 15:e0067924. [PMID: 38752726 PMCID: PMC11237401 DOI: 10.1128/mbio.00679-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Phages and bacteria have a long history of co-evolution. However, these dynamics of phage-host interactions are still largely unknown; identification of phage inhibitors that remodel host metabolism will provide valuable information for target development for antimicrobials. Here, we perform a comprehensive screen for early-gene products of ΦNM1 that inhibit cell growth in Staphylococcus aureus. A small membrane protein, Gp11, with inhibitory effects on S. aureus cell division was identified. A bacterial two-hybrid library containing 345 essential S. aureus genes was constructed to screen for targets of Gp11, and Gp11 was found to interact with MurG and DivIC. Defects in cell growth and division caused by Gp11 were dependent on MurG and DivIC, which was further confirmed using CRISPRi hypersensitivity assay. Gp11 interacts with MurG, the protein essential for cell wall formation, by inhibiting the production of lipid II to regulate peptidoglycan (PG) biosynthesis on the cell membrane. Gp11 also interacts with cell division protein DivIC, an essential part of the division machinery necessary for septal cell wall assembly, to disrupt the recruitment of division protein FtsW. Mutations in Gp11 result in loss of its ability to cause growth defects, whereas infection with phage in which the gp11 gene has been deleted showed a significant increase in lipid II production in S. aureus. Together, our findings reveal that a phage early-gene product interacts with essential host proteins to disrupt PG biosynthesis and block S. aureus cell division, suggesting a potential pathway for the development of therapeutic approaches to treat pathogenic bacterial infections. IMPORTANCE Understanding the interplay between phages and their hosts is important for the development of novel therapies against pathogenic bacteria. Although phages have been used to control methicillin-resistant Staphylococcus aureus infections, our knowledge related to the processes in the early stages of phage infection is still limited. Owing to the fact that most of the phage early proteins have been classified as hypothetical proteins with uncertain functions, we screened phage early-gene products that inhibit cell growth in S. aureus, and one protein, Gp11, selectively targets essential host genes to block the synthesis of the peptidoglycan component lipid II, ultimately leading to cell growth arrest in S. aureus. Our study provides a novel insight into the strategy by which Gp11 blocks essential host cellular metabolism to influence phage-host interaction. Importantly, dissecting the interactions between phages and host cells will contribute to the development of new and effective therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Qi Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Tang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Neng Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yong Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shiyun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Hsu TW, Fang JM. Advances and prospects of analytic methods for bacterial transglycosylation and inhibitor discovery. Analyst 2024; 149:2204-2222. [PMID: 38517346 DOI: 10.1039/d3an01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.
Collapse
Affiliation(s)
- Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Strach M, Koch F, Fiedler S, Liebeton K, Graumann PL. Protein secretion zones during overexpression of amylase within the Gram-positive cell wall. BMC Biol 2023; 21:206. [PMID: 37794427 PMCID: PMC10552229 DOI: 10.1186/s12915-023-01684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Whereas the translocation of proteins across the cell membrane has been thoroughly investigated, it is still unclear how proteins cross the cell wall in Gram-positive bacteria, which are widely used for industrial applications. We have studied the secretion of α-amylase AmyE within two different Bacillus strains, B. subtilis and B. licheniformis. RESULTS We show that a C-terminal fusion of AmyE with the fluorescent reporter mCherry is secreted via discrete patches showing very low dynamics. These are visible at many places within the cell wall for many minutes. Expression from a high copy number plasmid was required to be able to see these structures we term "secretion zones". Zones corresponded to visualized AmyE activity on the surface of cells, showing that they release active enzymes. They overlapped with SecA signals but did not frequently co-localize with the secretion ATPase. Single particle tracking showed higher dynamics of SecA and of SecDF, involved in AmyE secretion, at the cell membrane than AmyE. These experiments suggest that SecA initially translocates AmyE molecules through the cell membrane, and then diffuses to a different translocon. Single molecule tracking of SecA suggests the existence of three distinct diffusive states of SecA, which change during AmyE overexpression, but increased AmyE secretion does not appear to overwhelm the system. CONCLUSIONS Because secretion zones were only found during the transition to and within the stationary phase, diffusion rather than passive transport based on cell wall growth from inside to outside may release AmyE and, thus, probably secreted proteins in general. Our findings suggest active transport through the cell membrane and slow, passive transition through the cell wall, at least for overexpressed proteins, in bacteria of the genus Bacillus.
Collapse
Affiliation(s)
- Manuel Strach
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Felicitas Koch
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Svenja Fiedler
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Klaus Liebeton
- BRAIN Biotech AG, Darmstädter Str. 34-36, Zwingenberg, 64673, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany.
| |
Collapse
|
4
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
5
|
Vacariu CM, Tanner ME. Recent Advances in the Synthesis and Biological Applications of Peptidoglycan Fragments. Chemistry 2022; 28:e202200788. [PMID: 35560956 DOI: 10.1002/chem.202200788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.
Collapse
Affiliation(s)
- Condurache M Vacariu
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Apostolos AJ, Ocius KL, Koyasseril-Yehiya TM, Santamaria C, Silva JRA, Lameira J, Alves CN, Siegrist MS, Pires MM. Metabolic Processing of Selenium-Based Bioisosteres of meso-Diaminopimelic Acid in Live Bacteria. Biochemistry 2022; 61:1404-1414. [PMID: 35687722 DOI: 10.1021/acs.biochem.2c00120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A primary component of all known bacterial cell walls is the peptidoglycan (PG) layer, which is composed of repeating units of sugars connected to short and unusual peptides. The various steps within PG biosynthesis are targets of potent antibiotics as proper assembly of the PG is essential for cellular growth and survival. Synthetic mimics of PG have proven to be indispensable tools to study the bacterial cell structure, growth, and remodeling. Yet, a common component of PG, meso-diaminopimelic acid (m-DAP) at the third position of the stem peptide, remains challenging to access synthetically and is not commercially available. Here, we describe the synthesis and metabolic processing of a selenium-based bioisostere of m-DAP (selenolanthionine) and show that it is installed within the PG of live bacteria by the native cell wall crosslinking machinery in mycobacterial species. This PG probe has an orthogonal release mechanism that could be important for downstream proteomics studies. Finally, we describe a bead-based assay that is compatible with high-throughput screening of cell wall enzymes. We envision that this probe will supplement the current methods available for investigating PG crosslinking in m-DAP-containing organisms.
Collapse
Affiliation(s)
- Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Karl L Ocius
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Carolina Santamaria
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - M Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Impact of crossbridge structure on peptidoglycan crosslinking: A synthetic stem peptide approach. Methods Enzymol 2022; 665:259-279. [PMID: 35379437 DOI: 10.1016/bs.mie.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall, whose main component is peptidoglycan (PG), provides cellular rigidity and prevents lysis from osmotic pressure. Moreover, the cell wall is the main interface between the external environment and internal cellular components. Given its essentiality, many antibiotics target enzymes related to the biosynthesis of cell wall. Of these enzymes, transpeptidases (TPs) are central to proper cell wall assembly and their inactivation is the mechanism of action of many antibiotics including β-lactams. TPs are responsible for stitching together strands of PG to make the crosslinked meshwork of the cell wall. This chapter focuses on the use of solid-phase peptide synthesis to build PG analogs that become site-selectively incorporated into the cell wall of live bacterial cells. This method allows for the design of fluorescent handles on PG probes that will enable the interrogation of substrate preferences of TPs (e.g., amidation at the glutamic acid residue, crossbridge presence) by analyzing the level of probe incorporation within the native cell wall of live bacterial cells.
Collapse
|
8
|
Hernández-Rocamora VM, Baranova N, Peters K, Breukink E, Loose M, Vollmer W. Real-time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin-binding proteins. eLife 2021; 10:61525. [PMID: 33625355 PMCID: PMC7943195 DOI: 10.7554/elife.61525] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as β-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.
Collapse
Affiliation(s)
- Víctor M Hernández-Rocamora
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Natalia Baranova
- Institute for Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
| | - Martin Loose
- Institute for Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Schaefer K, Owens TW, Page JE, Santiago M, Kahne D, Walker S. Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization. Nat Microbiol 2021; 6:34-43. [PMID: 33168989 PMCID: PMC7755832 DOI: 10.1038/s41564-020-00808-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Bacteria are encapsulated by a peptidoglycan cell wall that is essential for their survival1. During cell wall assembly, a lipid-linked disaccharide-peptide precursor called lipid II is polymerized and cross-linked to produce mature peptidoglycan. As lipid II is polymerized, nascent polymers remain membrane-anchored at one end, and the other end becomes cross-linked to the matrix2-4. How bacteria release newly synthesized peptidoglycan strands from the membrane to complete the synthesis of mature peptidoglycan is a long-standing question. Here, we show that a Staphylococcus aureus cell wall hydrolase and a membrane protein that contains eight transmembrane helices form a complex that may function as a peptidoglycan release factor. The complex cleaves nascent peptidoglycan internally to produce free oligomers as well as lipid-linked oligomers that can undergo further elongation. The polytopic membrane protein, which is similar to a eukaryotic CAAX protease, controls the length of these products. A structure of the complex at a resolution of 2.6 Å shows that the membrane protein scaffolds the hydrolase to orient its active site for cleaving the glycan strand. We propose that this complex functions to detach newly synthesized peptidoglycan polymer from the cell membrane to complete integration into the cell wall matrix.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marina Santiago
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Apostolos AJ, Pidgeon SE, Pires MM. Remodeling of Cross-bridges Controls Peptidoglycan Cross-linking Levels in Bacterial Cell Walls. ACS Chem Biol 2020; 15:1261-1267. [PMID: 32167281 DOI: 10.1021/acschembio.0c00002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell walls are barriers found in almost all known bacterial cells. These structures establish a controlled interface between the external environment and vital cellular components. A primary component of cell wall is a highly cross-linked matrix called peptidoglycan (PG). PG cross-linking, carried out by transglycosylases and transpeptidases, is necessary for proper cell wall assembly. Transpeptidases, targets of β-lactam antibiotics, stitch together two neighboring PG stem peptides (acyl-donor and acyl-acceptor strands). We recently described a novel class of cellular PG probes that were processed exclusively as acyl-donor strands. Herein, we have accessed the other half of the transpeptidase reaction by developing probes that are processed exclusively as acyl-acceptor strands. The critical nature of the cross-bridge on the PG peptide was demonstrated in live bacterial cells, and surprising promiscuity in cross-bridge primary sequence was found in various bacterial species. Additionally, acyl-acceptor probes provided insight into how chemical remodeling of the PG cross-bridge (e.g., amidation) can modulate cross-linking levels, thus establishing a physiological role of PG structural variations. Together, the acyl-donor and -acceptor probes will provide a versatile platform to interrogate PG cross-linking in physiologically relevant settings.
Collapse
Affiliation(s)
- Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| | - Sean E. Pidgeon
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| |
Collapse
|
11
|
Cochrane SA, Lohans CT. Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. Eur J Med Chem 2020; 194:112262. [PMID: 32248005 DOI: 10.1016/j.ejmech.2020.112262] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
The enzymes involved in bacterial cell wall synthesis are established antibiotic targets, and continue to be a central focus for antibiotic development. Bacterial penicillin-binding proteins (and, in some bacteria, l,d-transpeptidases) form essential peptide cross-links in the cell wall. Although the β-lactam class of antibiotics target these enzymes, bacterial resistance threatens their clinical use, and there is an urgent unmet need for new antibiotics. However, the search for new antibiotics targeting the bacterial cell wall is hindered by a number of obstacles associated with screening the enzymes involved in peptidoglycan synthesis. This review describes recent approaches for measuring the activity and inhibition of penicillin-binding proteins and l,d-transpeptidases, highlighting strategies that are poised to serve as valuable tools for high-throughput screening of transpeptidase inhibitors, supporting the development of new antibiotics.
Collapse
Affiliation(s)
- Stephen A Cochrane
- School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada.
| |
Collapse
|
12
|
Do T, Page JE, Walker S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J Biol Chem 2020; 295:3347-3361. [PMID: 31974163 DOI: 10.1074/jbc.rev119.010155] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria account for 1000-fold more biomass than humans. They vary widely in shape and size. The morphological diversity of bacteria is due largely to the different peptidoglycan-based cell wall structures that encase bacterial cells. Although the basic structure of peptidoglycan is highly conserved, consisting of long glycan strands that are cross-linked by short peptide chains, the mature cell wall is chemically diverse. Peptidoglycan hydrolases and cell wall-tailoring enzymes that regulate glycan strand length, the degree of cross-linking, and the addition of other modifications to peptidoglycan are central in determining the final architecture of the bacterial cell wall. Historically, it has been difficult to biochemically characterize these enzymes that act on peptidoglycan because suitable peptidoglycan substrates were inaccessible. In this review, we discuss fundamental aspects of bacterial cell wall synthesis, describe the regulation and diverse biochemical and functional activities of peptidoglycan hydrolases, and highlight recently developed methods to make and label defined peptidoglycan substrates. We also review how access to these substrates has now enabled biochemical studies that deepen our understanding of how bacterial cell wall enzymes cooperate to build a mature cell wall. Such improved understanding is critical to the development of new antibiotics that disrupt cell wall biogenesis, a process essential to the survival of bacteria.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
13
|
Insight into Elongation Stages of Peptidoglycan Processing in Bacterial Cytoplasmic Membranes. Sci Rep 2018; 8:17704. [PMID: 30531805 PMCID: PMC6286386 DOI: 10.1038/s41598-018-36075-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022] Open
Abstract
Peptidoglycan (PG) biosynthesis and assembly are needed for bacterial cell wall formation. Lipid II is the precursor in the PG biosynthetic pathway and carries a nascent PG unit that is processed by glycosyltransferases. Despite its immense therapeutic value as a target of several classes of antibiotics, the conformational ensemble of lipid II in bacterial membranes and its interactions with membrane-anchored enzymes remain elusive. In this work, lipid II and its elongated forms (lipid VI and lipid XII) were modeled and simulated in bilayers of POPE (palmitoyl-oleoyl-phosphatidyl-ethanolamine) and POPG (palmitoyl-oleoyl-phosphatidyl-glycerol) that mimic the prototypical composition of Gram-negative cytoplasmic membranes. In addition, penicillin-binding protein 1b (PBP1b) from Escherichia coli was modeled and simulated in the presence of a nascent PG to investigate their interactions. Trajectory analysis reveals that as the glycan chain grows, the non-reducing end of the nascent PG displays much greater fluctuation along the membrane normal and minimally interacts with the membrane surface. In addition, dihedral angles within the pyrophosphate moiety are determined by the length of the PG moiety and its surrounding environment. When a nascent PG is bound to PBP1b, the stem peptide remains in close contact with PBP1b by structural rearrangement of the glycan chain. Most importantly, the number of nascent PG units required to reach the transpeptidase domain are determined to be 7 or 8. Our findings complement experimental results to further understand how the structure of nascent PG can dictate the assembly of the PG scaffold.
Collapse
|
14
|
Rubino FA, Kumar S, Ruiz N, Walker S, Kahne DE. Membrane Potential Is Required for MurJ Function. J Am Chem Soc 2018; 140:4481-4484. [PMID: 29558128 DOI: 10.1021/jacs.8b00942] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MurJ, the flippase that exports the bacterial cell wall monomer Lipid II to the periplasm, is a target for new antibiotics, which are desperately needed to treat Gram-negative infections. Quantitative methods to monitor MurJ activity are required to characterize inhibitors but are challenging to develop because the lipid-linked substrate is not chemically altered in a flippase reaction. Here we show that MurJ inhibition can be quantified by measuring the accumulation of intracellular Lipid II using a biotin-tagging strategy. We have exploited this assay to show that MurJ is inhibited in the presence of a compound that dissipates the membrane potential. By probing cysteine accessibility we have found that under this condition MurJ relaxes into an inactive, outward-facing conformation reminiscent of that targeted by the peptide antibiotic LysM. We conclude that membrane potential is required for MurJ function in E. coli, and we anticipate that the ability to accumulate this inactive conformation will lead to structures useful for inhibitor design.
Collapse
Affiliation(s)
- Frederick A Rubino
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Sujeet Kumar
- Department of Microbiology , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Natividad Ruiz
- Department of Microbiology , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Suzanne Walker
- Department of Microbiology and Molecular Genetics , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Daniel E Kahne
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
15
|
Schaefer K, Owens TW, Kahne D, Walker S. Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. J Am Chem Soc 2018; 140:2442-2445. [PMID: 29402087 DOI: 10.1021/jacs.7b13551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gram-positive bacterial cell wall is a large supramolecular structure and its assembly requires coordination of complex biosynthetic pathways. In the step that merges the two major biosynthetic pathways in Staphylococcus aureus cell wall assembly, conserved protein ligases attach wall teichoic acids to peptidoglycan, but the order of biosynthetic events is a longstanding question. Here, we use a chemical approach to define which of the possible peptidoglycan intermediates are substrates for wall-teichoic acid ligases, thereby establishing the order of cell wall assembly. We have developed a strategy to make defined glycan chain-length polymers of either un-cross-linked or cross-linked peptidoglycan, and we find that wall teichoic acid ligases cannot transfer wall teichoic acid precursors to the cross-linked substrates. A 1.9 Å crystal structure of a LytR-CpsA-Psr (LCP) family ligase in complex with a wall teichoic acid precursor defines the location of the peptidoglycan binding site as a long, narrow groove, and suggests that the basis for selectivity is steric exclusion of cross-linked peptidoglycan. Consistent with this hypothesis, we have found that chitin oligomers are good substrates for transfer, showing that LCPs do not discriminate cross-linked from un-cross-linked peptidoglycan substrates by recognizing features of the un-cross-linked stem peptide. We conclude that wall teichoic acids are coupled to un-cross-linked peptidoglycan chains at an early stage of peptidoglycan synthesis and may create marks that define the proper spacing of subsequent cross-links.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.,Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Welsh MA, Taguchi A, Schaefer K, Van Tyne D, Lebre-ton F, Gilmore MS, Kahne D, Walker S. Identification of a Functionally Unique Family of Penicillin-Binding Proteins. J Am Chem Soc 2017; 139:17727-17730. [PMID: 29182854 PMCID: PMC5729098 DOI: 10.1021/jacs.7b10170] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Penicillin-binding proteins (PBPs) are enzymes involved in the assembly of the bacterial cell wall, a major target for antibiotics. These proteins are classified by mass into high-molecular-weight PBPs, which are transpeptidases that form peptidoglycan cross-links, and low-molecular-weight PBPs, which are typically hydrolases. We report a functionally unique family of low-molecular-weight PBPs that act as transpeptidases rather than hydrolases, but they do not cross-link peptidoglycan. We show that these PBPs can exchange d-amino acids bearing chemical tags or affinity handles into peptidoglycan precursors, including Lipid II, enabling biochemical studies of proteins involved in cell wall assembly. We report that, in two organisms, the PBPs incorporate lysine into cellular peptidoglycan and that, further, the PBPs have the unprecedented ability to transfer the primary ε-amine of lysine to peptidoglycan.
Collapse
Affiliation(s)
- Michael A. Welsh
- Dept. of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Atsushi Taguchi
- Dept. of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kaitlin Schaefer
- Dept. of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Daria Van Tyne
- Dept. of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - François Lebre-ton
- Dept. of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - Michael S. Gilmore
- Dept. of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
- Dept. of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - Daniel Kahne
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Suzanne Walker
- Dept. of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
17
|
Srisuknimit V, Qiao Y, Schaefer K, Kahne D, Walker S. Peptidoglycan Cross-Linking Preferences of Staphylococcus aureus Penicillin-Binding Proteins Have Implications for Treating MRSA Infections. J Am Chem Soc 2017; 139:9791-9794. [PMID: 28691491 PMCID: PMC5613940 DOI: 10.1021/jacs.7b04881] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are a global public health problem. MRSA strains have acquired a non-native penicillin-binding protein called PBP2a that cross-links peptidoglycan when the native S. aureus PBPs are inhibited by β-lactams. It has been proposed that the native S. aureus PBPs can use cell wall precursors having different glycine branch lengths (penta-, tri-, or monoglycine), while PBP2a can only cross-link peptidoglycan strands bearing a complete pentaglycine branch. This hypothesis has never been tested because the necessary substrates have not been available. Here, we compared the ability of PBP2a and two native S. aureus transpeptidases to cross-link peptidoglycan strands bearing different glycine branches. We show that purified PBP2a can cross-link glycan strands bearing penta- and triglycine, but not monoglycine, and experiments in cells provide support for these findings. Because PBP2a cannot cross-link peptidoglycan containing monoglycine, this study implicates the enzyme (FemA) that extends the monoglycine branch to triglycine on Lipid II as an ideal target for small molecules that restore sensitivity of MRSA to β-lactams.
Collapse
Affiliation(s)
- Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Yuan Qiao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02138, United States
| | - Kaitlin Schaefer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02138, United States
| |
Collapse
|
18
|
Qiao Y, Srisuknimit V, Rubino F, Schaefer K, Ruiz N, Walker S, Kahne D. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat Chem Biol 2017; 13:793-798. [PMID: 28553948 PMCID: PMC5478438 DOI: 10.1038/nchembio.2388] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Peptidoglycan is an essential crosslinked polymer that surrounds bacteria and protects them from osmotic lysis. Beta-lactam antibiotics target the final stages of peptidoglycan biosynthesis by inhibiting the transpeptidases that crosslink glycan strands to complete cell wall assembly. Characterization of transpeptidases and their inhibition by beta-lactams has been hampered by lack of access to substrate. We describe a general approach to accumulate Lipid II in bacteria and to obtain large quantities of this cell wall precursor. We demonstrate utility by isolating Staphylococcus aureus Lipid II and reconstituting the synthesis of crosslinked peptidoglycan by the essential penicillin-binding protein 2, PBP2, which catalyzes both glycan polymerization and transpeptidation. We also show that we can compare the potencies of different beta-lactams by directly monitoring transpeptidase inhibition. The methods reported here will enable a better understanding of cell wall biosynthesis and facilitate studies of next-generation transpeptidase inhibitors.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Frederick Rubino
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Kaitlin Schaefer
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Natividad Ruiz
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Schaefer K, Matano LM, Qiao Y, Kahne D, Walker S. In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. Nat Chem Biol 2017; 13:396-401. [PMID: 28166208 DOI: 10.1038/nchembio.2302] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/01/2016] [Indexed: 02/02/2023]
Abstract
Sacculus is a peptidoglycan (PG) matrix that protects bacteria from osmotic lysis. In Gram-positive organisms, the sacculus is densely functionalized with glycopolymers important for survival, but the way in which assembly occurs is not known. In Staphylococcus aureus, three LCP (LytR-CpsA-Psr) family members have been implicated in attaching the major glycopolymer wall teichoic acid (WTA) to PG, but ligase activity has not been demonstrated for these or any other LCP proteins. Using WTA and PG substrates produced chemoenzymatically, we show that all three proteins can transfer WTA precursors to nascent PGs, establishing that LCP proteins are PG-glycopolymer ligases. Although all S. aureus LCP proteins have the capacity to attach WTA to PG, we show that their cellular functions are not redundant. Strains lacking lcpA have phenotypes similar to those of WTA-null strains, indicating that this is the most important WTA ligase. This work provides a foundation for studying how LCP enzymes participate in cell wall assembly.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh M Matano
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuan Qiao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II. Proc Natl Acad Sci U S A 2016; 113:11561-11566. [PMID: 27688760 DOI: 10.1073/pnas.1608623113] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1-lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II-binding motif.
Collapse
|
21
|
Li L, Woodward RL, Han W, Qu J, Song J, Ma C, Wang PG. Chemoenzymatic synthesis of the bacterial polysaccharide repeating unit undecaprenyl pyrophosphate and its analogs. Nat Protoc 2016; 11:1280-98. [PMID: 27336706 DOI: 10.1038/nprot.2016.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polysaccharides are essential and immunologically relevant components of bacterial cell walls. These biomolecules can be found covalently attached to lipids (e.g., O-polysaccharide (PS) contains undecaprenyl and lipopolysaccharide (LPS) contains lipid A) or noncovalently associated with cell wells (e.g., capsular PS (CPS)). Although extensive genetic studies have indicated that the Wzy-dependent biosynthetic pathway is primarily responsible for producing such polysaccharides, in vitro biochemical studies are needed to determine, for example, which gene product is responsible for catalyzing each step in the pathway, and to reveal molecular details about the Wzx translocase, Wzy polymerase and O-PS chain-length determinant. Many of these biochemical studies require access to a structurally well-defined PS repeating unit undecaprenyl pyrophosphate (RU-PP-Und), the key building block in this pathway. We describe herein the chemoenzymatic synthesis of Escherichia coli (serotype O157) RU-PP-Und. This involves (i) chemical synthesis of precursor N-acetyl-D-galactosamine (GalNAc)-PP-Und (2 weeks) and (ii) enzymatic extension of the precursor to produce RU-PP-Und (2 weeks). Undecaprenyl phosphate and peracetylated GalNAc-1-phosphate are prepared from commercially available undecaprenol and peracetylated GalNAc. The chemical coupling of these two products, followed by structural confirmation (mass spectrometry and NMR) and deprotection, generates GalNAc-PP-Und. This compound is then sequentially modified by enzymes in the E. coli serotype O157 (E. coli O157) O-PS biosynthetic pathway. Three glycosyltransferases (GTs) are involved (WbdN, WbdO and WbdP) and they transfer glucose (Glc), L-fucose (L-Fuc) and N-acetylperosamine (PerNAc) onto GalNAc-PP-Und to form the intact RU-PP-Und in a stepwise manner. Final compounds and intermediates are confirmed by mass spectrometry. The procedure can be adapted to the synthesis of analogs with different PS or lipid moieties.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Robert L Woodward
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio, USA
| | - Weiqing Han
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jingyao Qu
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jing Song
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Cheng Ma
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Peng G Wang
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Hsu YP, Meng X, VanNieuwenhze M. Methods for visualization of peptidoglycan biosynthesis. METHODS IN MICROBIOLOGY 2016. [DOI: 10.1016/bs.mim.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Lamborelle N, Simon JF, Luxen A, Monbaliu JCM. Continuous-flow thermolysis for the preparation of vinylglycine derivatives. Org Biomol Chem 2015; 13:11602-6. [PMID: 26552900 DOI: 10.1039/c5ob02036k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Syn sulfoxide elimination was carried out under continuous-flow conditions in a mesofluidic thermolysis reactor. The design of the reactor enabled accurate control of reaction time and conditions, affording a convenient scale-independent procedure for the production of N,C-protected vinylglycine derivatives. Thermolysis at 270 °C under 1000 psi of pressure in superheated toluene enabled typical daily outputs ranging from 11 to 46 g per day with excellent selectivities and ee (>97%). The various competitive reaction pathways were studied and rationalized according to a computational study.
Collapse
Affiliation(s)
- Nicolas Lamborelle
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, 4000 Liège, Belgium.
| | | | | | | |
Collapse
|
24
|
Guo JX, Zhou T, Xu B, Zhu SF, Zhou QL. Enantioselective synthesis of α-alkenyl α-amino acids via N-H insertion reactions. Chem Sci 2015; 7:1104-1108. [PMID: 29910866 PMCID: PMC5975786 DOI: 10.1039/c5sc03558a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/27/2015] [Indexed: 01/16/2023] Open
Abstract
A new highly enantioselective route to α-alkenyl α-amino acid derivatives, which are important naturally occurring compounds with attractive bioactivity and synthetic utility, was developed using a N-H insertion reaction of vinyldiazoacetates and tert-butyl carbamate cooperatively catalyzed by achiral dirhodium(ii) carboxylates and chiral spiro phosphoric acids under mild, neutral conditions. This reaction has a broad substrate scope, a fast reaction rate (turnover frequency > 6000 h-1), a high yield (61-99%), and excellent enantioselectivity (83-98% ee). The chiral spiro phosphoric acid, which is proposed to realize the enantioselectivity of the insertion reaction by promoting the proton transfer of a ylide intermediate by acting as a chiral proton shuttle catalyst, can suppress several usual side reactions of vinyldiazoacetates and broaden the applications of these versatile carbene precursors in organic synthesis. To our knowledge, it is the first highly enantioselective carbene insertion reaction of vinyldiazoacetates with heteroatom-hydrogen bonds in which the heteroatom has lone-pair electrons.
Collapse
Affiliation(s)
- Jun-Xia Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Ting Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Bin Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China .
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China .
| |
Collapse
|
25
|
Blanchaert B, Wyseure T, Breukink E, Adams E, Declerck P, Van Schepdael A. Development of a liquid chromatography/mass spectrometry assay for the bacterial transglycosylation reaction through measurement of Lipid II. Electrophoresis 2015; 36:2841-2849. [DOI: 10.1002/elps.201500201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Bart Blanchaert
- Department of Pharmaceutical and Pharmacological sciences, Pharmaceutical analysis; KU Leuven - University of Leuven; Leuven Belgium
| | - Tine Wyseure
- Department of Pharmaceutical and Pharmacological sciences, Therapeutic and Diagnostic Antibodies; KU Leuven - University of Leuven; Leuven Belgium
| | - Eefjan Breukink
- Department of Biochemistry of Membranes, Bijvoet Center for Biomolecular Research; University of Utrecht; Utrecht The Netherlands
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological sciences, Pharmaceutical analysis; KU Leuven - University of Leuven; Leuven Belgium
| | - Paul Declerck
- Department of Pharmaceutical and Pharmacological sciences, Therapeutic and Diagnostic Antibodies; KU Leuven - University of Leuven; Leuven Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological sciences, Pharmaceutical analysis; KU Leuven - University of Leuven; Leuven Belgium
| |
Collapse
|
26
|
Gale RT, Brown ED. New chemical tools to probe cell wall biosynthesis in bacteria. Curr Opin Microbiol 2015; 27:69-77. [PMID: 26291270 DOI: 10.1016/j.mib.2015.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022]
Abstract
Some of the most successful drugs in the antibiotic pharmacopeia are those that inhibit bacterial cell wall biosynthesis. However, the worldwide spread of bacterial antibiotic resistance has eroded the clinical efficacy of these drugs and the antibiotic pipeline continues to be lean as drug discovery programs struggle to bring new agents to the clinic. Nevertheless, cell wall biogenesis remains a high interest and celebrated target. Recent advances in the preparation of chemical probes and biosynthetic intermediates provide the tools necessary to better understand cell wall assembly. Likewise, these tools offer new opportunities to identify and evaluate novel biosynthetic inhibitors. This review aims to highlight these advancements and to provide context for their utility as innovative new tools to study cell wall biogenesis and for antibacterial drug discovery.
Collapse
Affiliation(s)
- Robert T Gale
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
| |
Collapse
|
27
|
Fura JM, Pires MM. d-amino carboxamide-based recruitment of dinitrophenol antibodies to bacterial surfaces via peptidoglycan remodeling. Biopolymers 2015; 104:351-9. [DOI: 10.1002/bip.22618] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - Marcos M. Pires
- Department of Chemistry; Lehigh University; Bethlehem PA 18015
| |
Collapse
|
28
|
Mitachi K, Siricilla S, Klaic L, Clemons WM, Kurosu M. Chemoenzymatic syntheses of water-soluble lipid I fluorescent probes. Tetrahedron Lett 2015; 56:3441-3446. [PMID: 26190869 PMCID: PMC4505380 DOI: 10.1016/j.tetlet.2015.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptidoglycan (PG) is unique to bacteria, and thus, the enzymes responsible for its biosynthesis are promising antibacterial drug targets. The membrane-embedded enzymes in PG remain significant challenges in studying their mechanisms due to the fact that preparations of suitable enzymatic substrates require time-consuming biological transformations or chemical synthesis. Lipid I (prenyl diphosphoryl-MurNAc-pentapeptide) is an important PG biosynthesis intermediate to study the central enzymes, translocase I (MraY/MurX) and MurG. Lipid I isolated from nature contains the C50-or C55-prenyl unit that shows extremely poor water-solubility that renders studies of translocase I and MurG enzymes difficult. We have studied biological transformation of water soluble lipid I fluorescent probes using bacterial membrane fractions and purified MraY enzymes. In our investigation of the minimum structural requirements of the prenyl phosphates in MraY-catalyzed lipid I synthesis, we found that (2Z,6E)-farnesyl phosphate (C15-phosphate) can be recognized by E. coli MraY to generate the water-soluble lipid I fluorescent probes in high-yield. Under the optimized conditions, the same reaction was performed by using the purified MraY from Hydrogenivirga spp. to afford the lipid I analog with high-yield in a short reaction time.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Lada Klaic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Bld. Pasadena, CA 91125, USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Bld. Pasadena, CA 91125, USA
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| |
Collapse
|
29
|
Kocaoglu O, Carlson EE. Profiling of β-lactam selectivity for penicillin-binding proteins in Escherichia coli strain DC2. Antimicrob Agents Chemother 2015; 59:2785-90. [PMID: 25733506 PMCID: PMC4394777 DOI: 10.1128/aac.04552-14] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are integral players in bacterial cell division, and their catalytic activities can be monitored with β-lactam-containing chemical probes. Compounds that target a single PBP could provide important information about the specific role(s) of each enzyme, making identification of such molecules important. We evaluated 22 commercially available β-lactams for inhibition of the PBPs in live Escherichia coli strain DC2. Whole cells were titrated with β-lactam antibiotics and subsequently incubated with a fluorescent penicillin derivative, Bocillin-FL (Boc-FL), to label uninhibited PBPs. Protein visualization was accomplished by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation and fluorescent scanning. The examined β-lactams exhibited diverse PBP selectivities, with amdinocillin (mecillinam) showing selectivity for PBP2, aztreonam, piperacillin, cefuroxime, cefotaxime, and ceftriaxone for PBP3, and amoxicillin and cephalexin for PBP4. The remaining β-lactams did not block any PBPs in the DC2 strain of E. coli or inhibited more than one PBP at all examined concentrations in this Gram-negative organism.
Collapse
Affiliation(s)
- Ozden Kocaoglu
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Erin E Carlson
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, Indiana, USA Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
30
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Grabowicz M, Andres D, Lebar MD, Malojčić G, Kahne D, Silhavy TJ. A mutant Escherichia coli that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface. eLife 2014; 3:e05334. [PMID: 25551294 PMCID: PMC4296511 DOI: 10.7554/elife.05334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/24/2014] [Indexed: 12/03/2022] Open
Abstract
The lipopolysaccharide (LPS) forms the surface-exposed leaflet of the outer membrane (OM) of Gram-negative bacteria, an organelle that shields the underlying peptidoglycan (PG) cell wall. Both LPS and PG are essential cell envelope components that are synthesized independently and assembled by dedicated transenvelope multiprotein complexes. We have identified a point-mutation in the gene for O-antigen ligase (WaaL) in Escherichia coli that causes LPS to be modified with PG subunits, intersecting these two pathways. Synthesis of the PG-modified LPS (LPS*) requires ready access to the small PG precursor pool but does not weaken cell wall integrity, challenging models of precursor sequestration at PG assembly machinery. LPS* is efficiently transported to the cell surface without impairing OM function. Because LPS* contains the canonical vancomycin binding site, these surface-exposed molecules confer increased vancomycin-resistance by functioning as molecular decoys that titrate the antibiotic away from its intracellular target. This unexpected LPS glycosylation fuses two potent pathogen-associated molecular patterns (PAMPs). DOI:http://dx.doi.org/10.7554/eLife.05334.001 Tiny Gram-negative bacteria are one of humankind's deadliest foes, causing infections of wounds and the bloodstream that are very hard to treat. Many Gram-negative bacteria are resistant to several common antibiotics, and the few treatments available that can successfully kill the bacteria are often also toxic to the patients. Understanding how these bacteria elude antibiotics could help scientists develop better, less toxic treatments. Most bacteria are surrounded by a cell wall that helps protect the bacteria and gives them structure. Many broad-spectrum antibiotics, including penicillin and vancomycin, work by interfering with how this protective wall is built from molecules called peptidoglycans. However, Gram-negative bacteria have an outer membrane that prevents many antibiotics from reaching the cell wall, and so the antibiotics are unable to kill the bacteria. The outer membrane of Gram-negative bacteria is made up of sugars and fatty molecules called lipids. Recently, scientists discovered a mutation that interferes with the movement of the lipid and sugar molecules that make up the outer membrane, which compromises this protective layer and makes the bacteria more susceptible to antibiotics. To learn more about how this mutation interferes with the defenses of the Gram-negative bacteria Escherichia coli, Grabowicz et al. searched for compensating mutations that can counteract it and restore the antibiotic resistance of these mutant bacteria. The search revealed that a mutation in a gene called waaL increases E. coli's resistance to vancomycin, but not to other antibiotics. The gene encodes an enzyme, and the mutant form of the enzyme attaches some peptidoglycans to the surface of the outer membrane instead of incorporating them into the cell wall. The stray peptidoglycans on the cell's surface act as decoys, binding to vancomycin and keeping the drug from reaching its true target—the cell wall. The decoy strategy is similar to a mechanism used by Gram-positive bacteria—which lack a protective outer membrane—to resist vancomycin treatment, which also involves creating sites that bind the drug and keep it from its target. Vancomycin is not currently used clinically to treat E. coli or other Gram-negative infections because these bacteria are naturally quite resistant for other reasons. However, Grabowicz et al.'s findings do demonstrate how quickly bacteria can adapt and produce new defenses to antibiotics when old strategies fail. DOI:http://dx.doi.org/10.7554/eLife.05334.002
Collapse
Affiliation(s)
- Marcin Grabowicz
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Dorothee Andres
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Matthew D Lebar
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Goran Malojčić
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
32
|
Qiao Y, Lebar MD, Schirner K, Schaefer K, Tsukamoto H, Kahne D, Walker S. Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J Am Chem Soc 2014; 136:14678-81. [PMID: 25291014 PMCID: PMC4210121 DOI: 10.1021/ja508147s] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Penicillin-binding
proteins (PBPs) are involved in the synthesis
and remodeling of bacterial peptidoglycan (PG). Staphylococcus
aureus expresses four PBPs. Genetic studies in S.
aureus have implicated PBP4 in the formation of highly cross-linked
PG, but biochemical studies have not reached a consensus on its primary
enzymatic activity. Using synthetic Lipid II, we show here that PBP4
preferentially acts as a transpeptidase (TP) in vitro. Moreover, it is the PBP primarily responsible for incorporating
exogenous d-amino acids into cellular PG, implying that it
also has TP activity in vivo. Notably, PBP4 efficiently
exchanges d-amino acids not only into PG polymers but also
into the PG monomers Lipid I and Lipid II. This is the first demonstration
that any TP domain of a PBP can activate the PG monomer building blocks.
Exploiting the promiscuous TP activity of PBP4, we developed a simple,
highly sensitive assay to detect cellular pools of lipid-linked PG
precursors, which are of notoriously low abundance. This method, which
addresses a longstanding problem, is useful for assessing how genetic
and pharmacological perturbations affect precursor levels, and may
facilitate studies to elucidate antibiotic mechanism of action.
Collapse
Affiliation(s)
- Yuan Qiao
- Chemical Biology Program, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | | | |
Collapse
|
33
|
Penicillin-binding proteins: evergreen drug targets. Curr Opin Pharmacol 2014; 18:112-9. [DOI: 10.1016/j.coph.2014.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
|
34
|
Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 2014; 345:220-2. [PMID: 25013077 DOI: 10.1126/science.1254522] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Peptidoglycan (PG) is a polysaccharide matrix that protects bacteria from osmotic lysis. Inhibition of its biogenesis is a proven strategy for killing bacteria with antibiotics. The assembly of PG requires disaccharide-pentapeptide building blocks attached to a polyisoprene lipid carrier called lipid II. Although the stages of lipid II synthesis are known, the identity of the essential flippase that translocates it across the cytoplasmic membrane for PG polymerization is unclear. We developed an assay for lipid II flippase activity and used a chemical genetic strategy to rapidly and specifically block flippase function. We combined these approaches to demonstrate that MurJ is the lipid II flippase in Escherichia coli.
Collapse
Affiliation(s)
- Lok-To Sham
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Emily K Butler
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Matthew D Lebar
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Natividad Ruiz
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Lebar MD, May JM, Meeske AJ, Leiman SA, Lupoli TJ, Tsukamoto H, Losick R, Rudner DZ, Walker S, Kahne D. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. J Am Chem Soc 2014; 136:10874-7. [PMID: 25036369 PMCID: PMC4132960 DOI: 10.1021/ja505668f] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
The
peptidoglycan precursor, Lipid II, produced in the model Gram-positive
bacterium Bacillus subtilis differs from Lipid II
found in Gram-negative bacteria such as Escherichia coli by a single amidation on the peptide side chain. How this difference
affects the cross-linking activity of penicillin-binding proteins
(PBPs) that assemble peptidoglycan in cells has not been investigated
because B. subtilis Lipid II was not previously available.
Here we report the synthesis of B. subtilis Lipid
II and its use by purified B. subtilis PBP1 and E. coli PBP1A. While enzymes from both organisms assembled B. subtilis Lipid II into glycan strands, only the B. subtilis enzyme cross-linked the strands. Furthermore, B. subtilis PBP1 catalyzed the exchange of both d-amino acids and d-amino carboxamides into nascent peptidoglycan,
but the E. coli enzyme only exchanged d-amino
acids. We exploited these observations to design a fluorescent d-amino carboxamide probe to label B. subtilis PG in vivo and found that this probe labels the cell wall dramatically
better than existing reagents.
Collapse
Affiliation(s)
- Matthew D Lebar
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Martinez Farias MA, Kincaid VA, Annamalai VR, Kiessling LL. Isoprenoid phosphonophosphates as glycosyltransferase acceptor substrates. J Am Chem Soc 2014; 136:8492-5. [PMID: 24866828 PMCID: PMC4073833 DOI: 10.1021/ja500622v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Glycosyltransferases that act on
polyprenol pyrophosphate substrates
are challenging to study because their lipid-linked substrates are
difficult to isolate from natural sources and arduous to synthesize.
To facilitate access to glycosyl acceptors, we assembled phosphonophosphate
analogues and showed these are effective substrate surrogates for
GlfT1, the essential product of mycobacterial gene Rv3782. Under chemically defined conditions, the galactofuranosyltransferase
GlfT1 catalyzes the formation of a tetrasaccharide sequence en route
to assembly of the mycobacterial galactan.
Collapse
Affiliation(s)
- Mario A Martinez Farias
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
37
|
Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg Chem 2014; 54:44-50. [DOI: 10.1016/j.bioorg.2014.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
|
38
|
Alvarez L, Espaillat A, Hermoso JA, de Pedro MA, Cava F. Peptidoglycan remodeling by the coordinated action of multispecific enzymes. Microb Drug Resist 2014; 20:190-8. [PMID: 24799190 DOI: 10.1089/mdr.2014.0047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The peptidoglycan (PG) cell wall constitutes the main defense barrier of bacteria against environmental insults and acts as communication interface. The biochemistry of this macromolecule has been well characterized throughout the years but recent discoveries have unveiled its chemical plasticity under environmental stresses. Non-canonical D-amino acids (NCDAA) are produced and released to the extracellular media by diverse bacteria. Such molecules govern cell wall adaptation to challenging environments through their incorporation into the polymer, a widespread capability among bacteria that reveals the inherent catalytic plasticity of the enzymes involved in the cell wall metabolism. Here, we analyze the recent structural and biochemical characterization of Bsr, a new family of broad spectrum racemases able to generate a wide range of NCDAA. We also discuss the necessity of a coordinated action of PG multispecific enzymes to generate adequate levels of modification in the murein sacculus. Finally, we also highlight how this catalytic plasticity of NCDAA-incorporating enzymes has allowed the development of new revolutionary methodologies for the study of PG modes of growth and in vivo dynamics.
Collapse
Affiliation(s)
- Laura Alvarez
- 1 Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University , Umeå, Sweden
| | | | | | | | | |
Collapse
|
39
|
Mitachi K, Mohan P, Siricilla S, Kurosu M. One-pot protection-glycosylation reactions for synthesis of lipid II analogues. Chemistry 2014; 20:4554-8. [PMID: 24623584 PMCID: PMC4030666 DOI: 10.1002/chem.201400307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Indexed: 11/10/2022]
Abstract
(2,6-Dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methyl trichloroacetimidate (3) and its polymer-supported reagent 4 can be successfully applied to a one-pot protection-glycosylation reaction to form the disaccharide derivative 7 d for the synthesis of lipid II analogues. The temporary protecting group or linker at the C-6 position and N-Troc protecting group of 7 d can be cleaved simultaneously through a reductive condition. Overall yields of syntheses of lipid II (1) and neryl-lipid II N(ε)-dansylthiourea are significantly improved by using the described methods.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001 (USA)
| | - Priya Mohan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001 (USA)
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001 (USA)
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001 (USA)
| |
Collapse
|
40
|
Zapun A, Philippe J, Abrahams KA, Signor L, Roper DI, Breukink E, Vernet T. In vitro reconstitution of peptidoglycan assembly from the Gram-positive pathogen Streptococcus pneumoniae. ACS Chem Biol 2013; 8:2688-96. [PMID: 24044435 DOI: 10.1021/cb400575t] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the molecular basis of bacterial cell wall assembly is of paramount importance in addressing the threat of increasing antibiotic resistance worldwide. Streptococcus pneumoniae presents a particularly acute problem in this respect, as it is capable of rapid evolution by homologous recombination with related species. Resistant strains selected by treatment with β-lactams express variants of the target enzymes that do not recognize the drugs but retain their activity in cell wall building, despite the antibiotics being mimics of the natural substrate. Until now, the crucial transpeptidase activity that is inhibited by β-lactams was not amenable to in vitro investigation with enzymes from Gram-positive organisms, including streptococci, staphylococci, or enterococci pathogens. We report here for the first time the in vitro assembly of peptidoglycan using recombinant penicillin-binding proteins from pneumococcus and the precursor lipid II. The two required enzymatic activities, glycosyl transferase for elongating glycan chains and transpeptidase for cross-linking stem-peptides, were observed. Most importantly, the transpeptidase activity was dependent on the chemical nature of the stem-peptide. Amidation of the second residue glutamate into iso-glutamine by the recently discovered amido-transferase MurT/GatD is required for efficient cross-linking of the peptidoglycan.
Collapse
Affiliation(s)
- André Zapun
- Université
Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS, UMR
5075, 71 av. des Martyrs, Grenoble F-38027, France
- CEA, DSV, IBS, Grenoble F-38027, France
| | - Jules Philippe
- Université
Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS, UMR
5075, 71 av. des Martyrs, Grenoble F-38027, France
- CEA, DSV, IBS, Grenoble F-38027, France
| | - Katherine A. Abrahams
- Department
of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Luca Signor
- Université
Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS, UMR
5075, 71 av. des Martyrs, Grenoble F-38027, France
- CEA, DSV, IBS, Grenoble F-38027, France
| | - David I. Roper
- Department
of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Eefjan Breukink
- Department
of Chemical Biology and Organic Chemistry, Institute of Biomembranes,
Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Thierry Vernet
- Université
Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS, UMR
5075, 71 av. des Martyrs, Grenoble F-38027, France
- CEA, DSV, IBS, Grenoble F-38027, France
| |
Collapse
|
41
|
Lupoli TJ, Lebar MD, Markovski M, Bernhardt T, Kahne D, Walker S. Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms. J Am Chem Soc 2013; 136:52-5. [PMID: 24341982 DOI: 10.1021/ja410813j] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Escherichia coli , the bifunctional penicillin-binding proteins (PBPs), PBP1A and PBP1B, play critical roles in the final stage of peptidoglycan (PG) biosynthesis. These synthetic enzymes each possess a PG glycosyltransferase (PGT) domain and a transpeptidase (TP) domain. Recent genetic experiments have shown that PBP1A and PBP1B each require an outer membrane lipoprotein, LpoA and LpoB, respectively, to function properly in vivo. Here, we use complementary assays to show that LpoA and LpoB each increase the PGT and TP activities of their cognate PBPs, albeit by different mechanisms. LpoA directly increases the rate of the PBP1A TP reaction, which also results in enhanced PGT activity; in contrast, LpoB directly affects PGT domain activity, resulting in enhanced TP activity. These studies demonstrate bidirectional coupling of PGT and TP domain function. Additionally, the transpeptidation assay described here can be applied to study other activators or inhibitors of the TP domain of PBPs, which are validated drug targets.
Collapse
Affiliation(s)
- Tania J Lupoli
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
42
|
D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol 2013; 195:5391-5. [PMID: 24097941 DOI: 10.1128/jb.00975-13] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine and was reported to inhibit biofilm formation via the incorporation of these D-amino acids into the cell wall. Here, we show that L-amino acids were able to specifically reverse the inhibitory effects of their cognate D-amino acids. We also show that D-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding D-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of D-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of D-amino acids without losing the ability to incorporate at least one noncanonical D-amino acid, D-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of D-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis.
Collapse
|
43
|
Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly. PLoS One 2013; 8:e75522. [PMID: 24147156 PMCID: PMC3798694 DOI: 10.1371/journal.pone.0075522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022] Open
Abstract
The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.
Collapse
|