1
|
Zhu L, Yang H, Xu T, Shen F, Si C. Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks. NANO-MICRO LETTERS 2024; 17:87. [PMID: 39658670 PMCID: PMC11631836 DOI: 10.1007/s40820-024-01558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024]
Abstract
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices. Among them, metal-organic frameworks (MOFs) present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity, designability, and porosity. In particular, several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors, such as charged network construction, ligand functionalization, metal-center manipulation, defective engineering, guest molecule incorporation, and pore-space manipulation. With the implementation of these strategies, proton-conducting MOFs have developed significantly and profoundly within the last decade. Therefore, in this review, we critically discuss and analyze the fundamental principles, design strategies, and implementation methods targeted at improving the proton conductivity of MOFs through representative examples. Besides, the structural features, the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously. Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research. We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials.
Collapse
Affiliation(s)
- Liyu Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China
| | - Hongbin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| | - Feng Shen
- Agro-Environmenta Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, People's Republic of China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
2
|
Kusaka S, Itoh Y, Hori A, Usuba J, Pirillo J, Hijikata Y, Ma Y, Matsuda R. Adsorptive-dissolution of O 2 into the potential nanospace of a densely fluorinated metal-organic framework. Nat Commun 2024; 15:10117. [PMID: 39578463 PMCID: PMC11584617 DOI: 10.1038/s41467-024-54391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Nanoporous solids, including metal-organic frameworks (MOFs), have long been known to capture small molecules by adsorption on their pore surfaces. Liquids are also known to accommodate small molecules by dissolution. These two processes have been recognized as fundamentally distinct phenomena because of the different nature of the medium-solids and liquids. Here, we report a dissolution-like gas accommodation so-called "adsorptive-dissolution" behavior in a MOF (PFAC-2) with pores densely filled with perfluoroalkyl chains. PFAC-2 does not have solvent-accessible voids; nevertheless, it captures oxygen molecules without changing the framework structure, analogous to molecular dissolution into liquids. Moreover, we demonstrate the selective capture of O2 by PFAC-2 in a mixture of O2 and Ar, which are difficult to separate due to their similarities such as boiling point and molecular size. Our results show the integration of molecular adsorption into nanospaces and dissolution into fluorous solvents, which can guide the design of crystalline adsorbents for selective molecular trapping and gas separation.
Collapse
Affiliation(s)
- Shinpei Kusaka
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuh Itoh
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Akihiro Hori
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Junichi Usuba
- Research Center for Net Zero Carbon Society, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Jenny Pirillo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuh Hijikata
- Research Center for Net Zero Carbon Society, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Yunsheng Ma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- School of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Ryotaro Matsuda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| |
Collapse
|
3
|
Higaki Y, Masuda T, Shiomoto S, Tanaka Y, Kiuchi H, Harada Y, Tanaka M. Pronounced Cold Crystallization and Hydrogen Bonding Distortion of Water Confined in Microphases of Double Zwitterionic Block Copolymer Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19612-19618. [PMID: 39227353 DOI: 10.1021/acs.langmuir.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Advanced materials leveraging water control are garnering considerable interest, with the state of water emerging as a critical aspect of material design. This study explored the impact of microphase separation on water using aqueous solutions of double zwitterionic diblock copolymers, specifically poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate) (PCB2-b-PSB4). These copolymers form a mesoscale periodic ordered lattice structure consisting of two distinct aqueous phases. Through differential scanning calorimetry and X-ray emission spectroscopy, it was found that water in these PCB2-b-PSB4 aqueous solutions exhibits pronounced cold crystallization and subtle distortions in hydrogen-bonding configurations.
Collapse
Affiliation(s)
- Yuji Higaki
- Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takumi Masuda
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Shohei Shiomoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hisao Kiuchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Xie F, Chen L, Cedeño Morales EM, Ullah S, Fu Y, Thonhauser T, Tan K, Bao Z, Li J. Complete separation of benzene-cyclohexene-cyclohexane mixtures via temperature-dependent molecular sieving by a flexible chain-like coordination polymer. Nat Commun 2024; 15:2240. [PMID: 38472202 DOI: 10.1038/s41467-024-46556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The separation and purification of C6 cyclic hydrocarbons (benzene, cyclohexene, cyclohexane) represent a critically important but energy intensive process. Developing adsorptive separation technique to replace thermally driven distillation processes holds great promise to significantly reduce energy consumption. Here we report a flexible one-dimensional coordination polymer as an efficient adsorbent to discriminate ternary C6 cyclic hydrocarbons via an ideal molecular sieving mechanism. The compound undergoes fully reversible structural transformation associated with removal/re-coordination of water molecules and between activated and hydrocarbon-loaded forms. It exhibits distinct temperature- and adsorbate-dependent adsorption behavior which facilitates the complete separation of benzene, cyclohexene and cyclohexane from their binary and ternary mixtures, with the record-high uptake ratios for C6H6/C6H12 and C6H10/C6H12 in vapor phase and highest binary and ternary selectivities in liquid phase. In situ infrared spectroscopic analysis and ab initio calculations provide insight into the host-guest interactions and their effect on the preferential adsorption and structural transformation.
Collapse
Affiliation(s)
- Feng Xie
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Lihang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | | | - Saif Ullah
- Department of Physics and Center for Functional Materials, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Yiwen Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Kui Tan
- Department of Chemistry, University of North Texas, 1155 Union Cir, Denton, TX, 76203, USA.
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
Sato K. Beyond Natural Channel Proteins: Recent Advances in Fluorinated Nanochannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2809-2814. [PMID: 38307088 DOI: 10.1021/acs.langmuir.3c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Inspired by the structures and functions of natural channel proteins that selectively permeate ions and molecules across biological membranes, synthetic molecules capable of self-assembling into supramolecular nanotubes within the hydrophobic layer of the membranes have been designed and their material permeation properties have been studied. More recently, synthetic chemists have ventured to incorporate fluorine atoms, elements rarely found in natural proteins, into the structure of synthetic channels and discovered anomalous transmembrane material permeation properties. In this Perspective, the author provides a brief overview of recent advances in the development of fluorinated nanochannels and possible directions for the future.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
6
|
Kumar S, Mohan B, Fu C, Gupta V, Ren P. Decoration and utilization of a special class of metal–organic frameworks containing the fluorine moiety. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Sachan SK, Anantharaman G. Mixed-Valent Stellated Cuboctahedral Cu(2,4-Imdb)-MOF for Trace Water Detection. Inorg Chem 2022; 61:18340-18345. [DOI: 10.1021/acs.inorgchem.2c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sharad Kumar Sachan
- Indian Institute of Technology Kanpur (IITK), Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
8
|
Rego RM, Kurkuri MD, Kigga M. A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. CHEMOSPHERE 2022; 302:134845. [PMID: 35525446 DOI: 10.1016/j.chemosphere.2022.134845] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are a versatile class of porous materials offering unprecedented scope for chemical and structural tunability. On account of their synthetic versatility, tunable and exceptional host-guest chemistry they are widely utilized in many prominent water remediation techniques. However, some of the MOFs present low structural stabilities specifically in aqueous and harsh chemical conditions which impedes their potential application in the field. Among the currently explored MOFs, UiO-66 exhibits structural robustness and has gained immense scientific popularity. Built with a zirconium-terephthalate framework, the strong Zr-O bond coordination contributes to its stability in aqueous, chemical, and thermal conditions. Moreover, other exceptional features such as high surface area and uniform pore size add to the grand arena of porous nanomaterials. As a result of its stable nature, UiO-66 offers relaxed admittance towards various functionalization, including synthetic and post-synthetic modifications. Consequently, the adsorptive properties of these highly stable frameworks have been modulated by the addition of various functionalities. Moreover, due to the presence of catalytically active sites, the use of UiO-66 has also been extended towards the degradation of pollutants. Furthermore, to solve the practical handling issues of the crystalline powdered forms, UiO-66 has been incorporated into various membrane supports. The incorporation of UiO-66 in various matrices has enhanced the rejection, permeate flux, and anti-fouling properties of membranes. The combination of such exceptional characteristics of UiO-66 MOF has expanded its scope in targeted purification techniques. Subsequently, this review highlights the role of UiO-66 in major water purification techniques such as adsorption, photocatalytic degradation, and membrane separation. This comprehensive review is expected to shed light on the existing developments and guide the inexhaustible futuristic scope of UiO-66 MOF.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
9
|
Dods MN, Weston SC, Long JR. Prospects for Simultaneously Capturing Carbon Dioxide and Harvesting Water from Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204277. [PMID: 35980944 DOI: 10.1002/adma.202204277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Mitigation of anthropogenic climate change is expected to require large-scale deployment of carbon dioxide removal strategies. Prominent among these strategies is direct air capture with sequestration (DACS), which encompasses the removal and long-term storage of atmospheric CO2 by purely engineered means. Because it does not require arable land or copious amounts of freshwater, DACS is already attractive in the context of sustainable development, but opportunities to improve its sustainability still exist. Leveraging differences in the chemistry of CO2 and water adsorption within porous solids, here, the prospect of simultaneously removing water alongside CO2 in direct air capture operations is investigated. In many cases, the co-adsorbed water can be desorbed separately from chemisorbed CO2 molecules, enabling efficient harvesting of water from air. Depending upon the material employed and process conditions, the desorbed water can be of sufficiently high purity for industrial, agricultural, or potable use and can thus improve regional water security. Additionally, the recovered water can offset a portion of the costs associated with DACS. In this Perspective, molecular- and process-level insights are combined to identify routes toward realizing this nascent yet enticing concept.
Collapse
Affiliation(s)
- Matthew N Dods
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Simon C Weston
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801, USA
| | - Jeffrey R Long
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Ullah S, Tan K, Sensharma D, Kumar N, Mukherjee S, Bezrukov AA, Li J, Zaworotko MJ, Thonhauser T. CO
2
Capture by Hybrid Ultramicroporous TIFSIX‐3‐Ni under Humid Conditions Using Non‐Equilibrium Cycling. Angew Chem Int Ed Engl 2022; 61:e202206613. [PMID: 35737638 PMCID: PMC9539483 DOI: 10.1002/anie.202206613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/03/2022]
Abstract
Although pyrazine‐linked hybrid ultramicroporous materials (HUMs, pore size <7 Å) are benchmark physisorbents for trace carbon dioxide (CO2) capture under dry conditions, their affinity for water (H2O) mitigates their carbon capture performance in humid conditions. Herein, we report on the co‐adsorption of H2O and CO2 by TIFSIX‐3‐Ni—a high CO2 affinity HUM—and find that slow H2O sorption kinetics can enable CO2 uptake and release using shortened adsorption cycles with retention of ca. 90 % of dry CO2 uptake. Insight into co‐adsorption is provided by in situ infrared spectroscopy and ab initio calculations. The binding sites and sorption mechanisms reveal that both CO2 and H2O molecules occupy the same ultramicropore through favorable interactions between CO2 and H2O at low water loading. An energetically favored water network displaces CO2 molecules at higher loading. Our results offer bottom‐up design principles and insight into co‐adsorption of CO2 and H2O that is likely to be relevant across the full spectrum of carbon capture sorbents to better understand and address the challenge posed by humidity to gas capture.
Collapse
Affiliation(s)
- Saif Ullah
- Department of Physics and Center for Functional Materials Wake Forest University Winston-Salem NC 27109 USA
| | - Kui Tan
- Department of Materials Science & Engineering University of Texas at Dallas Richardson TX 75080 USA
| | - Debobroto Sensharma
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Naveen Kumar
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Soumya Mukherjee
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Andrey A. Bezrukov
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Jing Li
- Department of Chemistry and Chemical Biology Rutgers University Piscataway NJ 08854 USA
| | - Michael J. Zaworotko
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials Wake Forest University Winston-Salem NC 27109 USA
| |
Collapse
|
11
|
Christian MS, Nenoff TM, Rimsza JM. Discovery of Complex Binding and Reaction Mechanisms from Ternary Gases in Rare Earth Metal–Organic Frameworks. Chemistry 2022; 28:e202201926. [DOI: 10.1002/chem.202201926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | - Tina M. Nenoff
- Material, Chemical, and Physical Sciences Sandia National Laboratories Albuquerque NM 87123 USA
| | - Jessica M. Rimsza
- Geochemistry Department Sandia National Laboratories Albuquerque NM 87123 USA
| |
Collapse
|
12
|
Ullah S, Tan K, Sensharma D, Kumar N, Mukherjee S, Bezrukov AA, Li J, Zaworotko MJ, Thonhauser T. CO2 Capture by Hybrid Ultramicroporous TIFSIX‐3‐Ni under Humid Conditions Using Non‐Equilibrium Cycling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saif Ullah
- Wake Forest University Physics 2700 Reynolda Rd Apt. 1312 27106 Winston Salem UNITED STATES
| | - Kui Tan
- UTD: University of Texas at Dallas Department of Materials Science and Engineering UNITED STATES
| | | | - Naveen Kumar
- University of Limerick Department of Chemical Sciences IRELAND
| | | | | | - Jing Li
- Rutgers University: Rutgers The State University of New Jersey Department of Chemistry and Chemical Biology UNITED STATES
| | | | - Timo Thonhauser
- Wake Forest University Department of Physics and Center for Functional Materials UNITED STATES
| |
Collapse
|
13
|
Chen C, Yu Z, Sholl DS, Walton KS. Effect of Loading on the Water Stability of the Metal-Organic Framework DMOF-1 [Zn(bdc)(dabco) 0.5]. J Phys Chem Lett 2022; 13:4891-4896. [PMID: 35621704 DOI: 10.1021/acs.jpclett.2c00693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, the degradation of the metal-organic framework (MOF) DMOF-1 as a function of water adsorption was investigated. As the quantity of water vapor adsorbed by DMOF-1 increases, degradation of the MOF from hydrolysis accelerates. Degradation was attributed to clustering of water molecules in the void space of DMOF-1, as seen in NVT Monte Carlo simulations. Our molecular simulations strongly suggest that degradation of DMOF-1 by water is driven by water adsorption at defect sites in the MOF. Interestingly, it was observed that DMOF-1 can remain stable if it adsorbs less water than the 1 mmol/g necessary to initiate degradation within the framework. Even though the rate of hydrolysis increases at higher temperatures, the degradation threshold for DMOF-1 remains 1 mmol/g regardless of temperature. This suggests that at sufficiently elevated temperatures (above ∼50 °C) DMOF-1 is stable toward water vapor at all relative humidities.
Collapse
Affiliation(s)
- Carmen Chen
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Zhenzi Yu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Krista S Walton
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Wang JZ, Fu XP, Liu QY, Chen L, Xu LP, Wang YL. Dinuclear Nickel-Oxygen Cluster-Based Metal-Organic Frameworks with Octahedral Cages for Efficient Xe/Kr Separation. Inorg Chem 2022; 61:5737-5743. [PMID: 35385262 DOI: 10.1021/acs.inorgchem.1c03740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xe/Kr separation is industrially important but remains a daunting issue in chemical separations. Herein, a fluorinated metal-organic framework (MOF), [Ni2(μ2-O)(TFBPDC)(tpt)2]n (named JXNU-13-F), built from 3,3',5,5'-tetrakis(fluoro)biphenyl-4,4'-dicarboxylic (TFBPDC2-) and 2,4,6-tri(4-pyridinyl)-1,3,5-triazine (tpt) ligands is provided. JXNU-13-F displays a three-dimensional (3D) framework constructed from distorted octahedral cages and an impressive Xe capacity of 144 cm3 g-1 at 273 K and 1 bar, ranking among top MOFs. The high Xe uptake and moderate Xe/Kr adsorption selectivity endow JXNU-13-F with efficient Xe/Kr separation demonstrated by experimental column breakthrough tests. The comparative studies of gas adsorption between isostructural JXNU-13-F and JXNU-13 (the nonfluorinated analogue ([Ni2(μ2-O)(BPDC))(tpt)2]n with biphenyl-4,4'-dicarboxylic (BPDC2-)) revealed that the F groups serve as the innocent groups during the Xe and Kr adsorption in JXNU-13-F. Thus, a combination of highly hydrophobic and π-electron-rich pore surfaces made of aromatic rings with strong interactions with the Xe atom possessing large polarizability and appropriate pore sizes that match well Xe having a large atom diameter has resulted in high Xe uptake and effective Xe/Kr separation characteristics of JXNU-13-F.
Collapse
Affiliation(s)
- Jing-Zhe Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Xing-Ping Fu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China.,Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan 354300, Fujian, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Lan-Ping Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| |
Collapse
|
15
|
Rong S, Su P, Chen S, Jia M, Li W. Sub-5 nm porous polymer decoration toward superhydrophobic MOFs with enhanced stability and processability. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Yamazoe K, Higaki Y, Inutsuka Y, Miyawaki J, Takahara A, Harada Y. Critical In-Plane Density of Polyelectrolyte Brush for the Ordered Hydrogen-Bonded Structure of Incorporated Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3076-3081. [PMID: 35230121 DOI: 10.1021/acs.langmuir.1c02895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A polymer electrolyte brush is a reasonable platform to confine water molecules within a nanoscopic area to study their role in the function of interacting media because of their adjustable nanospace and charge by changing the in-plane density and side chains of the brush. Here, we demonstrate how the in-plane spacing of cationic polymer brush chains, poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMTAC), affects the hydrogen bond configuration of incorporated water using soft X-ray emission spectroscopy. At the critical in-plane density σ = 0.30 chains/nm2 of PMTAC, tetrahedrally coordinated water molecules started to melt into distorted or broken hydrogen-bonded configurations. Considering the charge on the quaternary ammonium cations, the electric field required to form a tetrahedrally coordinated hydrogen-bonded configuration was estimated as ∼500 kV cm-1 and is effective up to ∼1 nm from the surface of the polymer chain. These findings are useful for designing specific interface properties and the resultant surface function of polyelectrolyte-based materials.
Collapse
Affiliation(s)
- Kosuke Yamazoe
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Yuji Higaki
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Inutsuka
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun Miyawaki
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Atsushi Takahara
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
17
|
Chapman E, Ullah S, Wang H, Feng L, Wang K, Zhou HC, Li J, Thonhauser T, Tan K. Tuning the Adsorption Properties of Metal-Organic Frameworks through Coadsorbed Ammonia. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43661-43667. [PMID: 34491050 DOI: 10.1021/acsami.1c11876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we report a novel strategy to increase the gas adsorption selectivity of metal organic framework materials by coadsorbing another molecular species. Specifically, we find that addition of tightly bound NH3 molecules in the well-known metal-organic framework MOF-74 dramatically alters its adsorption behavior of C2H2 and C2H4. Combining in situ infrared spectroscopy and ab initio calculations, we find that-as a result of coadsorbed NH3 molecules attaching to the open metal sites-C2H2 binds more strongly and diffuses much faster than C2H4, occupying the available space adjacent to metal-bound NH3 molecules. Most remarkably, C2H4 is now almost completely excluded from entering the MOF once C2H2 has been loaded. This finding dispels the widespread belief that strongly coadsorbed species in nanoporous materials always undermine their performance in adsorbing or separating weakly bound target molecules. Furthermore, it suggests a new route to tune the adsorption behavior of MOF materials through harnessing the interactions among coadsorbed guests.
Collapse
Affiliation(s)
- Eric Chapman
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Saif Ullah
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hao Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kunyu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Kui Tan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
18
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Theppitak C, Jiajaroen S, Chongboriboon N, Chanthee S, Kielar F, Dungkaew W, Sukwattanasinitt M, Chainok K. Self-Assembly of 1D Double-Chain and 3D Diamondoid Networks of Lanthanide Coordination Polymers through In Situ-Generated Ligands: High-Pressure CO 2 Adsorption and Photoluminescence Properties. Molecules 2021; 26:4428. [PMID: 34361582 PMCID: PMC8347576 DOI: 10.3390/molecules26154428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Two new lanthanide-based coordination polymers, [Sm2(bzz)(ben)6(H2O)3]·0.5H2O (1) and [Eu(bbz)(ben)3] (2), were synthesized and characterized. The described products were formed from in situ-generated benzoate (ben) and N'-benzoylbenzohydrazide (bbz) ligands, which were the products of transformation of originally added benzhydrazide (bzz) under hydrothermal conditions. Compound 1 exhibits a one-dimensional (1D) double-chain structure built up from the connection of the central Sm3+ ions with a mixture of bzz and ben ligands. On the other hand, 2 features a 3D network with a 4-connected (66) dia topology constructed from dinuclear [Eu2(ben)6] secondary building units and bbz linkers. High-pressure CO2 sorption studies of activated 1 show that maximum uptake increases to exceptionally high values of 376.7 cm3 g-1 (42.5 wt%) under a pressure of 50 bar at 298 K with good recyclability. Meanwhile, 2 shows a typical red emission in the solid state at room temperature with the decay lifetime of 1.2 ms.
Collapse
Affiliation(s)
- Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Suwadee Jiajaroen
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Nucharee Chongboriboon
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
| | - Songwuit Chanthee
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | | | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
| |
Collapse
|
20
|
Shi D, Yu X, Fan W, Wee V, Zhao D. Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Guo X, Liu L, Xiao Y, Mehmood R, Xiao Y, Qi Y, Zhang F. Water-Stable Cobalt-Based MOF for Water Oxidation in Neutral Aqueous Solution: A Case of Mimicking the Photosystem II. Inorg Chem 2021; 60:1790-1796. [PMID: 33471516 DOI: 10.1021/acs.inorgchem.0c03265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the highly efficient water oxidation of Mn4CaO5 in natural photosynthesis, development of novel artificial water oxidation catalysts (WOCs) with structure and function mimicked has inspired extensive interests. A novel 3D cobalt-based MOF (GXY-L8-Co) was synthesized for promising artificial water oxidation by employing the Co4O4 quasi-cubane motifs with a similar structure as the Mn4CaO5 as the core. The GXY-L8-Co not only shows good chemical stability in common organic solvents or water for up to 10 days but also exhibits oxygen evolution performance. It has been demonstrated that the uniform distribution of Co4O4 catalytic active sites confined in the MOF framework should be responsible for the good robustness and catalytic performance.
Collapse
Affiliation(s)
- Xiangyang Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Xiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rashid Mehmood
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yejun Xiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Qi
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
22
|
Yeh CH, Khan AH, Miyazaki T, Jiang JC. The investigation of methane storage at the Ni-MOF-74 material: a periodic DFT calculation. Phys Chem Chem Phys 2021; 23:12270-12279. [PMID: 34013930 DOI: 10.1039/d1cp01276b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop a high-performance methane storage material, an understanding of the mechanism and electronic interactions between methane and the material is essential. In this study, we performed detailed theoretical analyses to investigate the methane storage capacity of Ni-MOF-74 using a large-scale periodic DFT code CONQUEST. In a single pore of the unit cell, we considered three possible sites, iSBU, L, and P sites, where iSBU is the inorganic secondary building unit with a metal center, and L is the linker consisting of the organic building unit, while the P site is the vacuum site in the center of the pore. It shows that the methane molecule adsorption possesses the largest methane molecule adsorption energy on the iSBU site. Our calculations indicate that both C-HO and weak agostic interactions exist between the methane molecule and the iSBU site. The adsorption energy of one methane molecule on the iSBU site is in good agreement with previous experimental and theoretical studies. The calculation of the stepwise methane molecule adsorption shows that the first six methane molecules can first occupy the iSBU sites via C-HO and weak agostic interactions. The second six methane molecules are adsorbed on the remaining L sites, where the C-Hπ interaction becomes important, leading to the synergistic effect together with the C-HO interaction to enhance the adsorption energy of the methane molecule. Finally, it can adsorb up to sixteen CH4 molecules in a single pore of a unit cell at Ni-MOF-74. Moreover, we conducted DOS and EDD analyses, which clearly show that the interactions play a vital role in the adsorption of a methane molecule on Ni-MOF-74, especially the C-HO interaction.
Collapse
Affiliation(s)
- Chen-Hao Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan. and First-Principles Simulation Group, Nano-Theory Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen, Taichung 40724, Taiwan
| | - Abdul Hannan Khan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Tsuyoshi Miyazaki
- First-Principles Simulation Group, Nano-Theory Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Jyh-Chiang Jiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
23
|
Du ZY, Yu YZ, Hong YL, Li NF, Han YM, Cao JP, Sun Q, Mei H, Xu Y. Polyoxometalate-Based Metal-Organic Frameworks with Unique High-Nuclearity Water Clusters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57174-57181. [PMID: 33300787 DOI: 10.1021/acsami.0c18970] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The maximum exposure of polyoxometalates (POMs) is of great significance to enhance the catalytic performance of HKUST-1 with incorporated Keggin-type POMs. Herein, two phosphovanadomolybdates were encapsulated into the HKUST-1 via a hydrothermal method to obtain two polyoxometalate-based metal-organic frameworks, formulated as [Cu12(BTC)8(H2O)12][H4PMo11VO40]@(H2O)30 (1) and [Cu12(BTC)8(H2O)12][H5PMo10V2O40]@(H2O)49 (2). Single-crystal X-ray diffraction analysis indicates that two compounds contain unique high-nuclearity water clusters without organic counter cations. The octahedral-shaped water cluster (H2O)30 was constructed from square-pyramid-shaped (H2O)5 for compound 1, while the huge cage-shaped water cluster (H2O)49 of compound 2 consisted of crown-like (H2O)8 and one water molecule, which substitute the organic counter cations involved in the structural construction. More importantly, after removing the water clusters via simple heat treatment, the active sites of the two compounds were fully exposed, leading to good catalytic activities for both benzene hydroxylation reaction and oxidative desulfurization. Furthermore, the catalytic test confirmed that compound 2 may be a bifunctional heterogeneous catalyst with great promise for both benzene hydroxylation and oxidative desulfurization.
Collapse
Affiliation(s)
- Ze-Yu Du
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan-Zhao Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ya-Lin Hong
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ning-Fang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ye-Min Han
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jia-Peng Cao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Qi Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
24
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
25
|
Batra R, Chen C, Evans TG, Walton KS, Ramprasad R. Prediction of water stability of metal–organic frameworks using machine learning. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-00249-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Zhang X, Wang B, Alsalme A, Xiang S, Zhang Z, Chen B. Design and applications of water-stable metal-organic frameworks: status and challenges. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213507] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Takahara A, Higaki Y, Hirai T, Ishige R. Application of Synchrotron Radiation X-ray Scattering and Spectroscopy to Soft Matter. Polymers (Basel) 2020; 12:polym12071624. [PMID: 32708350 PMCID: PMC7407237 DOI: 10.3390/polym12071624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
Light produced by synchrotron radiation (SR) is much brighter than that produced by conventional laboratory X-ray sources. The photon energy of SR X-ray ranges from soft and tender X-rays to hard X-rays. Moreover, X-rays become element sensitive with decreasing photon energy. By using a wide energy range and high-quality light of SR, different scattering and spectroscopic methods were applied to various soft matters. We present five of our recent studies performed using specific light properties of a synchrotron facility, which are as follows: (1) In situ USAXS study to understand the deformation behavior of colloidal crystals during uniaxial stretching; (2) structure characterization of semiconducting polymer thin films along the film thickness direction by grazing-incidence wide-angle X-ray scattering using tender X-rays; (3) X-ray absorption fine structure (XAFS) analysis of the formation mechanism of poly(3-hexylthiophene) (P3HT); (4) soft X-ray absorption and emission spectroscopic analysis of water structure in polyelectrolyte brushes; and (5) X-ray photon correlation spectroscopic analysis of the diffusion behavior of polystyrene-grafted nanoparticles dispersed in a polystyrene matrix.
Collapse
Affiliation(s)
- Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Correspondence:
| | - Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Tomoyasu Hirai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Applied Chemistry, Faculty of Engineering, and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Asahi-ku, Osaka 535-8585, Japan
| | - Ryohei Ishige
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, E4-5, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
28
|
Xie L, Xu M, Liu X, Zhao M, Li J. Hydrophobic Metal-Organic Frameworks: Assessment, Construction, and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901758. [PMID: 32099755 PMCID: PMC7029650 DOI: 10.1002/advs.201901758] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/18/2019] [Indexed: 05/28/2023]
Abstract
Tens of thousands of metal-organic frameworks (MOFs) have been developed in the past two decades, and only ≈100 of them have been demonstrated as porous and hydrophobic. These hydrophobic MOFs feature not only a rich structural variety, highly crystalline frameworks, and uniform micropores, but also a low affinity toward water and superior hydrolytic stability, which make them promising adsorbents for diverse applications, including humid CO2 capture, alcohol/water separation, pollutant removal from air or water, substrate-selective catalysis, energy storage, anticorrosion, and self-cleaning. Herein, the recent research advancements in hydrophobic MOFs are presented. The existing techniques for qualitatively or quantitatively assessing the hydrophobicity of MOFs are first introduced. The reported experimental methods for the preparation of hydrophobic MOFs are then categorized. The concept that hydrophobic MOFs normally synthesized from predesigned organic ligands can also be prepared by the postsynthetic modification of the internal pore surface and/or external crystal surface of hydrophilic or less hydrophobic MOFs is highlighted. Finally, an overview of the recent studies on hydrophobic MOFs for various applications is provided and suggests the high versatility of this unique class of materials for practical use as either adsorbents or nanomaterials.
Collapse
Affiliation(s)
- Lin‐Hua Xie
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Ming‐Ming Xu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Xiao‐Min Liu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Min‐Jian Zhao
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Jian‐Rong Li
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| |
Collapse
|
29
|
|
30
|
Balestri D, Mazzeo PP, Carraro C, Demitri N, Pelagatti P, Bacchi A. Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal-Organic Framework. Angew Chem Int Ed Engl 2019; 58:17342-17350. [PMID: 31549464 DOI: 10.1002/anie.201907621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Indexed: 11/12/2022]
Abstract
The crystalline sponge method (CSM) is primarily used for structural determination by single-crystal X-ray diffraction of a single analyte encapsulated inside a porous MOF. As the host-guest systems often show severe disorder, reliable crystallographic determination is demanding; thus the dynamics of the guest entering and the formation of nanoconfined molecular aggregates has not been in the spotlight. Now, the concept is investigated of the CSM for monitoring the structural evolution of nanoconfined supramolecular aggregates of eugenol guests with displacement of DMF inside the cavities of the flexible MOF, PUM168. The interpretation of the electron density provides a series of unique detailed snapshots depicting the supramolecular guest aggregation, thus showing the tight interplay between the host flexible skeleton and the molecular guests through the DMF-to-eugenol exchange process.
Collapse
Affiliation(s)
- Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy
| | - Paolo P Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Claudia Carraro
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza-, Trieste, Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy.,Centro Interuniveristario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
31
|
Balestri D, Mazzeo PP, Carraro C, Demitri N, Pelagatti P, Bacchi A. Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
| | - Paolo P. Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
- Biopharmanet-TECUniversità degli studi di Parma via Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Claudia Carraro
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
| | - Nicola Demitri
- Elettra—Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park 34149 Basovizza— Trieste Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
- Centro Interuniveristario di Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
- Biopharmanet-TECUniversità degli studi di Parma via Parco Area delle Scienze 27/A 43124 Parma Italy
| |
Collapse
|
32
|
Lacroix MR, Liu Y, Strauss SH. Room-Temperature FTIR Spectra of the Cyclic S4 (H 2O) 4 Cluster in Crystalline Li 2(H 2O) 4(B 12F 12): Observation of B and E ν(OH) Bands and Coupling of Strong O–H···O and Weak O–H···F Vibrations. J Phys Chem A 2019; 123:9781-9790. [DOI: 10.1021/acs.jpca.9b07628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew R. Lacroix
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yong Liu
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado 80217, United States
| | - Steven H. Strauss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
33
|
Dong C, Bai J, Lv XL, Wu W, Lv J, Li JR. Fixing Flexible Arms of Core-Shared Ligands to Enhance the Stability of Metal-Organic Frameworks. Inorg Chem 2019; 58:15909-15916. [PMID: 31725278 DOI: 10.1021/acs.inorgchem.9b02397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, more and more research on metal-organic frameworks (MOFs) has focused on exploring their practical applications, where the stability is crucial. Besides the metal-ligand coordination bond, the configuration of the ligand also plays an important role in determining the stability of resulting MOFs. In this work, we demonstrate that fixing flexible arms of core-shared ligands can enhance the stability of their Zr(IV)-MOFs. Two groups, four core-shared tetracarboxylate ligands, 3,3',3″,3‴-(pyrene-1,3,6,8-tetrayltetrakis(benzene-4,1-diyl))tetraacrylate (PTSA4-) and 6,6',6″,6‴-(pyrene-1,3,6,8-tetrayl)tetrakis(2-naphthoate) (PTNA4-) with the pyrene core and 3,3',3″,3‴-((9H-carbazole-1,3,6,8-tetrayl)tetrakis(benzene-4,1-diyl))-tetraacrylate (CTSA4-) and 6,6',6″,6‴-(9H-carbazole-1,3,6,8-tetrayl)tetrakis-(2-naphthoate) (CTNA4-) with the carbazole core are rationally designed. Two ligands in each group have different flexibilities due to the distinct side arms: the styrene arm is flexible, whereas the naphthalene is rigid. Constructed with Zr6 clusters, four 4,8-connected Zr(IV)-MOFs, Zr6O4(OH)8(H2O)4(PTSA)2 (BUT-72) and Zr6O4(OH)8(H2O)4(PTNA)2 (BUT-73) with a sqc-a topologic framework structure and Zr6O4(OH)8(H2O)4(CTSA)2 (BUT-74) and Zr6O4(OH)8(H2O)4(CTNA)2 (BUT-63) with a scu-a structure are obtained, respectively. It is found that the stability of BUT-73 and -63 with the rigid naphthoate-based ligands is significantly enhanced compared with that of BUT-72 and -74 with the flexible phenyl acrylate-based ones. Moreover, stable BUT-63 represents outstanding performance in the molecular recognition of most solvents commonly used in organic synthesis and industrial manufacture.
Collapse
Affiliation(s)
- Chen Dong
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Jinquan Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Xiu-Liang Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Wei Wu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| |
Collapse
|
34
|
|
35
|
Thickness and Structure of Adsorbed Water Layer and Effects on Adhesion and Friction at Nanoasperity Contact. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3030055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most inorganic material surfaces exposed to ambient air can adsorb water, and hydrogen bonding interactions among adsorbed water molecules vary depending on, not only intrinsic properties of material surfaces, but also extrinsic working conditions. When dimensions of solid objects shrink to micro- and nano-scales, the ratio of surface area to volume increases greatly and the contribution of water condensation on interfacial forces, such as adhesion (Fa) and friction (Ft), becomes significant. This paper reviews the structural evolution of the adsorbed water layer on solid surfaces and its effect on Fa and Ft at nanoasperity contact for sphere-on-flat geometry. The details of the underlying mechanisms governing water adsorption behaviors vary depending on the atomic structure of the substrate, surface hydrophilicity and atmospheric conditions. The solid surfaces reviewed in this paper include metal/metallic oxides, silicon/silicon oxides, fluorides, and two-dimensional materials. The mechanism by which water condensation influences Fa is discussed based on the competition among capillary force, van der Waals force and the rupture force of solid-like water bridge. The condensed meniscus and the molecular configuration of the water bridge are influenced by surface roughness, surface hydrophilicity, temperature, sliding velocity, which in turn affect the kinetics of water condensation and interfacial Ft. Taking the effects of the thickness and structure of adsorbed water into account is important to obtain a full understanding of the interfacial forces at nanoasperity contact under ambient conditions.
Collapse
|
36
|
Lv XL, Yuan S, Xie LH, Darke HF, Chen Y, He T, Dong C, Wang B, Zhang YZ, Li JR, Zhou HC. Ligand Rigidification for Enhancing the Stability of Metal-Organic Frameworks. J Am Chem Soc 2019; 141:10283-10293. [PMID: 31180667 DOI: 10.1021/jacs.9b02947] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal-organic frameworks (MOFs) have been developing at an unexpected rate over the last two decades. However, the unsatisfactory chemical stability of most MOFs hinders some of the fundamental studies in this field and the implementation of these materials for practical applications. The stability in a MOF framework is mostly believed to rely upon the robustness of the M-L (M = metal ion, L = ligand) coordination bonds. However, the role of organic linkers as agents of stability to the framework, particularly the linker rigidity/flexibility, has been mostly overlooked. In this work, we demonstrate that a ligand-rigidification strategy can enhance the stability of MOFs. Three series of ligand rotamers with the same connectivity but different flexibility were prepared. Thirteen Zr-based MOFs were constructed with the Zr6O4(OH4)(-CO2) n units ( n = 8 or 12) and corresponding ligands. These MOFs allow us to evaluate the influence of ligand rigidity, connectivities, and structure on the stability of the resulting materials. It was found that the rigidity of the ligands in the framework strongly contributes to the stability of corresponding MOFs. Furthermore, water adsorption was performed on some chemically stable MOFs, showing excellent performance. It is expected that more MOFs with excellent stability could be designed and constructed by utilizing this strategy, ultimately promoting the development of MOFs with higher stability for synthetic chemistry and practical applications.
Collapse
Affiliation(s)
- Xiu-Liang Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Shuai Yuan
- Department of Chemistry , Texas A&M University , College Station , Texas 77843-3255 , United States
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Hannah F Darke
- Department of Chemistry , Texas A&M University , College Station , Texas 77843-3255 , United States
| | - Ya Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Chen Dong
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Bin Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Yong-Zheng Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , People's Republic of China
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , College Station , Texas 77843-3255 , United States
| |
Collapse
|
37
|
Zhou T, Tao Y, Xu Y, Luo D, Hu L, Feng J, Jing T, Zhou Y, Mei S. Facile preparation of magnetic carbon nanotubes@ZIF-67 for rapid removal of tetrabromobisphenol A from water sample. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35602-35613. [PMID: 30353432 DOI: 10.1007/s11356-018-3239-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
In this work, a novel magnetic carbon nanotube@zeolitic imidazolate framework-67 (MCNT@ZIF-67) composite was prepared facilely by a one-pot method using Fe3O4@SiO2 as the magnetic element, CNTs as the carbon matrix, and 2-methylimidazole (2-MIM) and cobaltous nitrate (Co(NO3)2·6H2O) as the organic and inorganic elements, respectively. The obtained MCNT@ZIF-67 composite was characterized by transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). Static adsorption experiments demonstrated that the maximum adsorption capacity of MCNTs@ZIF-67 for tetrabromobisphenol A (TBBPA) is 83.23 mg g-1, and the sorption isotherm was fitted well by the Freundlich adsorption model. Dynamic adsorption experiments illustrated that the adsorption of TBBPA on MCNTs@ZIF-67 can reach equilibrium in 20 min, and the adsorption kinetics of TBBPA were fitted well by a pseudo-second-order kinetic model. The adsorption of TBBPA on MCNTs@ZIF-67 showed favorable selectivity. The pH and the NaCl and NH4Cl common salts did not affect the TBBPA adsorption. Then, the proposed magnetic composite was applied as the adsorbent for the rapid removal of TBBPA in water samples, and the removal ratio of MCNTs@ZIF-67 for TBBPA in different spiked water samples with different volumes was above 95% with RSD < 5%. Furthermore, as a new removal sorbent, the removal reproducibility of MCNTs@ZIF-67 for TBBPA was favorable and stable, with only a 6.0% decrease after 6 cycles.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yun Tao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yinghu Xu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Dan Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Jingwen Feng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
38
|
Zhang SY, Jensen S, Tan K, Wojtas L, Roveto M, Cure J, Thonhauser T, Chabal YJ, Zaworotko MJ. Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. J Am Chem Soc 2018; 140:12545-12552. [DOI: 10.1021/jacs.8b07290] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi-Yuan Zhang
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Stephanie Jensen
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Kui Tan
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Matthew Roveto
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jeremy Cure
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Yves J. Chabal
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael J. Zaworotko
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| |
Collapse
|
39
|
Kalmutzki MJ, Diercks CS, Yaghi OM. Metal-Organic Frameworks for Water Harvesting from Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704304. [PMID: 29672950 DOI: 10.1002/adma.201704304] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/20/2017] [Indexed: 05/20/2023]
Abstract
Water harvesting from air in passive, adsorption-based devices holds great potential for delivering drinking water to arid regions of the world. This technology requires adsorbents that can be tailored for a maximum working capacity, temperature response, and the relative pressure range in which reversible adsorption occurs. In this respect, metal-organic frameworks (MOFs) are promising, owing to their structural diversity and the precision of their functionalization for adjusting both pore size and hydrophilicity, thereby facilitating the rational design of their water-sorption characteristics. Here, chemical and structural factors crucial for the design of hydrolytically stable MOFs for water adsorption are discussed. Prevalent water adsorption mechanisms in micro- and mesoporous MOFs alongside strategies for fine-tuning of their adsorption behavior by means of reticular chemistry are presented. Finally, an approach for the selection of promising MOFs with respect to water harvesting from air is proposed and design concepts for next-generation MOFs for application in passive adsorption-based water-harvesting devices are outlined.
Collapse
Affiliation(s)
- Markus J Kalmutzki
- Department of Chemistry, Kavli Energy NanoScience Institute, and Berkeley Global Science Institute, University of California - Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christian S Diercks
- Department of Chemistry, Kavli Energy NanoScience Institute, and Berkeley Global Science Institute, University of California - Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Omar M Yaghi
- Department of Chemistry, Kavli Energy NanoScience Institute, and Berkeley Global Science Institute, University of California - Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
40
|
Gulati A, Kakkar R. DFT studies on storage and adsorption capacities of gases on MOFs. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal-organic frameworks (MOFs) are highly porous crystalline materials, consisting of metal ions linked together with organic bridging ligands, exhibiting high surface areas. Lately, they have been utilized for gas sorption, storage, sensing, drug delivery, etc. The chemistry of MOFs is expanding with an extraordinary speed, constituting both theoretical and experimental research, and MOFs have proved to be promising candidates so far. In this work, we have reviewed the density functional theory studies of MOFs in the adsorption and separation of the greenhouse gas, CO2, as well as the storage efficiencies for fuel gases like H2, CH4 and C2H2. The role of organic ligands, doping with other metal ions and functional groups, open metal sites and hybrid MOFs have been reviewed in brief.
Collapse
|
41
|
Liu J, Zheng J, Barpaga D, Sabale S, Arey B, Derewinski MA, McGrail BP, Motkuri RK. A Tunable Bimetallic MOF‐74 for Adsorption Chiller Applications. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Liu
- Pacific Northwest National Laboratory 99352 Richland WA USA
| | - Jian Zheng
- Pacific Northwest National Laboratory 99352 Richland WA USA
| | | | - Sandip Sabale
- Pacific Northwest National Laboratory 99352 Richland WA USA
- P.G. Department of Chemistry Jaysingpur College 416101 Jaysingpur Maharashtra India
| | - Bruce Arey
- Environmental Molecular Sciences Laboratory (EMSL) Pacific Northwest National Laboratory 99352 Richland WA USA
| | | | | | | |
Collapse
|
42
|
Ma JX, Yang Z, Zhou T, Guo Q, Yang J, Yang T, Yang Q. Construction of structurally diverse luminescent lead(ii) fluorinated coordination polymers based on auxiliary ligands. NEW J CHEM 2018. [DOI: 10.1039/c8nj02846j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel Pb(ii) fluorinated coordination polymers were obtained by hydrothermal reaction of lead nitrate with 2,4,5,6-tetrafluoroisophthalic acid (H2TFIPA) in the presence of corresponding N-donor auxiliary ligands and photoluminescent properties of the all complexes have also been investigated.
Collapse
Affiliation(s)
- Jing-xin Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- P. R. China
| | - Zhihua Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- P. R. China
| | - Tong Zhou
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- P. R. China
| | - Qi Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- P. R. China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- P. R. China
| | - Tianlin Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- P. R. China
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- P. R. China
| |
Collapse
|
43
|
Alrayyani M, Wang X, Miljanić OŠ. Confinement of Water Pentamers within the Crystals of a Reduced Cyclotribenzoin. Chemistry 2017; 23:16476-16478. [DOI: 10.1002/chem.201704883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Maymounah Alrayyani
- Department of Chemistry University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
- Chemistry Department Faculty of Science King Abdulaziz University Jeddah 23218 Saudi Arabia
| | - Xiqu Wang
- Department of Chemistry University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Ognjen Š. Miljanić
- Department of Chemistry University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
44
|
Zheng J, Vemuri RS, Estevez L, Koech PK, Varga T, Camaioni DM, Blake TA, McGrail BP, Motkuri RK. Pore-Engineered Metal–Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications. J Am Chem Soc 2017; 139:10601-10604. [DOI: 10.1021/jacs.7b04872] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Zheng
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Rama S. Vemuri
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Luis Estevez
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Phillip K. Koech
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tamas Varga
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Donald M. Camaioni
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Thomas A. Blake
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - B. Peter McGrail
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Radha Kishan Motkuri
- Energy
and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
45
|
Chen L, Ye JW, Wang HP, Pan M, Yin SY, Wei ZW, Zhang LY, Wu K, Fan YN, Su CY. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat Commun 2017; 8:15985. [PMID: 28665406 PMCID: PMC5497063 DOI: 10.1038/ncomms15985] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022] Open
Abstract
A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal-organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.
Collapse
Affiliation(s)
- Ling Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Wen Ye
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Ping Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shao-Yun Yin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu-Yin Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ya-Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
46
|
Moghadam PZ, Ivy JF, Arvapally RK, Dos Santos AM, Pearson JC, Zhang L, Tylianakis E, Ghosh P, Oswald IWH, Kaipa U, Wang X, Wilson AK, Snurr RQ, Omary MA. Adsorption and molecular siting of CO 2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation. Chem Sci 2017; 8:3989-4000. [PMID: 28553541 PMCID: PMC5433493 DOI: 10.1039/c7sc00278e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/09/2017] [Indexed: 11/26/2022] Open
Abstract
CO2 isotherms for FMOF-1 reveal 11.0 mol L–1 max uptake and suggest framework expansion, substantiated by in situ neutron diffraction and GCMC simulations.
FMOF-1 is a flexible, superhydrophobic metal–organic framework with a network of channels and side pockets decorated with –CF3 groups. CO2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg–1 (11.0 mol L–1) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N2, O2, and CO2. Neutron diffraction in situ experiments on the crystalline powder show that CO2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N2 and O2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO2 in the presence of 80% relative humidity predict that water does not influence the CO2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO2 capture from humid gas streams.
Collapse
Affiliation(s)
- Peyman Z Moghadam
- Department of Chemical & Biological Engineering , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3120 , USA .
| | - Joshua F Ivy
- Department of Chemistry , University of North Texas , Denton , Texas 76203 , USA . ;
| | - Ravi K Arvapally
- Department of Chemistry , University of North Texas , Denton , Texas 76203 , USA . ;
| | - Antonio M Dos Santos
- Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , TN 37831 , USA .
| | - John C Pearson
- Department of Chemistry , University of North Texas , Denton , Texas 76203 , USA . ; .,Department of Chemistry , Michigan State University , East Lansing , MI 48824-1322 , USA
| | - Li Zhang
- Department of Chemical & Biological Engineering , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3120 , USA . .,Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou , China
| | - Emmanouil Tylianakis
- Department of Materials Science & Technology , University of Crete , Voutes Campus , Heraklion , Crete GR-71003 , Greece
| | - Pritha Ghosh
- Department of Chemical & Biological Engineering , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3120 , USA .
| | - Iain W H Oswald
- Department of Chemistry , University of North Texas , Denton , Texas 76203 , USA . ;
| | - Ushasree Kaipa
- Department of Chemistry , University of North Texas , Denton , Texas 76203 , USA . ;
| | - Xiaoping Wang
- Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , TN 37831 , USA .
| | - Angela K Wilson
- Department of Chemistry , University of North Texas , Denton , Texas 76203 , USA . ; .,Department of Chemistry , Michigan State University , East Lansing , MI 48824-1322 , USA
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3120 , USA .
| | - Mohammad A Omary
- Department of Chemistry , University of North Texas , Denton , Texas 76203 , USA . ;
| |
Collapse
|
47
|
Parkes MV, Greathouse JA, Hart DB, Gallis DFS, Nenoff TM. Ab initio molecular dynamics determination of competitive O₂ vs. N₂ adsorption at open metal sites of M₂(dobdc). Phys Chem Chem Phys 2017; 18:11528-38. [PMID: 27063148 DOI: 10.1039/c6cp00768f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.
Collapse
Affiliation(s)
- Marie V Parkes
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0754, USA
| | - Jeffery A Greathouse
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0754, USA
| | - David B Hart
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0754, USA
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-1415, USA
| | - Tina M Nenoff
- Physical Chemical and Nano Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185-1415, USA.
| |
Collapse
|
48
|
Mondal SS, Hovestadt M, Dey S, Paula C, Glomb S, Kelling A, Schilde U, Janiak C, Hartmann M, Holdt HJ. Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation. CrystEngComm 2017. [DOI: 10.1039/c7ce01438d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ZIF-318, isostructural to ZIF-8 but built from the mixed linkers of 2-methylimidazole and 2-trifluoromethylimidazole can be activated for gases sorption and the separation of ethane/ethene mixtures.
Collapse
Affiliation(s)
| | - Maximilian Hovestadt
- Erlangen Catalysis Resource Center (ECRC)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Subarna Dey
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Carolin Paula
- Erlangen Catalysis Resource Center (ECRC)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Sebastian Glomb
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Alexandra Kelling
- Institut für Chemie
- Anorganische Chemie
- Universität Potsdam
- 14476 Potsdam
- Germany
| | - Uwe Schilde
- Institut für Chemie
- Anorganische Chemie
- Universität Potsdam
- 14476 Potsdam
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Martin Hartmann
- Erlangen Catalysis Resource Center (ECRC)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Hans-Jürgen Holdt
- Institut für Chemie
- Anorganische Chemie
- Universität Potsdam
- 14476 Potsdam
- Germany
| |
Collapse
|
49
|
Keshavarzi E, Namdari F. Effects of the confinement on wall pressure, interfacial tension, and excess adsorption at the nanocylindrical wall. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
50
|
Supramolecular Aggregation of Tetrameric and Homododecameric Water Clusters in a 1D Cobalt(II) Coordination Polymer Containing 1,2,4,5-Benzenetetracarboxylate. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0451-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|