1
|
Kant R, Lee LS, Patterson A, Gibes N, Venkatakrishnan B, Zlotnick A, Bothner B. Small Molecule Assembly Agonist Alters the Dynamics of Hepatitis B Virus Core Protein Dimer and Capsid. J Am Chem Soc 2024; 146:28856-28865. [PMID: 39382517 PMCID: PMC11505896 DOI: 10.1021/jacs.4c08871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Chronic hepatitis B virus (HBV) poses a significant public health burden worldwide, encouraging the search for curative antivirals. One approach is capsid assembly modulators (CAMs), which are assembly agonists. CAMs lead to empty and defective capsids, inhibiting the formation of new viruses, and can also lead to defects in the release of the viral genome, inhibiting new infections. In this study, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS) to assess the impact of one such CAM, HAP18, on HBV dimers, capsids composed of 120 (or 90) capsid protein dimers, and cross-linked capsids (xl-capsids). HDX analysis revealed hydrogen bonding networks within and between the dimers. HAP18 disrupted the hydrogen bonding network of dimers, demonstrating a previously unappreciated impact on the dimer structure. Conversely, HAP18 stabilized both unmodified and cross-linked capsids. Intriguingly, cross-linking the capsid, which was accomplished by forming disulfides between an engineered C-terminal cysteine, increased the overall rate of HDX. Moreover, HAP18 binding induced conformational changes beyond the binding sites. Our findings provide evidence for allosteric communication within and between capsid protein dimers. These results show that CAMs are capable of harnessing this allosteric network to modulate the dimer and capsid dynamics.
Collapse
Affiliation(s)
- Ravi Kant
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
- University
School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| | - Lye-Siang Lee
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Angela Patterson
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nora Gibes
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Brian Bothner
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| |
Collapse
|
2
|
O'Leary TR, Balasubramaniam D, Hughes K, Foster D, Boyles J, Coleman K, Griffin PR. Hydrogen-Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase. Anal Chem 2023; 95:10204-10210. [PMID: 37379434 PMCID: PMC10830291 DOI: 10.1021/acs.analchem.3c00374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) is widely used for monoclonal antibody (mAb) epitope mapping, which aids in the development of therapeutic mAbs and vaccines, as well as enables the understanding of viral immune evasion. Numerous mAbs are known to recognize N-glycosylated epitopes and to bind in close proximity to an N-glycan site; however, glycosylated protein sites are typically obscured from HDX detection as a result of the inherent heterogeneity of glycans. To overcome this limitation, we covalently immobilized the glycosidase PNGase Dj on a solid resin and incorporated it into an online HDX-MS workflow for post-HDX deglycosylation. The resin-immobilized PNGase Dj exhibited robust tolerance to various buffer conditions and was employed in a column format that can be readily adapted into a typical HDX-MS platform. Using this system, we were able to obtain full sequence coverage of the SARS-CoV-2 receptor-binding domain (RBD) and map the glycosylated epitope of the glycan-binding mAb S309 to the RBD.
Collapse
Affiliation(s)
- Timothy R O'Leary
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Deepa Balasubramaniam
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Kristin Hughes
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Denisa Foster
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Jeffrey Boyles
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Kristina Coleman
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Patrick R Griffin
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| |
Collapse
|
3
|
Armero-Gimenez J, Wilbers R, Schots A, Williams C, Finnern R. Rapid screening and scaled manufacture of immunogenic virus-like particles in a tobacco BY-2 cell-free protein synthesis system. Front Immunol 2023; 14:1088852. [PMID: 36776898 PMCID: PMC9909599 DOI: 10.3389/fimmu.2023.1088852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Several vaccine platforms have been developed to fight pathogenic threats, with Virus-Like Particles (VLPs) representing a very promising alternative to traditional platforms. VLPs trigger strong and lasting humoral and cellular immune responses with fewer safety concerns and higher stability than other platforms. The use of extensively characterized carrier VLPs modified with heterologous antigens was proposed to circumvent the viral complexity of specific viruses that could lead to poor VLP assembly and yields. Although carrier VLPs have been successfully produced in a wide variety of cell-based systems, these are limited by low protein yields and protracted clone selection and optimization workflows that limit VLP screening approaches. In response, we have demonstrated the cell-free protein synthesis (CFPS) of several variants of the hepatitis B core (HBc) carrier VLP using a high-yielding tobacco BY-2 lysate (BYL). High VLP yields in the BYL system allowed in-depth characterization of HBc variants. Insertion of heterologous sequences at the spike region of the HBc monomer proved more structurally demanding than at the N-terminus but removal of the C-terminal domain allowed higher particle flexibility and insert acceptance, albeit at the expense of thermal and chemical stability. We also proved the possibility to scale the CFPS reaction up to 1L in batch mode to produce 0.45 grams of the native HBc VLP within a 48-hour reaction window. A maximum yield of 820 µg/ml of assembled VLP particles was observed at the 100µl scale and most remarkably the CFPS reaction was successfully scaled from 50µl to 1L without any reduction in protein yield across this 20,000-fold difference in reaction volumes. We subsequently proved the immunogenicity of BYL-derived VLPs, as flow cytometry and microscopy clearly showed prompt recognition and endocytosis of fluorescently labelled VLPs by human dendritic cells. Triggering of inflammatory cytokine production in human peripheral blood mononuclear cells was also quantitated using a multiplex assay. This research establishes BYL as a tool for rapid production and microscale screening of VLP variants with subsequent manufacturing possibilities across scales, thus accelerating discovery and implementation of new vaccine candidates using carrier VLPs.
Collapse
Affiliation(s)
- Jorge Armero-Gimenez
- Technology center, LenioBio GmbH, Dusseldorf, Germany.,Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | - Ruud Wilbers
- Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | | | | |
Collapse
|
4
|
Su PY, Yen SCB, Yang CC, Chang CH, Lin WC, Shih C. Hepatitis B virus virion secretion is a CRM1-spike-mediated late event. J Biomed Sci 2022; 29:44. [PMID: 35729569 PMCID: PMC9210616 DOI: 10.1186/s12929-022-00827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatitis B virus (HBV) is a major human pathogen worldwide. To date, there is no curative treatment for chronic hepatitis B. The mechanism of virion secretion remains to be investigated. Previously, we found that nuclear export of HBc particles can be facilitated via two CRM1-specific nuclear export signals (NES) at the spike tip. Methods In this study, we used site-directed mutagenesis at the CRM1 NES, as well as treatment with CRM1 inhibitors at a low concentration, or CRM1-specific shRNA knockdown, in HBV-producing cell culture, and measured the secretion of various HBV viral and subviral particles via a native agarose gel electrophoresis assay. Separated HBV particles were characterized by Western blot analysis, and their genomic DNA contents were measured by Southern blot analysis. Secreted extracellular particles were compared with intracellular HBc capsids for DNA synthesis and capsid formation. Virion secretion and the in vivo interactions among HBc capsids, CRM1 and microtubules, were examined by proximity ligation assay, immunofluorescence microscopy, and nocodazole treatment. Results We report here that the tip of spike of HBV core (HBc) particles (capsids) contains a complex sensor for secretion of both HBV virions and naked capsids. HBV virion secretion is closely associated with HBc nuclear export in a CRM1-dependent manner. At the conformationally flexible spike tips of HBc particles, NES motifs overlap extensively with motifs important for secretion of HBV virions and naked capsids. Conclusions We provided experimental evidence that virions and naked capsids can egress via two distinct, yet overlapping, pathways. Unlike the secretion of naked capsids, HBV virion secretion is highly CRM1- and microtubule-dependent. CRM1 is well known for its involvement in nuclear transport in literature. To our knowledge, this is the first report that CRM1 is required for virion secretion. CRM1 inhibitors could be a promising therapeutic candidate for chronic HBV patients in clinical medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00827-w.
Collapse
Affiliation(s)
- Pei-Yi Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shin-Chwen Bruce Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Chun Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiaho Shih
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
CRM1-spike-mediated nuclear export of hepatitis B virus encapsidated viral RNA. Cell Rep 2022; 38:110472. [PMID: 35263598 DOI: 10.1016/j.celrep.2022.110472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) is a global pathogen. We report here that the cellular CRM1 machinery can mediate nuclear export of entire HBV core (HBc) particles containing encapsidated viral RNAs. Two CRM1-mediated nuclear export signals (NESCRM1) cluster at the conformationally flexible spike tips of HBc particles. Mutant NESCRM1 capsids exhibit strongly reduced associations with CRM1 and nucleoporin358 in vivo. CRM1 and NXF1 machineries mediate nuclear export of HBc particles independently. Inhibition of nuclear export has pleiotropic consequences, including nuclear accumulation of HBc particles, a significant reduction of encapsidated viral RNAs in the cytoplasm but not in the nucleus, and barely detectable viral DNA. We hypothesize an HBV life cycle where encapsidation of the RNA pregenome can initiate early in the nucleus, whereas DNA genome maturation occurs mainly in the cytoplasm. We identified a druggable target for HBV by blocking its intracellular trafficking.
Collapse
|
6
|
Sun H, Ma L, Wang L, Xiao P, Li H, Zhou M, Song D. Research advances in hydrogen-deuterium exchange mass spectrometry for protein epitope mapping. Anal Bioanal Chem 2021; 413:2345-2359. [PMID: 33404742 DOI: 10.1007/s00216-020-03091-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
With the development of biomedical technology, epitope mapping of proteins has become critical for developing and evaluating new protein drugs. The application of hydrogen-deuterium exchange for protein epitope mapping holds great potential. Although several reviews addressed the hydrogen-deuterium exchange, to date, only a few systematic reviews have focused on epitope mapping using this technology. Here, we introduce the basic principles, development history, and review research progress in hydrogen-deuterium exchange epitope mapping technology and discuss its advantages. We summarize the main hurdles in applying hydrogen-deuterium exchange epitope mapping technology, combined with relevant examples to provide specific solutions. We describe the epitope mapping of virus assemblies, disease-associated proteins, and polyclonal antibodies as examples of pattern introduction. Finally, we discuss the outlook of hydrogen-deuterium exchange epitope mapping technology. This review will help researchers studying protein epitopes to gain a more comprehensive understanding of this technology.
Collapse
Affiliation(s)
- Haofeng Sun
- National Institute of Metrology, Beijing, 100029, China
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Ma
- National Institute of Metrology, Beijing, 100029, China
| | - Leyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, 100029, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, 100029, China
| | - Min Zhou
- School of Chemical and Engineering, Nanjing University of Science and Technology, Jiangsu, 210094, China.
| | - Dewei Song
- National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
7
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
8
|
Dülfer J, Kadek A, Kopicki JD, Krichel B, Uetrecht C. Structural mass spectrometry goes viral. Adv Virus Res 2019; 105:189-238. [PMID: 31522705 DOI: 10.1016/bs.aivir.2019.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last 20 years, mass spectrometry (MS), with its ability to analyze small sample amounts with high speed and sensitivity, has more and more entered the field of structural virology, aiming to investigate the structure and dynamics of viral proteins as close to their native environment as possible. The use of non-perturbing labels in hydrogen-deuterium exchange MS allows for the analysis of interactions between viral proteins and host cell factors as well as their dynamic responses to the environment. Cross-linking MS, on the other hand, can analyze interactions in viral protein complexes and identify virus-host interactions in cells. Native MS allows transferring viral proteins, complexes and capsids into the gas phase and has broken boundaries to overcome size limitations, so that now even the analysis of intact virions is possible. Different MS approaches not only inform about size, stability, interactions and dynamics of virus assemblies, but also bridge the gap to other biophysical techniques, providing valuable constraints for integrative structural modeling of viral complex assemblies that are often inaccessible by single technique approaches. In this review, recent advances are highlighted, clearly showing that structural MS approaches in virology are moving towards systems biology and ever more experiments are performed on cellular level.
Collapse
Affiliation(s)
- Jasmin Dülfer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Alan Kadek
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Boris Krichel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany.
| |
Collapse
|
9
|
Hudgens JW, Gallagher ES, Karageorgos I, Anderson KW, Filliben JJ, Huang RYC, Chen G, Bou-Assaf GM, Espada A, Chalmers MJ, Harguindey E, Zhang HM, Walters BT, Zhang J, Venable J, Steckler C, Park I, Brock A, Lu X, Pandey R, Chandramohan A, Anand GS, Nirudodhi SN, Sperry JB, Rouse JC, Carroll JA, Rand KD, Leurs U, Weis DD, Al-Naqshabandi MA, Hageman TS, Deredge D, Wintrode PL, Papanastasiou M, Lambris JD, Li S, Urata S. Interlaboratory Comparison of Hydrogen-Deuterium Exchange Mass Spectrometry Measurements of the Fab Fragment of NISTmAb. Anal Chem 2019; 91:7336-7345. [PMID: 31045344 PMCID: PMC6745711 DOI: 10.1021/acs.analchem.9b01100] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an established, powerful tool for investigating protein-ligand interactions, protein folding, and protein dynamics. However, HDX-MS is still an emergent tool for quality control of biopharmaceuticals and for establishing dynamic similarity between a biosimilar and an innovator therapeutic. Because industry will conduct quality control and similarity measurements over a product lifetime and in multiple locations, an understanding of HDX-MS reproducibility is critical. To determine the reproducibility of continuous-labeling, bottom-up HDX-MS measurements, the present interlaboratory comparison project evaluated deuterium uptake data from the Fab fragment of NISTmAb reference material (PDB: 5K8A ) from 15 laboratories. Laboratories reported ∼89 800 centroid measurements for 430 proteolytic peptide sequences of the Fab fragment (∼78 900 centroids), giving ∼100% coverage, and ∼10 900 centroid measurements for 77 peptide sequences of the Fc fragment. Nearly half of peptide sequences are unique to the reporting laboratory, and only two sequences are reported by all laboratories. The majority of the laboratories (87%) exhibited centroid mass laboratory repeatability precisions of ⟨ sLab⟩ ≤ (0.15 ± 0.01) Da (1σx̅). All laboratories achieved ⟨sLab⟩ ≤ 0.4 Da. For immersions of protein at THDX = (3.6 to 25) °C and for D2O exchange times of tHDX = (30 s to 4 h) the reproducibility of back-exchange corrected, deuterium uptake measurements for the 15 laboratories is σreproducibility15 Laboratories( tHDX) = (9.0 ± 0.9) % (1σ). A nine laboratory cohort that immersed samples at THDX = 25 °C exhibited reproducibility of σreproducibility25C cohort( tHDX) = (6.5 ± 0.6) % for back-exchange corrected, deuterium uptake measurements.
Collapse
Affiliation(s)
- Jeffrey W Hudgens
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Elyssia S Gallagher
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Ioannis Karageorgos
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Kyle W Anderson
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - James J Filliben
- Statistical Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - George M Bou-Assaf
- Analytical Development , Biogen Inc. , 225 Binney Street , Cambridge , Massachusetts 02142 , United States
| | - Alfonso Espada
- Centro de Investigación Lilly S.A. , 28108 Alcobendas , Spain
| | - Michael J Chalmers
- Lilly Research Laboratories , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | | | - Hui-Min Zhang
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Benjamin T Walters
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jennifer Zhang
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - John Venable
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Caitlin Steckler
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
- Joint Center for Structural Genomics , La Jolla , California 92037 , United States
| | - Inhee Park
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Ansgar Brock
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Xiaojun Lu
- MedImmune LLC , One MedImmune Way , Gaithersburg , Maryland 20878 , United States
| | - Ratnesh Pandey
- MedImmune LLC , One MedImmune Way , Gaithersburg , Maryland 20878 , United States
| | - Arun Chandramohan
- Department of Biological Sciences , National University of Singapore , 14, Science Drive 4 , Singapore 117543
| | - Ganesh Srinivasan Anand
- Department of Biological Sciences , National University of Singapore , 14, Science Drive 4 , Singapore 117543
| | - Sasidhar N Nirudodhi
- Vaccine R&D , Pfizer Inc. , 401 N Middletown Rd , Pearl River, New York 10965 , United States
| | - Justin B Sperry
- Analytical R&D , Pfizer Inc. , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Jason C Rouse
- Analytical R&D , Pfizer Inc. , 1 Burtt Road , Andover , Massachusetts 01810 , United States
| | - James A Carroll
- Analytical R&D , Pfizer Inc. , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Kasper D Rand
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Ulrike Leurs
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - David D Weis
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Mohammed A Al-Naqshabandi
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
- Department of General Science , Soran University , Kawa Street , Soran , Kurdistan Region, Iraq
| | - Tyler S Hageman
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Daniel Deredge
- Department of Pharmaceutical Sciences , University of Maryland, Baltimore, School of Pharmacy , 20 North Pine Street , Baltimore , Maryland 21201 , United States
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences , University of Maryland, Baltimore, School of Pharmacy , 20 North Pine Street , Baltimore , Maryland 21201 , United States
| | - Malvina Papanastasiou
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, 402 Stellar-Chance Laboratories , University of Pennsylvania , 422 Curie Boulevard , Philadelphia , Pennsylvania 19104 , United States
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, 402 Stellar-Chance Laboratories , University of Pennsylvania , 422 Curie Boulevard , Philadelphia , Pennsylvania 19104 , United States
| | - Sheng Li
- Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Sarah Urata
- Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
10
|
Ashcroft AE. Mass spectrometry-based studies of virus assembly. Curr Opin Virol 2019; 36:17-24. [DOI: 10.1016/j.coviro.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022]
|
11
|
Kondylis P, Schlicksup CJ, Zlotnick A, Jacobson SC. Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids. Anal Chem 2019; 91:622-636. [PMID: 30383361 PMCID: PMC6472978 DOI: 10.1021/acs.analchem.8b04824] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Panagiotis Kondylis
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Christopher J. Schlicksup
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| |
Collapse
|
12
|
Glycans Controlling Virus Infections: Meeting Report on the 1st International Symposium on Glycovirology Schöntal, Germany, 02⁻04 May 2018. Viruses 2018; 10:v10110636. [PMID: 30445709 PMCID: PMC6266297 DOI: 10.3390/v10110636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Glycans are, with nucleic acids, proteins and lipids, one of the four founding structures of cellular life. Due to their non-template synthesis, they are inherently heterogeneous and difficult to study with regards to their structure and function. Since 2016, the research group ViroCarb, funded by the German Research Foundation, has investigated the role of glycans in non-enveloped virus infections with a highly interdisciplinary approach. The core idea was to bring together scientists and students from various disciplines such as structural biology, cell biology, virology and chemistry to advance research by an interdisciplinary means. In 2018, ViroCarb hosted the 1st International Symposium on Glycovirology in Schöntal, Germany, with a similar aim. Scientists from various disciplines gathered to discuss their area of study, present recent findings, establish or strengthen collaborations, and mentor the next generation of glycovirologists through formal presentations and informal discussions. The secluded meeting at the monastery of Schöntal gave ample time for in-depth discussions. On behalf of ViroCarb, this report summarizes the reports and highlights advances in the field.
Collapse
|
13
|
Schumacher J, Bacic T, Staritzbichler R, Daneschdar M, Klamp T, Arnold P, Jägle S, Türeci Ö, Markl J, Sahin U. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. J Nanobiotechnology 2018; 16:39. [PMID: 29653575 PMCID: PMC5897928 DOI: 10.1186/s12951-018-0363-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. RESULTS The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. CONCLUSIONS These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.
Collapse
Affiliation(s)
- Jens Schumacher
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tijana Bacic
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - René Staritzbichler
- TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Matin Daneschdar
- Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thorsten Klamp
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Arnold
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.,Anatomical Institute, Otto-Hahn Platz 8, 24118, Kiel, Germany
| | - Sabrina Jägle
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Özlem Türeci
- Ganymed Pharmaceuticals AG, An der Goldgrube 12, 55131, Mainz, Germany
| | - Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany. .,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany. .,TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany.
| |
Collapse
|
14
|
Zhuang X, Watts NR, Palmer IW, Kaufman JD, Dearborn AD, Trenbeath JL, Eren E, Steven AC, Rader C, Wingfield PT. Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy. J Biol Chem 2017; 292:16760-16772. [PMID: 28842495 DOI: 10.1074/jbc.m117.802272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli, had unprecedentedly high binding affinities (Kd ∼10-12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.
Collapse
Affiliation(s)
| | | | | | | | | | - Joni L Trenbeath
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Christoph Rader
- the Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | | |
Collapse
|
15
|
Tsiatsiani L, Akeroyd M, Olsthoorn M, Heck AJR. Aspergillus niger Prolyl Endoprotease for Hydrogen-Deuterium Exchange Mass Spectrometry and Protein Structural Studies. Anal Chem 2017; 89:7966-7973. [PMID: 28657298 PMCID: PMC5541327 DOI: 10.1021/acs.analchem.7b01161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022]
Abstract
To monitor the structural integrity of therapeutic proteins, hydrogen-deuterium exchange mass spectrometry (HDX-MS) is increasingly utilized in the pharmaceutical industry. The successful outcome of HDX-MS analyses depends on the sample preparation conditions, which involve the rapid digestion of proteins at 0 °C and pH 2.5. Very few proteases are able to withstand such harsh conditions, with pepsin being the best-known exception, even though its activity is also strongly reduced at 0 °C. Here, we evaluate the usage of a prolyl endopeptidase from Aspergillus niger (An-PEP) for HDX-MS. What makes this protease very attractive is that it cleaves preferentially the hardest to digest amino acid, proline. To our surprise, and in contrast to previous reports, An-PEP activity was found optimal around pH 2.5 and could be further enhanced by urea up to 40%. Under typical HDX-MS conditions and using small amounts of enzyme, An-PEP generated an equivalent number of peptides as pepsin, as exemplified by using the two model systems tetrameric human hemoglobin (Hb) and human IgG4. Interestingly, because An-PEP peptides are shorter than pepsin-generated peptides, higher sequence resolution could be achieved, especially for Pro-containing protein regions in the alpha subunit of Hb, revealing new protected Hb regions that were not observed with pepsin. Due to its Pro-preference and resistance to low pH, we conclude that An-PEP is an archetype enzyme for HDX-MS, highly complementary to pepsin, and especially promising for structural studies on Pro-rich proteins or proteins containing Pro-rich binding domains involved in cellular signaling.
Collapse
Affiliation(s)
- Liana Tsiatsiani
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics
Centre, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michiel Akeroyd
- DSM
Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | | | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics
Centre, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
van de Waterbeemd M, Llauró A, Snijder J, Valbuena A, Rodríguez-Huete A, Fuertes MA, de Pablo PJ, Mateu MG, Heck AJR. Structural Analysis of a Temperature-Induced Transition in a Viral Capsid Probed by HDX-MS. Biophys J 2017; 112:1157-1165. [PMID: 28355543 PMCID: PMC5375139 DOI: 10.1016/j.bpj.2017.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/30/2023] Open
Abstract
Icosahedral viral capsids are made of a large number of symmetrically organized protein subunits whose local movements can be essential for infection. In the capsid of the minute virus of mice, events required for infection that involve translocation of peptides through capsid pores are associated with a subtle conformational change. In vitro, this change can be reversibly induced by overcoming the energy barrier through mild heating of the capsid, but little is known about the capsid regions involved in the process. Here, we use hydrogen-deuterium exchange coupled to mass spectrometry to analyze the dynamics of the minute virus of mice capsid at increasing temperatures. Our results indicate that the transition associated with peptide translocation involves the structural rearrangement of regions distant from the capsid pores. These alterations are reflected in an increased dynamics of some secondary-structure elements in the capsid shell from which spikes protrude, and a decreased dynamics in the long intertwined loops that form the large capsid spikes. Thus, the translocation events through capsid pores involve a global conformational rearrangement of the capsid and a complex alteration of its equilibrium dynamics. This study additionally demonstrates the potential of hydrogen-deuterium exchange coupled to mass spectrometry to explore in detail temperature-dependent structural dynamics in large macromolecular protein assemblies. Most importantly, it paves the way for undertaking novel studies of the relationship between structure, dynamics, and biological function in virus particles and other large protein cages.
Collapse
Affiliation(s)
- Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Aida Llauró
- Department of Physics of the Condensed Matter, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pedro J de Pablo
- Department of Physics of the Condensed Matter, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 2016; 35:2634-2657. [PMID: 27797822 PMCID: PMC5167345 DOI: 10.15252/embj.201694818] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
18
|
Vandermarliere E, Stes E, Gevaert K, Martens L. Resolution of protein structure by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:653-665. [PMID: 25536908 DOI: 10.1002/mas.21450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Typically, mass spectrometry is used to identify the peptides present in a complex peptide mixture and subsequently the precursor proteins. As such, mass spectrometry focuses mainly on the primary structure, the (modified) amino acid sequence of peptides and proteins. In contrast, the three-dimensional structure of a protein is typically determined with protein X-ray crystallography or NMR. Despite the close relationship between these two aspects of protein studies (sequence and structure), mass spectrometry and structure determination are not frequently combined. Nevertheless, this combination of approaches, dubbed conformational proteomics, can offer insight into the function, working mechanism, and conformational status of a protein. In this review, we will discuss the developments at the intersection of mass spectrometry-based proteomics and protein structure determination and start from a brief overview of the classic approaches to identify protein structure along with their advantages and disadvantages. We will subsequently discuss the ability of mass spectrometry to overcome some of the hurdles of these classic methods. Finally, we will provide an outlook on the interplay of mass spectrometry and protein structure determination, and highlight several recent experiments in which mass spectrometry was successfully used to either aid or complement structure elucidation. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:653-665, 2016.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium.
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium.
| |
Collapse
|
19
|
Hydrogen deuterium exchange mass spectrometry in biopharmaceutical discovery and development – A review. Anal Chim Acta 2016; 940:8-20. [DOI: 10.1016/j.aca.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 01/14/2023]
|
20
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Abstract
Hepatitis B virus is one of the smallest human pathogens, encoded by a 3,200-bp genome with only four open reading frames. Yet the virus shows a remarkable diversity in structural features, often with the same proteins adopting several conformations. In part, this is the parsimony of viruses, where a minimal number of proteins perform a wide variety of functions. However, a more important theme is that weak interactions between components as well as components with multiple conformations that have similar stabilities lead to a highly dynamic system. In hepatitis B virus, this is manifested as a virion where the envelope proteins have multiple structures, the envelope-capsid interaction is irregular, and the capsid is a dynamic compartment that actively participates in metabolism of the encapsidated genome and carries regulated signals for intracellular trafficking.
Collapse
Affiliation(s)
| | - Adam Zlotnick
- Department of Molecular and Cellular Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
22
|
Chen C, Wang JCY, Pierson EE, Keifer DZ, Delaleau M, Gallucci L, Cazenave C, Kann M, Jarrold MF, Zlotnick A. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes. PLoS Pathog 2016; 12:e1005802. [PMID: 27518410 PMCID: PMC4982637 DOI: 10.1371/journal.ppat.1005802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein's C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of "dark" particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Elizabeth E. Pierson
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - David Z. Keifer
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Mildred Delaleau
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Lara Gallucci
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Christian Cazenave
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Michael Kann
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
23
|
Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket. J Virol 2016; 90:3994-4004. [PMID: 26842475 PMCID: PMC4810570 DOI: 10.1128/jvi.03058-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/27/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Though the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design. IMPORTANCE Hepatitis B virus core protein has multiple roles in the viral life cycle-assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions-making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid "breathes" and is trapped in different states by the drug and crystallization. Understanding that the capsid is a moving target will aid drug design and improve our understanding of HBV interaction with its environment.
Collapse
|
24
|
|
25
|
Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation. J Virol 2015. [PMID: 26202253 DOI: 10.1128/jvi.01481-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Assembly of hepatitis B virus (HBV) begins with packaging of the pregenomic RNA (pgRNA) into immature nucleocapsids (NC), which are converted to mature NCs containing the genomic relaxed circular (RC) DNA as a result of reverse transcription. Mature NCs have two alternative fates: (i) envelopment by viral envelope proteins, leading to secretion extracellularly as virions, or (ii) disassembly (uncoating) to deliver their RC DNA content into the host cell nucleus for conversion to the covalently closed circular (CCC) DNA, the template for viral transcription. How these two alternative fates are regulated remains to be better understood. The NC shell is composed of multiple copies of a single viral protein, the HBV core (HBc) protein. HBc mutations located on the surface of NC have been identified that allow NC maturation but block its envelopment. The potential effects of some of these mutations on NC uncoating and CCC DNA formation have been analyzed by transfecting HBV replication constructs into hepatoma cells. All envelopment-defective HBc mutations tested were competent for CCC DNA formation, indicating that core functions in envelopment and uncoating/nuclear delivery of RC DNA were genetically separable. Some of the envelopment-defective HBc mutations were found to alter specifically the integrity of mature, but not immature, NCs such that RC DNA became susceptible to nuclease digestion. Furthermore, CCC DNA formation could be enhanced by NC surface mutations that did or did not significantly affect mature NC integrity, indicating that the NC surface residues may be closely involved in NC uncoating and/or nuclear delivery of RC DNA. IMPORTANCE Hepatitis B virus (HBV) infection is a major health issue worldwide. HBV assembly begins with the packaging into immature nucleocapsids (NCs) of a viral RNA pregenome, which is converted to the DNA genome in mature NCs. Mature NCs are then selected for envelopment and secretion as complete-virion particles or, alternatively, can deliver their DNA to the host cell nucleus to maintain the viral genome as nuclear episomes, which are the basis for virus persistence. Previous studies have identified mutations on the capsid surface that selectively block NC envelopment without affecting NC maturation. We have now discovered that some of the same mutations result in preferential alteration of mature NCs and increased viral nuclear episomes. These findings provide important new insights into the regulation of the two alternative fates of mature NCs and suggest new ways to perturb viral persistence by manipulating levels of viral nuclear episomes.
Collapse
|
26
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|
27
|
Affiliation(s)
- Gregory
F. Pirrone
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - Roxana E. Iacob
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - John R. Engen
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| |
Collapse
|
28
|
Marciano DP, Dharmarajan V, Griffin PR. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Curr Opin Struct Biol 2014; 28:105-11. [PMID: 25179005 DOI: 10.1016/j.sbi.2014.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS or DXMS) has emerged as an important tool for the development of small molecule therapeutics and biopharmaceuticals. Central to these advances have been improvements to automated HDX-MS platforms and software that allow for the rapid acquisition and processing of experimental data. Correlating the HDX-MS profile of large numbers of ligands with their functional outputs has enabled the development of structure activity relationships (SAR) and delineation of ligand classes based on functional selectivity. HDX-MS has also been applied to address many of the unique challenges posed by the continued emergence of biopharmaceuticals. Here we review the latest applications of HDX-MS to drug discovery, recent advances in technology and software, and provide perspective on future outlook.
Collapse
Affiliation(s)
- David P Marciano
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | | | - Patrick R Griffin
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
29
|
Bereszczak JZ, Watts NR, Wingfield PT, Steven AC, Heck AJR. Assessment of differences in the conformational flexibility of hepatitis B virus core-antigen and e-antigen by hydrogen deuterium exchange-mass spectrometry. Protein Sci 2014; 23:884-96. [PMID: 24715628 DOI: 10.1002/pro.2470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 01/17/2023]
Abstract
Hepatitis B virus core-antigen (capsid protein) and e-antigen (an immune regulator) have almost complete sequence identity, yet the dimeric proteins (termed Cp149d and Cp(-10)149d , respectively) adopt quite distinct quaternary structures. Here we use hydrogen deuterium exchange-mass spectrometry (HDX-MS) to study their structural properties. We detect many regions that differ substantially in their HDX dynamics. Significantly, whilst all regions in Cp(-10)149d exchange by EX2-type kinetics, a number of regions in Cp149d were shown to exhibit a mixture of EX2- and EX1-type kinetics, hinting at conformational heterogeneity in these regions. Comparison of the HDX of the free Cp149d with that in assembled capsids (Cp149c ) indicated increased resistance to exchange at the C-terminus where the inter-dimer contacts occur. Furthermore, evidence of mixed exchange kinetics were not observed in Cp149c , implying a reduction in flexibility upon capsid formation. Cp(-10)149d undergoes a drastic structural change when the intermolecular disulphide bridge is reduced, adopting a Cp149d -like structure, as evidenced by the detected HDX dynamics being more consistent with Cp149d in many, albeit not all, regions. These results demonstrate the highly dynamic nature of these similar proteins. To probe the effect of these structural differences on the resulting antigenicity, we investigated binding of the antibody fragment (Fab E1) that is known to bind a conformational epitope on the four-helix bundle. Whilst Fab E1 binds to Cp149c and Cp149d , it does not bind non-reduced and reduced Cp(-10)149d , despite unhindered access to the epitope. These results imply a remarkable sensitivity of this epitope to its structural context.
Collapse
Affiliation(s)
- Jessica Z Bereszczak
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. Conformational States of macromolecular assemblies explored by integrative structure calculation. Structure 2014; 21:1500-8. [PMID: 24010709 PMCID: PMC3988990 DOI: 10.1016/j.str.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022]
Abstract
A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment.
Collapse
Affiliation(s)
- Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
31
|
Thermodynamic origins of protein folding, allostery, and capsid formation in the human hepatitis B virus core protein. Proc Natl Acad Sci U S A 2013; 110:E2782-91. [PMID: 23824290 DOI: 10.1073/pnas.1308846110] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HBc, the capsid-forming "core protein" of human hepatitis B virus (HBV), is a multidomain, α-helical homodimer that aggressively forms human HBV capsids. Structural plasticity has been proposed to be important to the myriad functions HBc mediates during viral replication. Here, we report detailed thermodynamic analyses of the folding of the dimeric HBc protomer under conditions that prevented capsid formation. Central to our success was the use of ion mobility spectrometry-mass spectrometry and microscale thermophoresis, which allowed folding mechanisms to be characterized using just micrograms of protein. HBc folds in a three-state transition with a stable, dimeric, α-helical intermediate. Extensive protein engineering showed thermodynamic linkage between different structural domains. Unusual effects associated with mutating some residues suggest structural strain, arising from frustrated contacts, is present in the native dimer. We found evidence of structural gatekeepers that, when mutated, alleviated native strain and prevented (or significantly attenuated) capsid formation by tuning the population of alternative native conformations. This strain is likely an evolved feature that helps HBc access the different structures associated with its diverse essential functions. The subtle balance between native and strained contacts may provide the means to tune conformational properties of HBc by molecular interactions or mutations, thereby conferring allosteric regulation of structure and function. The ability to trap HBc conformers thermodynamically by mutation, and thereby ablate HBV capsid formation, provides proof of principle for designing antivirals that elicit similar effects.
Collapse
|
32
|
Castelli M, Cappelletti F, Diotti RA, Sautto G, Criscuolo E, Dal Peraro M, Clementi N. Peptide-based vaccinology: experimental and computational approaches to target hypervariable viruses through the fine characterization of protective epitopes recognized by monoclonal antibodies and the identification of T-cell-activating peptides. Clin Dev Immunol 2013; 2013:521231. [PMID: 23878584 PMCID: PMC3710646 DOI: 10.1155/2013/521231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/06/2013] [Indexed: 12/20/2022]
Abstract
Defining immunogenic domains of viral proteins capable of eliciting a protective immune response is crucial in the development of novel epitope-based prophylactic strategies. This is particularly important for the selective targeting of conserved regions shared among hypervariable viruses. Studying postinfection and postimmunization sera, as well as cloning and characterization of monoclonal antibodies (mAbs), still represents the best approach to identify protective epitopes. In particular, a protective mAb directed against conserved regions can play a key role in immunogen design and in human therapy as well. Experimental approaches aiming to characterize protective mAb epitopes or to identify T-cell-activating peptides are often burdened by technical limitations and can require long time to be correctly addressed. Thus, in the last decade many epitope predictive algorithms have been developed. These algorithms are continually evolving, and their use to address the empirical research is widely increasing. Here, we review several strategies based on experimental techniques alone or addressed by in silico analysis that are frequently used to predict immunogens to be included in novel epitope-based vaccine approaches. We will list the main strategies aiming to design a new vaccine preparation conferring the protection of a neutralizing mAb combined with an effective cell-mediated response.
Collapse
Affiliation(s)
- Matteo Castelli
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Cappelletti
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Roberta Antonia Diotti
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giuseppe Sautto
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Elena Criscuolo
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioingeneering, School of Life Sciences, Ecole Polytechnique Fédérale, 1015 Lausanne, Switzerland
| | - Nicola Clementi
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|