1
|
Kalita N, Crawley MR, Rosch LE, Szeglowski O, Cook TR. Exploring the Te(II)/Te(IV) Redox Couple of a Tellurorosamine Chromophore: Photophysical, Photochemical, and Electrochemical Studies. Inorg Chem 2024; 63:13157-13165. [PMID: 38989980 DOI: 10.1021/acs.inorgchem.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A tellurorosamine dye [Te(II)] undergoes aerobic photooxidation. Although Te(IV) species have been used in a number of oxidations, key Te(IV)-oxo and Te(IV)-bis(hydroxy) intermediates are challenging to study. Under aerobic irradiation with visible light, Te(II) (λmax = 600 nm) transforms into a Te(IV) species (λmax = 669 nm). The resultant Te(IV) species is not stable in the dark or at -20 °C, decomposing back to Te(II) and other byproducts over many hours. To eliminate the structural ambiguity of the Te(IV) photoproduct, we used spectroelectrochemistry, wherein the bis(hydroxy) Te(IV)-(OH)2 was electrochemically generated under anaerobic conditions. The absorption of Te(IV)-(OH)2 matches that of the Te(IV) photoproduct. Because isosbestic points are maintained both photochemically and electrochemically, the oxo core formed photochemically must rapidly equilibrate with Te(IV)-(OH)2. Calculations on the bis(hydroxy) versus oxo species further corroborate that the equilibration is rapid and the spectra of the two species are similar. To further explore Te(IV) cores, two novel compounds, Te(IV)-Cl2 and Te(IV)-Br2, were synthesized. Characterization of Te(IV)-X2 was simplified because these cores have no analogue to the Te(IV)-(O)/Te(IV)-(OH)2 equilibrium. This work provides insights into the photophysical and electrochemical behavior of Te analogues of chalcogenoxanthylium dyes, which are relevant for a broad range of photochemical applications.
Collapse
Affiliation(s)
- Nayanika Kalita
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lauren E Rosch
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Owen Szeglowski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
2
|
Dai W, Yang X, Lv K, Li L, Peng Y, Ma H, An Z. Modulating Heavy Atom Effect in Germylene for Persistent Room Temperature Phosphorescence. Chemistry 2024:e202401882. [PMID: 38820203 DOI: 10.1002/chem.202401882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
It is worth but still challenging to develop the low-valent main group compounds with persistent room temperature phosphorescence (pRTP). Herein, we presented germylene-based persistent phosphors by introduction of low-valent Ge center into chromophore. A novel phosphors CzGe and its series of derivatives, namely CzGeS, CzGeSe, CzGeAu, and CzGeCu, were synthesized. Experiments and theoretical calculations reveal that the pRTP behavior were "turn on" due to the heavy atom effect of germylene. More importantly, the low-valent of oxidation state and structural traits propelled GeCz had a balance between the intersystem crossing and the shortening of lifetime caused by the heavy atoms, resulting the ultralong lifetime of 309 ms and phosphorescent quantum efficiency of 15.84 %, which is remarkable among heavy main group phosphors. This research provides valuable insights to the design of heavy atoms in phosphors and expand the applications of germylene chemistry.
Collapse
Affiliation(s)
- Wen Dai
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoang Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kaiqi Lv
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Lei Li
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Peng
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
3
|
Masilamani G, Krishna GR, Debnath S, Bedi A. Origin of Optoelectronic Contradictions in 3,4-Cycloalkyl[ c]-chalcogenophenes: A Computational Study. Polymers (Basel) 2023; 15:4240. [PMID: 37959920 PMCID: PMC10650045 DOI: 10.3390/polym15214240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The planar morphology of the backbone significantly contributes to the subtle optoelectronic features of π-conjugated polymers. On the other hand, the atomistic tuning of an otherwise identical π-backbone could also impact optoelectronic properties systematically. In this manuscript, we compare a series of 3,4-cycloalkylchalcogenophenes by tuning them atomistically using group-16 elements. Additionally, the effect of systematically extending these building blocks in the form of oligomers and polymers is studied. The size of the 3,4-substitution affected the morphology of the oligomers. In addition, the heteroatoms contributed to a further alteration in their geometry and resultant optoelectronic properties. The chalcogenophenes, containing smaller 3,4-cycloalkanes, resulted in lower bandgap oligomers or polymers compared to those with larger 3,4-cycloalkanes. Natural bonding orbital (NBO) calculations were performed to understand the disparity alongside the contour maps of frontier molecular orbitals (FMO).
Collapse
Affiliation(s)
- Ganesh Masilamani
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anjan Bedi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
4
|
Alahmadi AF, Yin X, Lalancette RA, Jäkle F. Synthesis and Structure-Property Relationships in Regioisomeric Alternating Borane-Terthiophene Polymers. Chemistry 2022; 29:e202203619. [PMID: 36562302 DOI: 10.1002/chem.202203619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Main-chain boron-containing π-conjugated polymers are attractive for organic electronic, sensing, and imaging applications. Alternating terthiophene-borane polymers were prepared and the effects of regioisomeric attachment of the conjugated linker and variations in the electronic effect of the pendent aryl groups (2,4,6-tri-tert-butylphenyl, Mes*; 2,4,6-tris(trifluoromethyl)phenyl, FMes) examined. Pd2 dba3 /P(t-Bu)3 -catalyzed Stille polymerization of arylbis(2-thienyl)borane and arylbis(3-thienylborane) with 2,5-bis(trimethylstannyl)thiophene at 120 °C gave polymers with appreciable molecular weight but MALDI-TOF MS analyses showed evidence of unusually prominent homocoupling. These defects could be suppressed by using brominated rather than iodinated monomers, more hindered 2,5-bis(tri-n-butylstannyl)thiophene as comonomer, and Pd2 dba3 /P(o-tol)3 as the catalyst at 100 °C. Under these conditions, macrocyclic species with n=3-10 repeating units formed preferentially according to MALDI-TOF MS analyses. Photophysical studies revealed a prominent effect of the regiochemistry and the nature of the pendent aryl groups on the absorption and emission, giving rise to orange, yellow-green, blue-green, and blue emissive materials respectively. The electronic effects were rationalized through DFT calculations on bis(terthiophene) model systems.
Collapse
Affiliation(s)
- Abdullah F Alahmadi
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, 07102, Newark, NJ, USA
| | - Xiaodong Yin
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, 07102, Newark, NJ, USA.,Current address: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/, Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, 07102, Newark, NJ, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, 07102, Newark, NJ, USA
| |
Collapse
|
5
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
6
|
Mahato S, Nandy S, Das KK, Panda S. Zirconium Promoted Synthetic Transformations of Organoboron Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somenath Mahato
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Soumilee Nandy
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Kanak Kanti Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Santanu Panda
- Indian Institute of Technology Kharagpur Department of Chemistry Chemistry IIT Kharagpur, Organic chemistry building, OC-207Near Rubber technology department 721302 Kharagpur INDIA
| |
Collapse
|
7
|
Turkoglu G, Ozturk T. Fluorescent small molecules with alternating triarylamine-substituted selenophenothiophene and triarylborane: synthesis, photophysical properties and anion sensing studies. Dalton Trans 2022; 51:2715-2725. [PMID: 35080223 DOI: 10.1039/d1dt03681e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two novel D-π-A fluorophores based on selenopheno[3,2-b]thiophene, possessing triphenylamine and 4,4'-dimethoxytriphenylamine units as donors and dimesitylborane as an acceptor, linked through a π-conjugated thiophene spacer (BTPAST and BOMeTPAST, respectively) were synthesized. Their photophysical properties were investigated in both solution and the state of aggregation and compared to those of their corresponding donor parts, having no dimesitylborane units (TPAST and OMeTPAST). All the compounds displayed large Stokes shifts between 100 and 140 nm with positive solvatochromism in solvents having different polarities. While BTPAST displayed both aggregation induced emission (AIE) and twisted intramolecular charge transfer (TICT) characteristics, the others preponderated with TICT effects. The sensing abilities of BTPAST and BOMeTPAST towards different anions were studied. Both exhibited chromogenic and fluorogenic responses to small anions such as fluoride and cyanide, for which the detection limits were found to be 0.12 and 2.43 ppm with BTPAST and 0.59 and 0.92 ppm with BOMeTPAST, respectively. These results provide guidance for the development of novel fused selenophenothiophene sensors in the field of anion sensing.
Collapse
Affiliation(s)
- Gulsen Turkoglu
- Department of Chemistry, Faculty of Science, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Turan Ozturk
- Department of Chemistry, Faculty of Science, Istanbul Technical University, Maslak, Istanbul 34469, Turkey. .,TUBITAK-UME, Chemistry Group Laboratories, PO Box 54, 41471, Gebze, Kocaeli, Turkey
| |
Collapse
|
8
|
Luppi BT, Muralidharan AV, Ostermann N, Cheong IT, Ferguson MJ, Siewert I, Rivard E. Redox‐Active Heteroatom‐Functionalized Polyacetylenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bruno T. Luppi
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Abhishek V. Muralidharan
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Nils Ostermann
- University of Goettingen Institute of Inorganic Chemistry Tammannstrasse 4 37077 Goettingen Germany
| | - I T. Cheong
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Ferguson
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Inke Siewert
- University of Goettingen Institute of Inorganic Chemistry Tammannstrasse 4 37077 Goettingen Germany
| | - Eric Rivard
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
9
|
Campbell J, Tung MT, Diaz-Rodriguez RM, Robertson KN, Beharry AA, Thompson A. Introducing the Tellurophene-Appended BODIPY: PDT Agent with Mass Cytometry Tracking Capabilities. ACS Med Chem Lett 2021; 12:1925-1931. [PMID: 34917256 PMCID: PMC8667306 DOI: 10.1021/acsmedchemlett.1c00492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
The synthesis and characterization of the first BODIPY appended to the five-membered heterocylic tellurophene [Te] moiety is reported. By incorporating tellurophene at the meso position, the tellurophene-appended boron-dipyrromethene dye (BODIPY) acts as a multimodal agent, becoming a potent photosensitizer with a mass cytometry tag. To synthesize the compound, we developed a method to enable late-stage Suzuki-Miyaura coupling by preparing and isolating tellurophene-2-BPin in a one-step procedure from the parent tellurophene. Coupling to a meso-substituted BODIPY functionalized with a pendant aryl bromide provides the desired tellurophene-appended BODIPY. This compound demonstrated a singlet oxygen quantum yield of 0.26 ± 0.01 and produced a light dose-dependent cytotoxicity with nanomolar IC50 values against 2D cultured HeLa cells and high efficacy against 3D cultured HeLa tumor spheroids, proving to be a strong photosensitizer. The presence of the tellurophene moiety could be detected using mass cytometry, thus showcasing the ability of a tellurophene-appended BODIPY as a novel photodynamic-therapy-mass-cytometry theranostic agent.
Collapse
Affiliation(s)
- Jacob
W. Campbell
- Department
of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4J3, Canada
| | - Matthew T. Tung
- Department
of Chemistry and Physical Sciences, University
of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | | | | | - Andrew A. Beharry
- Department
of Chemistry and Physical Sciences, University
of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | - Alison Thompson
- Department
of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4J3, Canada
| |
Collapse
|
10
|
Watson IC, Ferguson MJ, Rivard E. Zinc-Mediated Transmetalation as a Route to Anionic N-Heterocyclic Olefin Complexes in the p-Block. Inorg Chem 2021; 60:18347-18359. [PMID: 34738790 DOI: 10.1021/acs.inorgchem.1c02961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic N-heterocyclic olefins (aNHOs) are suited well for the stabilization of low-coordinate inorganic complexes, due to their steric tunability and strong σ- and π-electron donating abilities. In this study, the new two-coordinate zinc complex (MeIPrCH)2Zn (MeIPrCH = [(MeCNDipp)2C═CH]-, Dipp = 2,6-diisopropylphenyl) is shown to participate in a broad range of metathesis reactions with main group element-based halides and hydrides. In the case of the group 14 halides, Cl2E·dioxane (E = Ge and Sn), transmetalation occurs to form dinuclear propellane-shaped cations, [(MeIPrCHE)2(μ-Cl)]+, while the aNHO-capped phosphine ligand MeIPrCH-PPh2 is obtained when (MeIPrCH)2Zn is combined with ClPPh2. Lastly, ZnH2 elimination drives transmetalation between (MeIPrCH)2Zn and hydroboranes and hydroalumanes, leading to Lewis acidic aNHO-supported -boryl and -alane products.
Collapse
Affiliation(s)
- Ian C Watson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
11
|
Luppi BT, Muralidharan AV, Ostermann N, Cheong IT, Ferguson MJ, Siewert I, Rivard E. Redox-Active Heteroatom-Functionalized Polyacetylenes. Angew Chem Int Ed Engl 2021; 61:e202114586. [PMID: 34826183 DOI: 10.1002/anie.202114586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/11/2022]
Abstract
The discovery of metallic conductivity in polyacetylene [-HC=CH-]n upon doping represents a landmark achievement. However, the insolubility of polyacetylene and a dearth of methods for its chemical modification have limited its widespread use. Here, we employ a ring-opening metathesis polymerization (ROMP) protocol to prepare functionalized polyacetylenes (fPAs) bearing: (1) electron-deficient boryl (-BR2 ) and phosphoryl (-P(O)R2 ) side chains; (2) electron-donating amino (-NR2 ) groups, and (3) ring-fused 1,2,3-triazolium units via strain-promoted Click chemistry. These functional groups render most of the fPAs soluble and can lead to intense light absorption across the visible to near-IR region. Also, the presence of redox-active boryl and amino groups leads to opposing near-IR optical responses upon (electro)chemical reduction or oxidation. Some of the resulting fPAs show greatly enhanced air stability when compared to known polyacetylenes. Lastly, these fPAs can be cross-linked to yield network materials with the full retention of optical properties.
Collapse
Affiliation(s)
- Bruno T Luppi
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Abhishek V Muralidharan
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Nils Ostermann
- University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany
| | - I T Cheong
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Inke Siewert
- University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
12
|
Fritze L, Fest M, Helbig A, Bischof T, Krummenacher I, Braunschweig H, Finze M, Helten H. Boron-Doped α-Oligo- and Polyfurans: Highly Luminescent Hybrid Materials, Color-Tunable through the Doping Density. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Fest
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Bischof
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Nandy S, Paul S, Das KK, Kumar P, Ghorai D, Panda S. Synthesis and reactivity of alkynyl boron compounds. Org Biomol Chem 2021; 19:7276-7297. [PMID: 34374405 DOI: 10.1039/d1ob00465d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the last century, there have been considerable developments in organoboron chemistry due to the stability, non-toxicity, and easy commercial availability of various boronic esters. Several organoboron reagents have emerged and play an increasingly important role in everyday organic synthesis. Among them, alkynyl boron compounds have attracted significant attention due to their easy synthesis and diverse reactivity. In this review, we summarize the advancement of research on alkynyl boron compounds, highlighting their importance in the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Soumilee Nandy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Yuan Y, Wang Z, Gu Y, Fu S, Kong L, Li Y. Silver-Mediated [2 + 2 + 1] Cyclization Reaction of Diynes with Elemental Selenium/Sulfur To Synthesize 3,4-Substituted Cyclopenta[ c]selenophenes/Cyclopenta[ c]thiophenes. Org Lett 2021; 23:5911-5916. [PMID: 34283626 DOI: 10.1021/acs.orglett.1c02018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and atom-economical silver-mediated [2 + 2 + 1] cyclization protocol for the synthesis of 3,4-fused-ring-substituted and 2,5-unsubstituted selenophenes or thiophenes has been developed. Two C-Se/C-S bonds and one C-C bond were rapidly constructed in one step. Readily accessible substrates, commercially available elemental selenium/sulfur, and good functional group tolerance make this procedure attractive for the synthesis of π-conjugated material molecules.
Collapse
Affiliation(s)
- Ye Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yang Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zongkang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yingge Gu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Siyi Fu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lingkai Kong
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
15
|
Ramirez Y Medina IM, Rohdenburg M, Rusch P, Duvinage D, Bigall NC, Staubitz A. π-Conjugated stannole copolymers synthesised by a tin-selective Stille cross-coupling reaction. MATERIALS ADVANCES 2021; 2:3282-3293. [PMID: 34124683 PMCID: PMC8142672 DOI: 10.1039/d1ma00104c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of four well-defined conjugated polymers TStTT1-4 containing unusual heterocycle units in the main chain, namely stannole units as building blocks, is reported. The stannole-thiophenyl copolymers were generated by tin-selective Stille coupling reactions in nearly quantitative yields of 94% to 98%. NMR data show that the tin atoms in the rings remain unaffected. Weight-average molecular weights (M w) were high (4900-10 900 Da and 9600-21 900 Da); and molecular weight distributions (M w/M n) were between 1.9 and 2.3. The new materials are strongly absorbing and appear blue-black to purple-black. All iodothiophenyl-stannole monomers St1-4 and the resulting bisthiophenyl-stannole copolymers TStTT1-4 were investigated with respect to their optoelectronic properties. The absorption maxima of the polymers are strongly bathochromically shifted compared to their monomers by about 76 nm to 126 nm in chloroform. Density functional theory calculations support our experimental results of the single stannoles St1-4 showing small HOMO-LUMO energy gaps of 3.17-3.24 eV. The optical band gaps of the polymers are much more decreased and were determined to be only 1.61-1.79 eV. Furthermore, both the molecular structures of stannoles St2 and St3 from single crystal X-ray analyses and the results of the geometry optimisation by DFT confirm the high planarity of the molecules backbone leading to efficient conjugation within the molecule.
Collapse
Affiliation(s)
- Isabel-Maria Ramirez Y Medina
- Institute for Organic and Analytical Chemistry, University of Bremen Leobener Str. 7 28359 Bremen Germany
- MAPEX Center for Materials and Processes, University of Bremen Bibliothekstr. 1 28359 Bremen Germany
| | - Markus Rohdenburg
- University of Bremen, Institute for Applied and Physical Chemistry Leobener Str. 5 28359 Bremen Germany
- University of Leipzig, Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry Linnéstr. 2 04103 Leipzig Germany
| | - Pascal Rusch
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines) Hannover Germany
| | - Daniel Duvinage
- MAPEX Center for Materials and Processes, University of Bremen Bibliothekstr. 1 28359 Bremen Germany
- Institute of Inorganic Chemistry and Crystallography, University of Bremen Leobener Str. 7 28359 Bremen Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines) Hannover Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen Leobener Str. 7 28359 Bremen Germany
- MAPEX Center for Materials and Processes, University of Bremen Bibliothekstr. 1 28359 Bremen Germany
| |
Collapse
|
16
|
Braun CA, Ferguson MJ, Rivard E. Tellura(benzo)bithiophenes: Synthesis, Oligomerization, and Phosphorescence. Inorg Chem 2021; 60:2672-2679. [PMID: 33481578 DOI: 10.1021/acs.inorgchem.0c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of planar π-extended Te-containing heteroacenes, termed tellura(benzo)bithiophenes, were synthesized. This new structural class of heterocycle features a tellurophene ring fused to a benzobithiophene unit with aromatic side groups (either -C6H4iPr or -C6H4OCH3) positioned at the 2- and 5-positions of the tellurophene moiety. Although attempts to enhance molecular rigidity and extend ring-framework π-delocalization in a cumenyl (-C6H4iPr)-capped tellura(benzo)bithiophene led to oxidation (and Te-C bond scission) to form a diene-one, the formation of an oligomeric tellura(benzo)bithiophene was possible via Kumada catalyst-transfer polycondensation (KCTP). Furthermore, one tellura(benzo)bithiophene derivative exhibits orange-red phosphorescence at room temperature in air when incorporated into a poly(methyl methacrylate) host; accompanying TD-DFT computations provided insight into a potential mechanism for the observed phosphorescence.
Collapse
Affiliation(s)
- Christina A Braun
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
17
|
Yin X, Liu J, Jäkle F. Electron‐Deficient Conjugated Materials via p–π* Conjugation with Boron: Extending Monomers to Oligomers, Macrocycles, and Polymers. Chemistry 2020; 27:2973-2986. [DOI: 10.1002/chem.202003481] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaodong Yin
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
18
|
Synthesis of tellurophene-containing polymer by polycondensation based on the Sonogashira-Hagihara cross-coupling process and its transformation to germole-containing π-conjugated polymer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Xu L, Zhou K, Ma H, Lv A, Pei D, Li G, Zhang Y, An Z, Li A, He G. Ultralong Organic Phosphorescent Nanocrystals with Long-Lived Triplet Excited States for Afterglow Imaging and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18385-18394. [PMID: 32212618 DOI: 10.1021/acsami.0c04005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The development of novel applications of ultralong organic phosphorescent (UOP) materials is highly desired. Herein, a series of UOP materials (EDCz, E = O, S, Se, and Te) for bacterial afterglow imaging and photodynamic therapy (PDT) is reported. By structurally bonding with the chalcogen atoms with π-conjugated scaffolds, EDCz not only absorbs visible light but also emits UOP with an efficiency of ca. 0.01-6.8% and a long lifetime of 0.08-0.318 s under ambient conditions. Benefiting from the long-lived triplet excited states, the SeDCz nanocrystals (NCs) possessed the best optical properties in the series, generating 1O2 under white light irradiation and performing as an agent for Staphylococcus aureus afterglow imaging and PDT at a low concentration (98 ng mL-1). The SeDCz NCs are also utilized as real-time UOP imaging agents and promoted healing of infected wounds in living mice. To the best of our knowledge, this study presents the first example of UOP-based bacterial photodynamic theranostic agents and creates a platform for the next-generation efficient UOP-based photosensitizers for bioimaging and skin regeneration.
Collapse
Affiliation(s)
- Letian Xu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Kun Zhou
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi province, China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Yanfeng Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi province, China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi province, China
| |
Collapse
|
20
|
Dirican D, Pfister N, Wozniak M, Braun T. Reactivity of Binary and Ternary Sulfur Halides towards Transition-Metal Compounds. Chemistry 2020; 26:6945-6963. [PMID: 31840851 PMCID: PMC7318666 DOI: 10.1002/chem.201904493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/23/2022]
Abstract
Binary sulfur fluorides exhibit an interesting reactivity towards transition metal complexes. They open up routes for the generation of sulfur‐containing building blocks. Often ligands with particular properties can be constructed. This includes their ability to transfer sulfur atoms or polysulfide units as well as fluorination reactions. This Minireview provides an insight into the reactivity of the binary and ternary sulfur halides S2Cl2, SCl2, SF4, SF6 and SF5Cl towards transition‐metal compounds.
Collapse
Affiliation(s)
- Dilcan Dirican
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Nils Pfister
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Martin Wozniak
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Thomas Braun
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
21
|
Riebe S, Wölper C, Balszuweit J, Hayduk M, Gutierrez Suburu ME, Strassert CA, Doltsinis NL, Voskuhl J. Understanding the Role of Chalcogens in Ether‐Based Luminophores with Aggregation‐Induced Fluorescence and Phosphorescence. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Steffen Riebe
- Institute of Organic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Christoph Wölper
- Institute of Inorganic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany)
| | - Jan Balszuweit
- Institute of Organic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Matthias Hayduk
- Institute of Organic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Matias Ezequiel Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie CiMIC, CeNTech, SoN –Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie CiMIC, CeNTech, SoN –Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Nikos L. Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and ComputationWestfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 10 48149 Münster Germany)
| | - Jens Voskuhl
- Institute of Organic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| |
Collapse
|
22
|
Nishiyama H, Zheng F, Inagi S, Fueno H, Tanaka K, Tomita I. Tellurophene-containing π-conjugated polymers with unique heteroatom–heteroatom interactions by post-element-transformation of an organotitanium polymer. Polym Chem 2020. [DOI: 10.1039/d0py00724b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique π-conjugated tellurophene-containing polymer that possesses fully coplanar ring units through a tellurium–oxygen interaction, was prepared by the post-element-transformation of a titanacyclopentadiene-containing reactive precursor.
Collapse
Affiliation(s)
- Hiroki Nishiyama
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology Nagatsuta-cho 4259-G1-9
- Yokohama 226-8502
- Japan
| | - Feng Zheng
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology Nagatsuta-cho 4259-G1-9
- Yokohama 226-8502
- Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology Nagatsuta-cho 4259-G1-9
- Yokohama 226-8502
- Japan
| | - Hiroyuki Fueno
- Department of Molecular Engineering
- Graduate
- School of Engineering
- Kyoto University
- Kyoto 615-8510
| | - Kazuyoshi Tanaka
- Department of Molecular Engineering
- Graduate
- School of Engineering
- Kyoto University
- Kyoto 615-8510
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology Nagatsuta-cho 4259-G1-9
- Yokohama 226-8502
- Japan
| |
Collapse
|
23
|
Rivard E. Metallacycle Transfer and its Link to Light-Emitting Materials and Conjugated Polymers. CHEM REC 2019; 20:640-648. [PMID: 31833670 DOI: 10.1002/tcr.201900095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Indexed: 02/05/2023]
Abstract
Major advances in optoelectronic technologies (e. g., solar cells, organic light-emitting diodes, etc…) are prefaced by the discovery of new synthetic methodologies. In this review, the key role of the Fagan-Nugent reaction in enabling our team (and others) to gain access to new building blocks for luminescent materials and conjugated polymers bearing p-block elements will be described. The Fagan-Nugent reaction is extremely powerful as a synthetic tool since the efficient zirconium-element atom exchange involved affords a wide range of unsaturated inorganic heterocycles of controllable composition and function.
Collapse
Affiliation(s)
- Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
24
|
Shida N, Nishiyama H, Zheng F, Ye S, Seferos DS, Tomita I, Inagi S. Redox chemistry of π-extended tellurophenes. Commun Chem 2019. [DOI: 10.1038/s42004-019-0228-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
In the past decade, the incorporation of tellurophene motifs into organic devices has been a promising strategy for the design of advanced materials. However, fundamental redox behavior of tellurophene-containing materials have never been comprehensively explored. Here, we report unique redox behavior of π-extended tellurophenes. The facile coordination of solvent molecules and/or anions becomes evident, in addition to the attachment of nucleophilic halides. This indicates that the tellurium center in oxidized 2,5-diphenyltellurophene is highly electron-deficient and easily yields coordinated structures. This coordination appears to trap the positive charge on the tellurium center rather than delocalizing it over the π-system. When no coordinating counter ion is present, however, oxidation appears to be delocalized over the entire π-system. Additionally, by using more delocalized structures, we show that coordination and charge-delocalization can co-exist. These results provide important insights to understand the properties of tellurophene-containing molecules and materials with extended π-systems.
Collapse
|
25
|
Urrego‐Riveros S, Ramirez y Medina I, Duvinage D, Lork E, Sönnichsen FD, Staubitz A. Negishi's Reagent Versus Rosenthal's Reagent in the Formation of Zirconacyclopentadienes. Chemistry 2019; 25:13318-13328. [PMID: 31347203 PMCID: PMC6851999 DOI: 10.1002/chem.201902255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 11/14/2022]
Abstract
Zirconacyclopentadienes are versatile precursors for a large number of heteroles, which are accessible by Zr-element exchange reactions. The vast majority of reports describe their preparation by the use of Negishi's reagent, which is a species that is formed in situ. The zirconacyclopentadiene is then formed by the addition of one equivalent of a diyne or two equivalents of a monoyne moiety to this Negishi species. Another route involves Rosenthal's reagent (Cp2 Zr(py)Me3 SiC≡CSiMe3 ), which then reacts with a diyne or monoyne moiety. In this work, the efficiency of both routes was compared in terms of reaction time, stability of the product in the reaction mixture, and yield. The synthetic implications of using both routes are evaluated. Novel zirconacyclopentadienes were synthesized, characterized directly from the reaction mixture, and crystal structures could be obtained in most cases.
Collapse
Affiliation(s)
- Sara Urrego‐Riveros
- Institute for Organic and Analytical Chemistry/MAPEX Center for, Materials and ProcessesUniversity of BremenLeobener Str. 7/ Bibliothekstr. 128359BremenGermany
| | - Isabel‐Maria Ramirez y Medina
- Institute for Organic and Analytical Chemistry/MAPEX Center for, Materials and ProcessesUniversity of BremenLeobener Str. 7/ Bibliothekstr. 128359BremenGermany
| | - Daniel Duvinage
- Institute for Inorganic Chemistry and Crystallography/, MAPEX Center for Materials and ProcessesUniversity of BremenLeobener Str. 7/Bibliothekstr. 128359BremenGermany
| | - Enno Lork
- Institute for Inorganic Chemistry and Crystallography/, MAPEX Center for Materials and ProcessesUniversity of BremenLeobener Str. 7/Bibliothekstr. 128359BremenGermany
| | - Frank D. Sönnichsen
- Otto-Diels-Institute for Organic ChemistryUniversity of KielOtto-Hahn-Platz 424098KielGermany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry/MAPEX Center for, Materials and ProcessesUniversity of BremenLeobener Str. 7/ Bibliothekstr. 128359BremenGermany
| |
Collapse
|
26
|
Jiang M, Guo J, Liu B, Tan Q, Xu B. Synthesis of Tellurium-Containing π-Extended Aromatics with Room-Temperature Phosphorescence. Org Lett 2019; 21:8328-8333. [PMID: 31560555 DOI: 10.1021/acs.orglett.9b03106] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of tellurium-embedded π-extended aromatics from tellurium powder and readily available cyclic diaryliodonium salts has been developed. The versatility of this method has been demonstrated by the synthesis of various functionalized dibenzotellurophenes (DBTe's), a ladder-type π-system, and a heterosumanene. These compounds demonstrated good air/moisture stability and high thermal stability. Remarkably, many DBTe's exhibited interesting tunable room-temperature phosphorescence (RTP) in the solid state.
Collapse
Affiliation(s)
- Mengjing Jiang
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Jimin Guo
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
27
|
Yang X, Zhang B, Zhang S, Li G, Xu L, Wang Z, Li P, Zhang Y, Liu Z, He G. The Marriage of Carborane with Chalcogen Atoms: Nonconjugation, σ−π Conjugation, and Intramolecular Charge Transfer. Org Lett 2019; 21:8285-8289. [DOI: 10.1021/acs.orglett.9b03047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaodong Yang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| | - Bingjie Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| | - Sikun Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| | - Letian Xu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| | - Zhijun Wang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| | - Zishun Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710054, China
| |
Collapse
|
28
|
Hupf E, Tsuchiya Y, Moffat W, Xu L, Hirai M, Zhou Y, Ferguson MJ, McDonald R, Murai T, He G, Rivard E. A Modular Approach to Phosphorescent π-Extended Heteroacenes. Inorg Chem 2019; 58:13323-13336. [PMID: 31503465 DOI: 10.1021/acs.inorgchem.9b02213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A modular route to previously inaccessible classes of ring-fused π-extended heteroacenes bearing the heavy inorganic element tellurium (Te) is presented. These new materials can be viewed as n-doped analogs of molecular graphene subunits that exhibit color tunable visible light phosphorescence in the solid state and in the presence of air. The general mechanism of phosphorescence in these systems was probed experimentally and computationally via time-dependent density functional theory (TD-DFT). The incorporation of Te into π-extended oligoacene frameworks was achieved by an efficient Zr/Te transmetalation protocol; related zirconium-element exchange reactions have been used to prepare both electron-rich and electron-deficient heterocycles containing different elements from throughout the p-block. Therefore, the current study provides a clear path to incorporate inorganic elements into heteroacenes of greater complexity and side group selectivity compared to existing synthetic routes.
Collapse
Affiliation(s)
- Emanuel Hupf
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Yuki Tsuchiya
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada.,Department of Chemistry and Biomolecular Science, Faculty of Engineering , Gifu University , Yanagido , Gifu 501-1193 , Japan
| | - Wayne Moffat
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Letian Xu
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi Province 710054 , China
| | - Masato Hirai
- Department of Chemistry, Graduate School of Science, Institute of Transformative Bio-Molecules (WPI-ITbM), and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Furo, Chikusa, Nagoya 464-8602 , Japan
| | - Yuqiao Zhou
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Michael J Ferguson
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Robert McDonald
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering , Gifu University , Yanagido , Gifu 501-1193 , Japan
| | - Gang He
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi Province 710054 , China
| | - Eric Rivard
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
29
|
Braun CA, Martinek N, Zhou Y, Ferguson MJ, Rivard E. Using boryl-substitution and improved Suzuki-Miyaura cross-coupling to access new phosphorescent tellurophenes. Dalton Trans 2019; 48:10210-10219. [PMID: 31192334 DOI: 10.1039/c9dt02095k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new di(isopropoxy)boryl -B(OiPr)2 tellurophene precursor is described, from which several previously inaccessible phosphorescent borylated tellurophenes are formed via exchange of the -OiPr groups. One such tellurophene Mes(iPrO)B-Te-6-B(OiPr)Mes, bearing a sterically encumbered mesityl (Mes) substituent at each boron center, exhibits bright yellow-orange phosphorescence in the solid state at room temperature and in the presence of the known quencher O2. Furthermore, Suzuki-Miyaura cross-coupling between the newly prepared borylated tellurophenes and the test substrate 2-bromothiophene was examined with the pre-catalyst Cl(XPhos)Pd(aminobiphenyl). While more electron deficient boryl groups such as catecholatoboryl (-Bcat) yield significant protodeboronation in place of productive C-C bond formation, efficient formation of the desired thiophene-capped tellurophene thienyl-Te-6-thienyl was noted from tellurophenes bearing the readily accessible pinacolatoboryl (-Bpin) and 1,8-naphthalenediaminatoboryl (-Bdan) functional groups. These findings open the door for the efficient synthesis of aryl tellurophenes and polytellurophenes via the ubiquitous Suzuki-Miyaura coupling of borylated tellurophenes, which was previously hampered by protodeboronation.
Collapse
Affiliation(s)
- Christina A Braun
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Nicole Martinek
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| |
Collapse
|
30
|
Li G, Zhang B, Wang J, Zhao H, Ma W, Xu L, Zhang W, Zhou K, Du Y, He G. Electrochromic Poly(chalcogenoviologen)s as Anode Materials for High‐Performance Organic Radical Lithium‐Ion Batteries. Angew Chem Int Ed Engl 2019; 58:8468-8473. [DOI: 10.1002/anie.201903152] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Guoping Li
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Bingjie Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Jianwei Wang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Hongyang Zhao
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Wenqiang Ma
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Letian Xu
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Weidong Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Kun Zhou
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Yaping Du
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsNankai University Tianjin 300350 China
| | - Gang He
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
31
|
Takahashi K, Shimo S, Hupf E, Ochiai J, Braun CA, Torres Delgado W, Xu L, He G, Rivard E, Iwasawa N. Self‐Assembly of Macrocyclic Boronic Esters Bearing Tellurophene Moieties and Their Guest‐Responsive Phosphorescence. Chemistry 2019; 25:8479-8483. [DOI: 10.1002/chem.201901319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Kohei Takahashi
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Shunsuke Shimo
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Emanuel Hupf
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Junichi Ochiai
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Christina A. Braun
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - William Torres Delgado
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Letian Xu
- Frontier Institute of Science and TechnologyXi'an Jiaotong University Xian Shaanxi Province 710054 P.R. China
| | - Gang He
- Frontier Institute of Science and TechnologyXi'an Jiaotong University Xian Shaanxi Province 710054 P.R. China
| | - Eric Rivard
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
32
|
Li G, Zhang B, Wang J, Zhao H, Ma W, Xu L, Zhang W, Zhou K, Du Y, He G. Electrochromic Poly(chalcogenoviologen)s as Anode Materials for High‐Performance Organic Radical Lithium‐Ion Batteries. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guoping Li
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Bingjie Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Jianwei Wang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Hongyang Zhao
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Wenqiang Ma
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Letian Xu
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Weidong Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Kun Zhou
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Yaping Du
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsNankai University Tianjin 300350 China
| | - Gang He
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
33
|
Oldroyd NL, Chitnis SS, Annibale VT, Arz MI, Sparkes HA, Manners I. Metal-free dehydropolymerisation of phosphine-boranes using cyclic (alkyl)(amino)carbenes as hydrogen acceptors. Nat Commun 2019; 10:1370. [PMID: 30914640 PMCID: PMC6435733 DOI: 10.1038/s41467-019-08967-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/05/2019] [Indexed: 11/08/2022] Open
Abstract
The divalent carbene carbon centre in cyclic (alkyl)(amino)carbenes (CAACs) is known to exhibit transition-metal-like insertion into E-H σ-bonds (E = H, N, Si, B, P, C, O) with formation of new, strong C-E and C-H bonds. Although subsequent transformations of the products represent an attractive strategy for metal-free synthesis, few examples have been reported. Herein we describe the dehydrogenation of phosphine-boranes, RR'PH·BH3, using a CAAC, which behaves as a stoichiometric hydrogen acceptor to release monomeric phosphinoboranes, [RR'PBH2], under mild conditions. The latter species are transient intermediates that either polymerise to the corresponding polyphosphinoboranes, [RR'PBH2]n (R = Ph; R' = H, Ph or Et), or are trapped in the form of CAAC-phosphinoborane adducts, CAAC·H2BPRR' (R = R' = tBu; R = R' = Mes). In contrast to previously established methods such as transition metal-catalysed dehydrocoupling, which only yield P-monosubstituted polymers, [RHPBH2]n, the CAAC-mediated route also provides access to P-disubstituted polymers, [RR'PBH2]n (R = Ph; R' = Ph or Et).
Collapse
Affiliation(s)
- Nicola L Oldroyd
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Saurabh S Chitnis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, NS, B3H 4R2, Canada
| | - Vincent T Annibale
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Marius I Arz
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Hazel A Sparkes
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| |
Collapse
|
34
|
Vidal F, Jäkle F. Functional Polymeric Materials Based on Main‐Group Elements. Angew Chem Int Ed Engl 2019; 58:5846-5870. [DOI: 10.1002/anie.201810611] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
35
|
Vidal F, Jäkle F. Funktionelle polymere Materialien auf der Basis von Hauptgruppen‐Elementen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810611] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
36
|
Abstract
Poly(selenylene vinylene) (PSV) is a close analog to the extensively studied poly(thienylene vinylene) (PTV) polymers, and possesses unique properties originating from the larger, more polarizable Se atoms.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry & Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Yang Qin
- Department of Chemistry & Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
37
|
Luppi BT, McDonald R, Ferguson MJ, Sang L, Rivard E. Rapid access to (cycloalkyl)tellurophene oligomer mixtures and the first poly(3-aryltellurophene). Chem Commun (Camb) 2019; 55:14218-14221. [DOI: 10.1039/c9cc07512g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New poly- and oligotellurophenes bearing cycloalkyl and 3-aryl substituents have been reported, with narrow band gaps approaching 1.3 eV observed.
Collapse
Affiliation(s)
- Bruno T. Luppi
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | | | - Lingzi Sang
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Eric Rivard
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
38
|
Farhadpour B, Guo J, Hairsine DW, Gilroy JB, Baines KM. On the primary structure of polysilenes and polygermenes. Polym Chem 2019. [DOI: 10.1039/c9py00781d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Materials derived from the anionic polymerization of a silene or a germene have a regular, alternating structure without any significant rearrangement taking place during polymerization.
Collapse
Affiliation(s)
- Bahareh Farhadpour
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR)
- University of Western Ontario
- London
- Canada
| | - Jiacheng Guo
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR)
- University of Western Ontario
- London
- Canada
| | - Douglas W. Hairsine
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR)
- University of Western Ontario
- London
- Canada
| | - Joe B. Gilroy
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR)
- University of Western Ontario
- London
- Canada
| | - Kim M. Baines
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR)
- University of Western Ontario
- London
- Canada
| |
Collapse
|
39
|
Tian W, Hu R, Tang BZ. One-Pot Multicomponent Tandem Reactions and Polymerizations for Step-Economic Synthesis of Structure-Controlled Pyrimidine Derivatives and Poly(pyrimidine)s. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wen Tian
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
40
|
Parke SM, Hupf E, Matharu GK, de Aguiar I, Xu L, Yu H, Boone MP, de Souza GLC, McDonald R, Ferguson MJ, He G, Brown A, Rivard E. Aerobic Solid State Red Phosphorescence from Benzobismole Monomers and Patternable Self-Assembled Block Copolymers. Angew Chem Int Ed Engl 2018; 57:14841-14846. [PMID: 30239084 DOI: 10.1002/anie.201809357] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Indexed: 01/08/2023]
Abstract
The synthesis of the first bismuth-containing macromolecules that exhibit phosphorescence in the solid state and in the presence of oxygen is reported. These red emissive high molecular weight polymers (>300 kDa) feature benzobismoles appended to a hydrocarbon scaffold, and were built via an efficient ring-opening metathesis (ROMP) protocol. Moreover, our general procedure readily allows for the formation of cross-linked networks and block copolymers. Attaining stable red phosphorescence with non-toxic elements remains a challenge and, thus, our new class of soluble (processable) polymeric phosphor is of great interest. Furthermore, the formation of bismuth-rich cores within organic-inorganic block copolymer spherical micelles is possible, leading to patterned arrays of bismuth in the film state.
Collapse
Affiliation(s)
- Sarah M Parke
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Emanuel Hupf
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Gunwant K Matharu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Inara de Aguiar
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060-900, Brazil
| | - Letian Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Haoyang Yu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Michael P Boone
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Gabriel L C de Souza
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060-900, Brazil
| | - Robert McDonald
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Alex Brown
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
41
|
Parke SM, Hupf E, Matharu GK, de Aguiar I, Xu L, Yu H, Boone MP, de Souza GLC, McDonald R, Ferguson MJ, He G, Brown A, Rivard E. Aerobic Solid State Red Phosphorescence from Benzobismole Monomers and Patternable Self-Assembled Block Copolymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah M. Parke
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Emanuel Hupf
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Gunwant K. Matharu
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Inara de Aguiar
- Departamento de Química; Universidade Federal de Mato Grosso; Cuiabá Mato Grosso 78060-900 Brazil
| | - Letian Xu
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 People's Republic of China
| | - Haoyang Yu
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Michael P. Boone
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Gabriel L. C. de Souza
- Departamento de Química; Universidade Federal de Mato Grosso; Cuiabá Mato Grosso 78060-900 Brazil
| | - Robert McDonald
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Ferguson
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Gang He
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 People's Republic of China
| | - Alex Brown
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Eric Rivard
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
42
|
Hoover GC, Ham J, Tang C, Carrera EI, Seferos DS. Synthesis and self-assembly of thiol-modified tellurophenes. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An asymmetric thiol-modified tellurophene was designed and synthesized, and the ability of the compound to form a monolayer on a gold electrode was confirmed. The surface-active tellurophene was synthesized using Cadiot–Chodkiewicz coupling followed by ring closing and thiol modification. The tellurophene compound forms a monolayer on gold surfaces from a concentrated solution within 24 h. The ability of the compound to conjugate to gold is confirmed by X-ray photoelectron spectroscopy (XPS). A surface blocking experiment was used to evaluate the extent of formation of a monolayer on a gold electrode.
Collapse
Affiliation(s)
- Gabrielle C. Hoover
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jennifer Ham
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Connie Tang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Elisa I. Carrera
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
43
|
Affiliation(s)
- Sarah M. Parke
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton, Alberta Canada T6G 2G2
| | - Eric Rivard
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton, Alberta Canada T6G 2G2
| |
Collapse
|
44
|
Torres Delgado W, Braun CA, Boone MP, Shynkaruk O, Qi Y, McDonald R, Ferguson MJ, Data P, Almeida SKC, Aguiar ID, de Souza GLC, Brown A, He G, Rivard E. Moving Beyond Boron-Based Substituents To Achieve Phosphorescence in Tellurophenes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12124-12134. [PMID: 28968055 DOI: 10.1021/acsami.7b11628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Previous research in our group showed that tellurophenes with pinacolboronate (BPin) units at the 2- and/or 5-positions displayed efficient phosphorescence in the solid state, both in the presence of oxygen and water. In this current study, we show that luminescence from a tellurophene is possible when various aryl-based substituents are present, thus greatly expanding the family of known (and potentially accessible) Te-based phosphors. Moreover, for the green phosphorescent perborylated tellurium heterocycle, 2,3,4,5-TeC4BPin4 (4BTe), oxygen-mediated quenching of phosphorescence is an important contributor to the lack of emission in solution (when exposed to air); thus, this system displays aggregation-enhanced emission (AEE). These discoveries should facilitate the future design of color tunable tellurium-based luminogens.
Collapse
Affiliation(s)
- William Torres Delgado
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Christina A Braun
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Michael P Boone
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Olena Shynkaruk
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Yanyu Qi
- Center for Materials Chemistry, Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710054 , People's Republic of China
| | - Robert McDonald
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Michael J Ferguson
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Przemyslaw Data
- Department of Physics , Durham University , Durham , U.K. DH1 3LE
- Faculty of Chemistry , Silesian University of Technology , Strzody 9 , Gliwice , Poland 44-100
| | - Shawan K C Almeida
- Departamento de Química , Universidade Federal de Mato Grosso , Cuiabá , Mato Grosso 78060-900 , Brazil
| | - Inara de Aguiar
- Departamento de Química , Universidade Federal de Mato Grosso , Cuiabá , Mato Grosso 78060-900 , Brazil
| | - Gabriel L C de Souza
- Departamento de Química , Universidade Federal de Mato Grosso , Cuiabá , Mato Grosso 78060-900 , Brazil
| | - Alex Brown
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Gang He
- Center for Materials Chemistry, Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710054 , People's Republic of China
| | - Eric Rivard
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| |
Collapse
|
45
|
Li G, Xu L, Zhang W, Zhou K, Ding Y, Liu F, He X, He G. Narrow-Bandgap Chalcogenoviologens for Electrochromism and Visible-Light-Driven Hydrogen Evolution. Angew Chem Int Ed Engl 2018; 57:4897-4901. [DOI: 10.1002/anie.201711761] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/05/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Guoping Li
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Letian Xu
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Weidong Zhang
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Kun Zhou
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Yousong Ding
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Fenglin Liu
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Xiaoming He
- School of Chemical Science and Engineering; Tongji University; Shanghai 200092 China
| | - Gang He
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| |
Collapse
|
46
|
Li G, Xu L, Zhang W, Zhou K, Ding Y, Liu F, He X, He G. Narrow-Bandgap Chalcogenoviologens for Electrochromism and Visible-Light-Driven Hydrogen Evolution. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoping Li
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Letian Xu
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Weidong Zhang
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Kun Zhou
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Yousong Ding
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Fenglin Liu
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| | - Xiaoming He
- School of Chemical Science and Engineering; Tongji University; Shanghai 200092 China
| | - Gang He
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province 710054 China
| |
Collapse
|
47
|
Parke SM, Narreto MAB, Hupf E, McDonald R, Ferguson MJ, Hegmann FA, Rivard E. Understanding the Origin of Phosphorescence in Bismoles: A Synthetic and Computational Study. Inorg Chem 2018; 57:7536-7549. [PMID: 29553730 DOI: 10.1021/acs.inorgchem.8b00149] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of bismuth heterocycles, termed bismoles, were synthesized via the efficient metallacycle transfer (Bi/Zr exchange) involving readily accessible zirconacycles. The luminescence properties of three structurally distinct bismoles were explored in detail via time-integrated and time-resolved photoluminescence spectroscopy using ultrafast laser excitation. Moreover, time-dependent density functional theory computations were used to interpret the nature of fluorescence versus phosphorescence in these bismuth-containing heterocycles and to guide the future preparation of luminescent materials containing heavy inorganic elements. Specifically, orbital character at bismuth within excited states is an important factor for achieving enhanced spin-orbit coupling and to promote phosphorescence. The low aromaticity of the bismole rings was demonstrated by formation of a CuCl π-complex, and the nature of the alkene-CuCl interaction was probed by real-space bonding indicators derived from Atoms-In-Molecules, the Electron Localizability Indicator, and the Non-Covalent Interaction index; such tools are of great value in interpreting nonstandard bonding environments within inorganic compounds.
Collapse
Affiliation(s)
- Sarah M Parke
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Mary A B Narreto
- Department of Physics , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | - Emanuel Hupf
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Robert McDonald
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Michael J Ferguson
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Frank A Hegmann
- Department of Physics , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | - Eric Rivard
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
48
|
Ayhan O, Riensch NA, Glasmacher C, Helten H. Cyclolinear Oligo- and Poly(iminoborane)s: The Missing Link in Inorganic Main-Group Macromolecular Chemistry. Chemistry 2018; 24:5883-5894. [DOI: 10.1002/chem.201705913] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Ozan Ayhan
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| | - Nicolas A. Riensch
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| | - Clemens Glasmacher
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| | - Holger Helten
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| |
Collapse
|
49
|
Nagahora N, Yahata S, Goto S, Shioji K, Okuma K. 2,5-Diaryltellurophenes: Effect of Electron-Donating and Electron-Withdrawing Groups on their Optoelectronic Properties. J Org Chem 2018; 83:1969-1975. [PMID: 29392944 DOI: 10.1021/acs.joc.7b02906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transformation of 1,2-bis(1-arylvinyl)ditellurides into 2,5-diaryltellurophenes by sequential ditelluride exchange and thermal intramolecular cyclization reactions is presented, and the optoelectronic properties of a series of 2,5-diaryltellurophenes with both electron-donating and electron-withdrawing aryl substituents are disclosed. Furthermore, the multicolored emissive tellurophenes in solution at room temperature have been demonstrated.
Collapse
Affiliation(s)
- Noriyoshi Nagahora
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| | - Shuhei Yahata
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| | - Shoko Goto
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| | - Kosei Shioji
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| | - Kentaro Okuma
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
50
|
Kiel GR, Samkian AE, Nicolay A, Witzke RJ, Tilley TD. Titanocene-Mediated Dinitrile Coupling: A Divergent Route to Nitrogen-Containing Polycyclic Aromatic Hydrocarbons. J Am Chem Soc 2018; 140:2450-2454. [PMID: 29383934 DOI: 10.1021/jacs.7b13823] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general synthetic strategy for the construction of large, nitrogen-containing polycyclic aromatic hydrocarbons (PAHs) is reported. The strategy involves two key steps: (1) a titanocene-mediated reductive cyclization of an oligo(dinitrile) precursor to form a PAH appended with di(aza)titanacyclopentadiene functionality; (2) a divergent titanocene transfer reaction, which allows final-step installation of one or more o-quinone, diazole, or pyrazine units into the PAH framework. The new methodology enables rational, late-stage control of HOMO and LUMO energy levels and thus photophysical and electrochemical properties, as revealed by UV/vis and fluorescence spectroscopy, cyclic voltammetry, and DFT calculations. More generally, this contribution presents the first productive use of di(aza)metallacyclopentadiene intermediates in organic synthesis, including the first formal [2 + 2 + 2] reaction to form a pyrazine ring.
Collapse
Affiliation(s)
- Gavin R Kiel
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Adrian E Samkian
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Amélie Nicolay
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Ryan J Witzke
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|