1
|
Keenan T, Cowan AR, Flack EKP, Hatton NE, Walklett AJ, Thomas GH, Hemsworth GR, Fascione MA. Structural dissection of the CMP-pseudaminic acid synthetase, PseF. Structure 2024:S0969-2126(24)00386-1. [PMID: 39393361 DOI: 10.1016/j.str.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Pseudaminic acid is a non-mammalian sugar found in the surface glycoconjugates of many bacteria, including several human pathogens, and is a virulence factor thought to facilitate immune evasion. The final step in the biosynthesis of the nucleotide activated form of the sugar, CMP-Pse5Ac7Ac is performed by a CMP-Pse5Ac7Ac synthetase (PseF). Here we present the biochemical and structural characterization of PseF from Aeromonas caviae (AcPseF), with AcPseF displaying metal-dependent activity over a broad pH and temperature range. Upon binding to CMP-Pse5Ac7Ac, AcPseF undergoes dynamic movements akin to other CMP-ulosonic acid synthetases. The enzyme clearly discriminates Pse5Ac7Ac from other ulosonic acids, through active site interactions with side-chain functional groups and by positioning the molecule in a hydrophobic pocket. Finally, we show that AcPseF binds the CMP-Pse5Ac7Ac side chain in the lowest energy conformation, a trend that we observed in the structures of other enzymes of this class.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York, York YO10 5DD, UK
| | - Andrew R Cowan
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Emily K P Flack
- Department of Biology, University of York, York YO10 5DD, UK
| | | | | | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Glyn R Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
2
|
Strobl S, Zucchetta D, Vašíček T, Monti A, Ruda A, Widmalm G, Heine H, Zamyatina A. Nonreducing Sugar Scaffold Enables the Development of Immunomodulatory TLR4-specific LPS Mimetics with Picomolar Potency. Angew Chem Int Ed Engl 2024; 63:e202408421. [PMID: 38870340 DOI: 10.1002/anie.202408421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Innate immune defense mechanisms against infection and cancer encompass the modulation of pattern recognition receptor (PRR)-mediated inflammation, including upregulation of various transcription factors and the activation of pro-inflammatory pathways important for immune surveillance. Dysfunction of PRRs-mediated signaling has been implicated in cancer and autoimmune diseases, while the overactivation of PRRs-driven responses during infection can lead to devastating consequences such as acute lung injury or sepsis. We used crystal structure-based design to develop immunomodulatory lipopolysaccharide (LPS) mimetics targeting one of the ubiquitous PRRs, Toll-like Receptor 4 (TLR4). Taking advantage of an exo-anomeric conformation and specific molecular shape of synthetic nonreducing β,β-diglucosamine, which was investigated by NMR, we developed two sets of lipid A mimicking glycolipids capable of either potently activating innate immune responses or inhibiting pro-inflammatory signaling. Stereoselective 1,1'-glycosylation towards fully orthogonally protected nonreducing GlcNβ(1↔1')βGlcN followed by stepwise assembly of differently functionalised phosphorylated glycolipids provided biologically active molecules that were evaluated for their ability to trigger or to inhibit cellular innate immune responses. Two LPS mimetics, identified as potent TLR4-specific inducers of the intracellular signaling pathways, serve as vaccine adjuvant- and immunotherapy candidates, while anionic glycolipids with TLR4-inhibitory potential hold therapeutic promise for the management of acute or chronic inflammation.
Collapse
Affiliation(s)
- Sebastian Strobl
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Daniele Zucchetta
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Tomáš Vašíček
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Monti
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Ruda
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, Borstel, 23845, Germany
| | - Alla Zamyatina
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
3
|
Ande C, Crich D. Stereodirecting Effect of Esters at the 4-Position of Galacto- and Glucopyranosyl Donors: Effect of 4- C-Methylation on Side-Chain Conformation and Donor Reactivity, and Influence of Concentration and Stoichiometry on Distal Group Participation. J Org Chem 2023; 88:13883-13893. [PMID: 37677151 PMCID: PMC10563135 DOI: 10.1021/acs.joc.3c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 09/09/2023]
Abstract
When generated in a mass spectrometer bridged bicyclic 1,3-dioxenium ions derived from 4-O-acylgalactopyranosyl, donors can be observed by infrared spectroscopy at cryogenic temperatures, but they are not seen in the solution phase in contrast to the fused bicyclic 1,3-dioxalenium ions of neighboring group participation. The inclusion of a 4-C-methyl group into a 4-O-benzoyl galactopyranosyl donor enables nuclear magnetic resonance observation of the bicyclic ion arising from participation by the distal ester, with the methyl group influence attributed to ester ground state conformation destabilization. We show that a 4-C-methyl group also influences the side-chain conformation, enforcing a gauche,trans conformation in gluco and galactopyranosides. Competition experiments reveal that the 4-C-methyl group has only a minor influence on the rate of reaction of 4-O-benzoyl or 4-O-benzyl-galacto and glucopyranosyl donors and, consequently, that participation by the distal ester does not result in kinetic acceleration (anchimeric assistance). We demonstrate that the stereoselectivity of the 4-O-benzoyl-4-C-methyl galactopyranosyl donor depends on reaction concentration and additive (diphenyl sulfoxide) stoichiometry and hence that participation by the distal ester is a borderline phenomenon in competition with standard glycosylation mechanisms. An analysis of a recent paper affirming participation by a remote pivalate ester is presented with alternative explanations for the observed phenomena.
Collapse
Affiliation(s)
- Chennaiah Ande
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Komarova BS, Novikova NS, Gerbst AG, Sinitsyna OA, Rubtsova EA, Kondratyeva EG, Sinitsyn AP, Nifantiev NE. Combination of 3- O-Levulinoyl and 6- O-Trifluorobenzoyl Groups Ensures α-Selectivity in Glucosylations: Synthesis of the Oligosaccharides Related to Aspergillus fumigatus α-(1 → 3)-d-Glucan. J Org Chem 2023; 88:12542-12564. [PMID: 37593939 DOI: 10.1021/acs.joc.3c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Stereospecific α-glucosylation of primary and secondary OH-group at carbohydrate acceptors is achieved using glucosyl N-phenyl-trifluoroacetimidate (PTFAI) donor protected with an electron-withdrawing 2,4,5-trifluorobenzoyl (TFB) group at O-6 and the participating levulinoyl (Lev) group at O-3. New factors have been revealed that might explain α-stereoselectivity in the case of TFB and pentafluorobenzoyl (PFB) groups at O-6. They are of conformational nature and confirmed by DFT calculations. The potential of this donor, as well as the orthogonality of TFB and Lev protecting groups, is showcased by the synthesis of α-(1 → 3)-linked pentaglucoside corresponding to Aspergillus fumigatus α-(1 → 3)-d-glucan and of its hexasaccharide derivative, bearing β-glucosamine residue at the non-reducing end.
Collapse
Affiliation(s)
- Bozhena S Komarova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Natalia S Novikova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga A Sinitsyna
- Department of Chemistry, M.V. Lomonosov Moscow State University, Vorobyevy Gory 1-11, Moscow 119992, Russia
| | - Ekaterina A Rubtsova
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Elena G Kondratyeva
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Arkady P Sinitsyn
- Department of Chemistry, M.V. Lomonosov Moscow State University, Vorobyevy Gory 1-11, Moscow 119992, Russia
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
5
|
Upadhyaya K, Osorio-Morales N, Crich D. Can Side-Chain Conformation and Glycosylation Selectivity of Hexopyranosyl Donors Be Controlled with a Dummy Ligand? J Org Chem 2023; 88:3678-3696. [PMID: 36877600 PMCID: PMC10028612 DOI: 10.1021/acs.joc.2c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of a phenylthio group (SPh) as a dummy ligand at the 6-position to control the side-chain conformation of a series of hexopyranosyl donors is described. The SPh group limits side-chain conformation in a configuration-specific manner, which parallels that seen in the heptopyranosides, and so influences glycosylation selectivity. With both d- and l-glycero-d-galacto-configured donors, the equatorial products are highly favored as they are with an l-glycero-d-gluco donor. For the d-glycero-d-gluco donor, on the other hand, modest axial selectivity is observed. Selectivity patterns are discussed in terms of the side-chain conformation of the donors in combination with the electron-withdrawing effect of the thioacetal group. After glycosylation, removal of the thiophenyl moiety and hydrogenolytic deprotection is achieved in a single step with Raney nickel.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Nicolas Osorio-Morales
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Tseng PS, Ande C, Moremen KW, Crich D. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Angew Chem Int Ed Engl 2023; 62:e202217809. [PMID: 36573850 PMCID: PMC9908843 DOI: 10.1002/anie.202217809] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 12/28/2022]
Abstract
Substrate side chain conformation impacts reactivity during glycosylation and glycoside hydrolysis and is restricted by many glycosidases and glycosyltransferases during catalysis. We show that the side chains of gluco and manno iminosugars can be restricted to predominant conformations by strategic installation of a methyl group. Glycosidase inhibition studies reveal that iminosugars with the gauche,gauche side chain conformations are 6- to 10-fold more potent than isosteric compounds with the gauche,trans conformation; a manno-configured iminosugar with the gauche,gauche conformation is a 27-fold better inhibitor than 1-deoxymannojirimycin. The results are discussed in terms of the energetic benefits of preorganization, particularly when in synergy with favorable hydrophobic interactions. The demonstration that inhibitor side chain preorganization can favorably impact glycosidase inhibition paves the way for improved inhibitor design through conformational preorganization.
Collapse
Affiliation(s)
- Po-Sen Tseng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA),Department of Chemistry, University of Georgia, Athens, GA 30602 (USA),Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA)
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA)
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA),Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 (USA)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA),Department of Chemistry, University of Georgia, Athens, GA 30602 (USA),Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA)
| |
Collapse
|
7
|
Herczeg M, Demeter F, Lisztes E, Racskó M, Tóth BI, Timári I, Bereczky Z, Kövér KE, Borbás A. Synthesis of a Heparinoid Pentasaccharide Containing l-Guluronic Acid Instead of l-Iduronic Acid with Preserved Anticoagulant Activity. J Org Chem 2022; 87:15830-15836. [PMID: 36411253 DOI: 10.1021/acs.joc.2c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
l-Iduronic acid is a key constituent of heparin and heparan sulfate polysaccharides due to its unique conformational plasticity, which facilitates the binding of polysaccharides to proteins. At the same time, this is the synthetically most challenging unit of heparinoid oligosaccharides; therefore, there is a high demand for its replacement with a more easily accessible sugar unit. In the case of idraparinux, an excellent anticoagulant heparinoid pentasaccharide, we demonstrated that l-iduronic acid can be replaced by an easier-to-produce l-sugar while maintaining its essential biological activity. From the inexpensive d-mannose, through a highly functionalized phenylthio mannoside, the l-gulose donor was prepared by C-5 epimerization in 10 steps with excellent yield. This unit was incorporated into the pentasaccharide by α-selective glycosylation and oxidized to l-guluronic acid. The complete synthesis required only 36 steps, with 21 steps for the longest linear route. The guluronate containing pentasaccharide inhibited coagulation factor Xa by 50% relative to the parent compound, representing an excellent anticoagulant activity. To the best of our knowledge, this is the first biologically active heparinoid anticoagulant which contains a different sugar unit instead of l-iduronic acid.
Collapse
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH Egyetem tér 1, Debrecen H-4032, Hungary
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary
| | - Márk Racskó
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary.,Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary
| | - István Timári
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| |
Collapse
|
8
|
Sasaki K, Uesaki N. Conformationally restricted donors for stereoselective glycosylation. Adv Carbohydr Chem Biochem 2022; 82:107-155. [PMID: 36470647 DOI: 10.1016/bs.accb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In nucleophilic reactions using sugars as electrophiles, i.e., glycosyl donors, their conformation affects the generation rate or stability of the glycosyl cation intermediates and determines at which side of the SN2-SN1 borderline and at what rate the reaction occurs. In addition, changes in the conformation create the steric or stereoelectronic effects of the substituents, which also change the reaction rate and stereoselectivity. Bulky silyl protecting groups, uronic acid esters, and transannular structures have been utilized to change the conformation. Consequently, reactions with unique reactivities and stereoselectivities have been developed. In this chapter, a discussion of the reaction mechanisms relating stereoselectivity to conformation is provided.
Collapse
Affiliation(s)
- Kaname Sasaki
- Department of Chemistry, Toho University, Funabashi, Japan.
| | - Nanako Uesaki
- Department of Chemistry, Toho University, Funabashi, Japan
| |
Collapse
|
9
|
Diversity-Oriented Synthesis of a Molecular Library of Immunomodulatory α-Galactosylceramides with Fluorous-Tag-Assisted Purification and Evaluation of Their Bioactivities in Regard to IL-2 Secretion. Int J Mol Sci 2022; 23:ijms232113403. [DOI: 10.3390/ijms232113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Structural variants of α-galactosylceramide (α-GalCer) that stimulate invariant natural killer T (iNKT) cells constitute an emerging class of immunomodulatory agents in development for numerous biological applications. Variations in lipid chain length and/or fatty acids in these glycoceramides selectively trigger specific pro-inflammatory responses. Studies that would link a specific function to a structurally distinct α-GalCer rely heavily on the availability of homogeneous and pure materials. To address this need, we report herein a general route to the diversification of the ceramide portion of α-GalCer glycolipids. Our convergent synthesis commences from common building blocks and relies on the Julia–Kocienski olefination as a key step. A cleavable fluorous tag is introduced at the non-reducing end of the sugar that facilitates quick purification of products by standard fluorous solid-phase extraction. The strategy enabled the rapid generation of a focused library of 61 α-GalCer analogs by efficiently assembling various lipids and fatty acids. Furthermore, when compared against parent α-GalCer in murine cells, many of these glycolipid variants were found to have iNKT cell stimulating activity similar to or greater than KRN7000. ELISA assaying indicated that glycolipids carrying short fatty N-acyl chains (1fc and 1ga), an unsubstituted (1fh and 1fi) or CF3-substituted phenyl ring at the lipid tail, and a flexible, shorter fatty acyl chain with an aromatic ring (1ge, 1gf, and 1gg) strongly affected the activation of iNKT cells by the glycolipid-loaded antigen-presenting molecule, CD1d. This indicates that the method may benefit the design of structural modifications to potent iNKT cell-binding glycolipids.
Collapse
|
10
|
Sianturi J, Priegue P, Hu J, Yin J, Seeberger PH. Semi-Synthetic Glycoconjugate Vaccine Lead Against Acinetobacter baumannii 17978. Angew Chem Int Ed Engl 2022; 61:e202209556. [PMID: 35950629 PMCID: PMC9826233 DOI: 10.1002/anie.202209556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/11/2023]
Abstract
Acinetobacter baumannii is a opportunistic bacterial pathogen responsible for serious nosocomial infections that is becoming increasingly resistant against antibiotics. Capsular polysaccharides (CPS) that cover A. baumannii are a major virulence factor that play an important role in pathogenesis, are used to assign serotypes and provide the basis for vaccine development. Synthetic oligosaccharides resembling the CPS of A. baumannii 17978 were printed onto microarray slides and used to screen sera from patients infected with A. baumannii as well as a monoclonal mouse antibody (mAb C8). A synthetic oligosaccharide emerged from glycan array screening as lead for the development of a vaccine against A. baumannii 17978. Tetrasaccharide 20 is a key epitope for recognition by an antibody and is a vaccine lead.
Collapse
Affiliation(s)
- Julinton Sianturi
- Department of Biomolecular SystemsMax-Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Patricia Priegue
- Department of Biomolecular SystemsMax-Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jing Hu
- Wuxi School of MedicineJiangnan UniversityLihu Ave. 1800214122WuxiChina
| | - Jian Yin
- Wuxi School of MedicineJiangnan UniversityLihu Ave. 1800214122WuxiChina
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
11
|
Seeberger PH, Sianturi J, Priegue P, Hu J, Yin J. Semi‐Synthetic Glycoconjugate Vaccine Lead Against Acinetobacter baumannii 17978. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces Biomolecular Systems Am Mühlenberg 1Research Campus Golm 14476 Potsdam GERMANY
| | - Julinton Sianturi
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Biomolecular Systems Am Mühlenberg 1Research Campus golm 14476 Potsdam GERMANY
| | - Patricia Priegue
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Biomolecular Systems Am Mühlenberg 1Research Campus Golm 14476 Potsdam GERMANY
| | - Jing Hu
- Jiangnan University School of Biotechnology Lihu Ave. 1800 214122 Wuxi CHINA
| | - Jian Yin
- Jiangnan University School of Biotechnology Lihu Ave. 1800 214122 Wuxi CHINA
| |
Collapse
|
12
|
Strobl S, Hofbauer K, Heine H, Zamyatina A. Lipid A Mimetics Based on Unnatural Disaccharide Scaffold as Potent TLR4 Agonists for Prospective Immunotherapeutics and Adjuvants. Chemistry 2022; 28:e202200547. [PMID: 35439332 PMCID: PMC9325513 DOI: 10.1002/chem.202200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/11/2022]
Abstract
TLR4 is a key pattern recognition receptor that can sense pathogen- and danger- associated molecular patterns to activate the downstream signaling pathways which results in the upregulation of transcription factors and expression of interferons and cytokines to mediate protective pro-inflammatory responses involved in immune defense. Bacterial lipid A is the primary TLR4 ligand with very complex, species-specific, and barely predictable structure-activity relationships. Given that therapeutic targeting of TLR4 is an emerging tool for management of a variety of human diseases, the development of novel TLR4 activating biomolecules other than lipid A is of vast importance. We report on design, chemical synthesis and immunobiology of novel glycan-based lipid A-mimicking molecules that can activate human and murine TLR4-mediated signaling with picomolar affinity. Exploiting crystal structure - based design we have created novel disaccharide lipid A mimetics (DLAMs) where the inherently flexible β(1→6)-linked diglucosamine backbone of lipid A is exchanged with a conformationally restrained non-reducing βGlcN(1↔1')βGlcN scaffold. Excellent stereoselectivity in a challenging β,β-1,1' glycosylation was achieved by tuning the reactivities of donor and acceptor molecules using protective group manipulation strategy. Divergent streamlined synthesis of β,β-1,1'-linked diglucosamine-derived glycolipids entailing multiple long-chain (R)-3- acyloxyacyl residues and up two three phosphate groups was developed. Specific 3D-molecular shape and conformational rigidity of unnatural β,β-1,1'-linked diglucosamine combined with carefully optimized phosphorylation and acylation pattern ensured efficient induction of the TLR4-mediated signaling in a species-independent manner.
Collapse
Affiliation(s)
- Sebastian Strobl
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| | - Karin Hofbauer
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| | - Holger Heine
- Research Group Innate ImmunityResearch Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL)Parkallee 22Borstel23845Germany
| | - Alla Zamyatina
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| |
Collapse
|
13
|
Clarke JJ, Basemann K, Romano N, Lee SJ, Gagné MR. Borane- and Silylium-Catalyzed Difunctionalization of Carbohydrates: 3,6-Anhydrosugar Enabled 1,6-Site Selectivity. Org Lett 2022; 24:4135-4139. [PMID: 35653692 DOI: 10.1021/acs.orglett.2c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel diastereoselective, Lewis acid catalyzed 1,6-difunctionalization of galactose and mannose derivatives has been developed in one pot, via sequential nucleophile additions. Our studies point to the formation of a 3,6-anhydrosugar intermediate as key to the 1,6-site-selectivity. Starting material-specific reactivity occurs when competitive ring-opening C-O cleavage is possible, owed to basicity and stereoelectronic stabilization differences. Lastly, Mayr nucleophilicity parameter values helped predict which reaction conditions would be most suitable for specific nucleophiles.
Collapse
Affiliation(s)
- Joshua J Clarke
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin Basemann
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Neyen Romano
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Stephen J Lee
- U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709, United States
| | - Michel R Gagné
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
14
|
Arachchige SS, Crich D. Side Chain Conformation and Its Influence on Glycosylation Selectivity in Hexo- and Higher Carbon Furanosides. J Org Chem 2022; 87:316-339. [PMID: 34905382 PMCID: PMC8741747 DOI: 10.1021/acs.joc.1c02374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe the synthesis and side chain conformational analysis of a series of four 6-deoxy-2,3,5-tri-O-benzyl hexofuranosyl donors with the d-gluco, l-ido, d-altro, and l-galacto configurations. The conformation of the exocyclic bond of these compounds depends on the relative configuration of the point of attachment of the side chain to the ring and of the two flanking centers and can be predicted on that basis analogously to the heptopyranose analogs. Variable-temperature nuclear magnetic resonance (VT NMR) spectroscopy of the activated donors reveals complex, configuration-dependent mixtures of intermediates that we interpret in terms of fused and bridged oxonium ions arising from participation by the various benzyl ethers. The increased importance of ether participation in the furanoside series compared to the pyranosides is discussed in terms of the reduced stabilization afforded to furanosyl oxocarbenium ions by covalent triflate formation. The stereoselectivities of the four donors are discussed on the basis of the benzyl ether participation model.
Collapse
Affiliation(s)
- Sameera Siyabalapitiya Arachchige
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| |
Collapse
|
15
|
Quirke JCK, Crich D. GH47 and Other Glycoside Hydrolases Catalyze Glycosidic Bond Cleavage with the Assistance of Substrate Super-arming at the Transition State. ACS Catal 2021; 11:10308-10315. [PMID: 34777906 PMCID: PMC8579916 DOI: 10.1021/acscatal.1c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Super-armed glycosyl donors, whose substituents are predominantly held in pseudoaxial positions, exhibit strongly increased reactivity in glycosylation through significant stabilization of oxocarbenium-like transition states. Examination of X-ray crystal structures reveals that the GH47 family of glycoside hydrolases have evolved so as to distort their substrates away from the ground state conformation in such a manner as to present multiple C-O bonds in pseudoaxial positions and so benefit from conformational super-arming of their substrates, thereby enhancing catalysis. Through analysis of literature mutagenic studies, we show that a suitably placed aromatic residue in GHs 6 and 47 sterically enforces super-armed conformations on their substrates. GH families 45, 81, and 134 on the other hand impose conformational super-arming on their substrates, by maintaining the more active ring conformation through hydrogen bonding rather than steric interactions. The recognition of substrate super-arming by select GH families provides a further parallel with synthetic carbohydrate chemistry and nature and opens further avenues for the design of improved glycosidase inhibitors.
Collapse
Affiliation(s)
- Jonathan C K Quirke
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
16
|
Nguyen JM, Townsend SD. Total Synthesis of the Photorhabdus temperata ssp. Cinereal 3240 Zwitterionic Trisaccharide Repeating Unit. Org Lett 2021; 23:5922-5926. [PMID: 34314177 DOI: 10.1021/acs.orglett.1c02023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zwitterionic carbohydrate modifications, such as phosphoethanolamine (PEtN), govern host-pathogen interactions. Whereas it is recognized that these modifications stimulate the host immune system, the purpose of PEtN modification remains largely descriptive. As an enabling step toward studying this carbohydrate modification, we report a synthesis of the P. temperata zwitterionic trisaccharide repeating unit. The 32-step synthesis was enabled by H-phosphonate chemistry to install the PEtN arm on a poorly reactive and sterically hindered C4-alcohol.
Collapse
Affiliation(s)
- Johny M Nguyen
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
17
|
Upadhyaya K, Bagul RS, Crich D. Influence of Configuration at the 4- and 6-Positions on the Conformation and Anomeric Reactivity and Selectivity of 7-Deoxyheptopyranosyl Donors: Discovery of a Highly Equatorially Selective l- glycero-d- gluco-Heptopyranosyl Donor. J Org Chem 2021; 86:12199-12225. [PMID: 34343001 DOI: 10.1021/acs.joc.1c01535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The preparation of four per-O-benzyl-d- or l-glycero-d-galacto and d- or l-glycero-d-gluco heptopyranosyl sulfoxides and the influence of their side-chain conformations on reactivity and stereoselectivity in glycosylation reactions are described. The side-chain conformation in these donors is determined by the relative configuration of its point of attachment to the pyranoside ring and the two flanking centers in agreement with a recent model. In the d- and l-glycero-d-galacto glycosyl donors, the d-glycero-d-galacto isomer with the more electron-withdrawing trans,gauche conformation of its side chain was the more equatorially selective isomer. In the d- and l-glycero-d-gluco glycosyl donors, the l-glycero-d-gluco isomer with the least disarming gauche,gauche side-chain conformation was the most equatorially selective donor. Variable temperature NMR studies, while supporting the formation of intermediate glycosyl triflates at -80 °C in all cases, were inconclusive owing to a change in the decomposition mechanism with the change in configuration. It is suggested that the equatorial selectivity of the l-glycero-d-gluco isomer arises from H-bonding between the glycosyl acceptor and O6 of the donor, which is poised to deliver the acceptor antiperiplanar to the glycosyl triflate, resulting in a high degree of SN2 character in the displacement reaction.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Rahul S Bagul
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Quirke JCK, Crich D. Side Chain Conformation Restriction in the Catalysis of Glycosidic Bond Formation by Leloir Glycosyltransferases, Glycoside Phosphorylases, and Transglycosidases. ACS Catal 2021; 11:5069-5078. [PMID: 34367723 PMCID: PMC8336929 DOI: 10.1021/acscatal.1c00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbohydrate side chain conformation is an important factor in the control of reactivity at the anomeric center, ie, in the making and breaking of glycosidic bonds, whether chemically or, for hydrolysis, by glycoside hydrolases. In nature glycosidic bond formation is catalyzed out by glycosyltransferases (GTs), glycoside phosphoryases, and transglycosidases. By analysis of 118 crystal structures of sugar nucleotide dependent (Leloir) GTs, 136 crystal structures of glycoside phosphorylases, and 54 crystal structures of transglycosidases bound to hexopyranosides or their analogs at the donor site (-1 site), we determined that most enzymes that catalyze glycoside synthesis, be they GTs, glycoside phosphorylases or transglycosidases, restrict their substrate side chains to the most reactive gauche,gauche (gg) conformation to achieve maximum stabilization of the oxocarbenium ion-like transition state for glycosyl transfer. The galactose series deviates from this trend, with α-galactosyltransferases preferentially restricting their substrates to the second-most reactive gauche,trans (gt) conformation, and β-galactosyltransferases favoring the least reactive trans,gauche (tg) conformation. This insight will help progress the design and development of improved, conformationally-restricted GT inhibitors that take advantage of these inherent side chain preferences.
Collapse
Affiliation(s)
- Jonathan C. K. Quirke
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
19
|
Chang CW, Lin MH, Chan CK, Su KY, Wu CH, Lo WC, Lam S, Cheng YT, Liao PH, Wong CH, Wang CC. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021; 60:12413-12423. [PMID: 33634934 DOI: 10.1002/anie.202013909] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/07/2021] [Indexed: 12/17/2022]
Abstract
The stereoselectivity and yield in glycosylation reactions are paramount but unpredictable. We have developed a database of acceptor nucleophilic constants (Aka) to quantify the nucleophilicity of hydroxyl groups in glycosylation influenced by the steric, electronic and structural effects, providing a connection between experiments and computer algorithms. The subtle reactivity differences among the hydroxyl groups on various carbohydrate molecules can be defined by Aka, which is easily accessible by a simple and convenient automation system to assure high reproducibility and accuracy. A diverse range of glycosylation donors and acceptors with well-defined reactivity and promoters were organized and processed by the designed software program "GlycoComputer" for prediction of glycosylation reactions without involving sophisticated computational processing. The importance of Aka was further verified by random forest algorithm, and the applicability was tested by the synthesis of a Lewis A skeleton to show that the stereoselectivity and yield can be accurately estimated.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Kuan-Yu Su
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Chih Lo
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Sarah Lam
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Ting Cheng
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Pin-Hsuan Liao
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Huey Wong
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.,Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, 92037, USA
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
20
|
Chang C, Lin M, Chan C, Su K, Wu C, Lo W, Lam S, Cheng Y, Liao P, Wong C, Wang C. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chun‐Wei Chang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Mei‐Huei Lin
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chieh‐Kai Chan
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Kuan‐Yu Su
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chia‐Hui Wu
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Wei‐Chih Lo
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Yu‐Ting Cheng
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Pin‐Hsuan Liao
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chi‐Huey Wong
- The Genomics Research Center Academia Sinica Taipei 115 Taiwan
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla 92037 USA
| | - Cheng‐Chung Wang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics Program Taiwan International Graduate Program (TIGP) Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
21
|
Rajasekaran P, Pirrone MG, Crich D. Influence of substitution at the 5α-Position on the side chain conformation of glucopyranosides. Carbohydr Res 2021; 500:108254. [PMID: 33561715 DOI: 10.1016/j.carres.2021.108254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
We describe the preparation of methyl 5α-methyl-α-d-glucopyranoside and of 5α-fluoro-β-d-glucopyranose per acetate and the NMR-based conformational analysis of their side chains. Both the 5α-methyl and 5α-fluoro substituents increase the population of the gauche,gauche side chain conformer to the extent that it becomes the predominant conformation. In the 5α-methyl series this is attributed to steric effects, whereas in the 5α-fluoro series the optimization of attractive gauche effects is the more likely reason.
Collapse
Affiliation(s)
- Parasuraman Rajasekaran
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael G Pirrone
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA; Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA.
| |
Collapse
|
22
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Kleski KA, Shi M, Lohman M, Hymel GT, Gattoji VK, Andreana PR. Synthesis of an Aminooxy Derivative of the GM3 Antigen and Its Application in Oxime Ligation. J Org Chem 2020; 85:16207-16217. [PMID: 32320231 PMCID: PMC7606269 DOI: 10.1021/acs.joc.0c00320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The anomeric aminooxy GM3 trisaccharide cancer antigen (Neu5Acα2,3Galβ1,4Glcβ-ONH2) has been chemically synthesized using a linear glycosylation approach. The key step involves a highly α(2,3)-stereoselective sialylation to a galactose acceptor. The Neu5Acα2,3Gal intermediate was functionalized as a donor for a [2 + 1] glycosylation, including a glucose acceptor that featured an O-succinimidyl group on the reducing end as an aminooxy precursor. The fully deprotected anomeric aminooxy GM3 trisaccharide was then conjugated to the immunologically relevant zwitterionic polysaccharide PS A1 via an oxime link.
Collapse
Affiliation(s)
- Kristopher A. Kleski
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Mengchao Shi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Matthew Lohman
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Gabrielle T. Hymel
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Vinod K. Gattoji
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Peter R. Andreana
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
24
|
Zhang Y, Guo J, Xu X, Gao Q, Liu X, Ding N. A practical and scalable synthesis of KRN7000 using glycosyl iodide as the glycosyl donor. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820961018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KRN7000 is particularly useful because it is a powerful and specific CD1d agonist and has prompted intense interest in the context of immunology in the past 25 years. Its limited commercial availability and high price has led to the publication of many different syntheses. However, almost all of them focused on the methodology development rather than a scalable synthesis. Herein, we have described a practical and scalable procedure for the synthesis of KRN7000 basing on the glycosyl iodide method. This procedure involves total of eight steps to obtain the highly pure product KNR7000 on gram scale from the commercially available starting materials (d-galactose and the phytosphingosine) with only three column chromatographic purifications.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Jia Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Xiaoyan Xu
- China State Institute of Pharmaceutical Industry, Shanghai, P.R. China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, Shanghai, P.R. China
| | - Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| |
Collapse
|
25
|
Jeanneret RA, Johnson SE, Galan MC. Conformationally Constrained Glycosyl Donors as Tools to Control Glycosylation Outcomes. J Org Chem 2020; 85:15801-15826. [DOI: 10.1021/acs.joc.0c02045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robin A. Jeanneret
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Simon E. Johnson
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
26
|
Quirke JCK, Crich D. Glycoside Hydrolases Restrict the Side Chain Conformation of Their Substrates To Gain Additional Transition State Stabilization. J Am Chem Soc 2020; 142:16965-16973. [PMID: 32877175 PMCID: PMC7544649 DOI: 10.1021/jacs.0c05592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrate side chain conformation confers a significant influence on reactivity during glycosylation and anomeric bond hydrolysis due to stabilization of the oxocarbenium-like transition state. By analysis of 513 pyranoside-bound glycoside hydrolase (GH) crystal structures, we determine that most glucosidases and β-mannosidases preferentially bind their substrates in the most reactive gauche,gauche (gg) conformation, thereby maximizing stabilization of the corresponding oxocarbenium ion-like transition state during hydrolysis. α-Galactoside hydrolases mostly show a preference for the second most activating gauche,trans (gt) conformation to avoid the energy penalty that would arise from imposing the gg conformation on galacto-configured ligands. These preferences stand in stark contrast to the side chain populations observed for these sugars both in free solution and bound to nonhydrolytic proteins, where for the most part a much greater diversity of side chain conformations is observed. Analysis of sequences of GH-ligand complexes reveals that side chain restriction begins with the enzyme-substrate complex and persists through the transition state until release of the hydrolysis product, despite changes in ring conformation along the reaction coordinate. This work will inform the design of new generations of glycosidase inhibitors with restricted side chains that confer higher selectivity and/or affinity.
Collapse
Affiliation(s)
- Jonathan C K Quirke
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
27
|
Onobun E, Crich D. Synthesis of 3-Deoxy-d- manno-oct-2-ulosonic Acid (KDO) and Pseudaminic Acid C-Glycosides. J Org Chem 2020; 85:16035-16042. [PMID: 32897074 DOI: 10.1021/acs.joc.0c01838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of glycosyl dibutyl phosphates in the 3-deoxy-d-manno-oct-2-ulosonic acid (KDO) and pseudaminic acid series and their application to the formation of C-glycosides are described. Both donors were obtained from the corresponding thioglycosides by treatment with dibutylphosphoric acid and N-iodosuccinimide. As with the thioglycosides, both donors adopted very predominantly the strongly electron-withdrawing tg conformation of their side chains, which is reflected in the excellent equatorial selectivity of both donors in the formation of exemplary O-glycosides. With respect to C-glycoside formation on the other hand, contrasting results were observed: the KDO donor was either relatively unselective or selective for the formation of the axial C-glycoside, while the pseudaminic acid donor was selective for the formation of the equatorial C-glycoside. These observations are rationalized in terms of the greater electron-withdrawing ability of the azides in the pseudaminic acid donor compared to the corresponding acetoxy groups in the KDO series, resulting in a reaction through tighter ion pairs even at the SN1 end of the general glycosylation mechanism. The contrast in the axial versus the equatorial selectivity between C- and O-glycosylation cautions against the extrapolation of models for SN1-type glycosylation with weak nucleophiles for the explanation of O-glycosylation.
Collapse
Affiliation(s)
- Emmanuel Onobun
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Hettikankanamalage AA, Lassfolk R, Ekholm FS, Leino R, Crich D. Mechanisms of Stereodirecting Participation and Ester Migration from Near and Far in Glycosylation and Related Reactions. Chem Rev 2020; 120:7104-7151. [PMID: 32627532 PMCID: PMC7429366 DOI: 10.1021/acs.chemrev.0c00243] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review is the counterpart of a 2018 Chemical Reviews article (Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. Chem. Rev. 2018, 118, 8242-8284) that examined the mechanisms of chemical glycosylation in the absence of stereodirecting participation. Attention is now turned to a critical review of the evidence in support of stereodirecting participation in glycosylation reactions by esters from either the vicinal or more remote positions. As participation by esters is often accompanied by ester migration, the mechanism(s) of migration are also reviewed. Esters are central to the entire review, which accordingly opens with an overview of their structure and their influence on the conformations of six-membered rings. Next the structure and relative energetics of dioxacarbeniun ions are covered with emphasis on the influence of ring size. The existing kinetic evidence for participation is then presented followed by an overview of the various intermediates either isolated or characterized spectroscopically. The evidence supporting participation from remote or distal positions is critically examined, and alternative hypotheses for the stereodirecting effect of such esters are presented. The mechanisms of ester migration are first examined from the perspective of glycosylation reactions and then more broadly in the context of partially acylated polyols.
Collapse
Affiliation(s)
- Asiri A. Hettikankanamalage
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - Robert Lassfolk
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - Filip S. Ekholm
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Reko Leino
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
29
|
Ngoje P, Crich D. Stereocontrolled Synthesis of the Equatorial Glycosides of 3-Deoxy-d-manno-oct-2-ulosonic Acid: Role of Side Chain Conformation. J Am Chem Soc 2020; 142:7760-7764. [PMID: 32275429 PMCID: PMC7213052 DOI: 10.1021/jacs.0c03215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The pseudosymmetric relationship of the bacterial sialic acid, pseudaminic acid, and 3-deoxy-d-manno-oct-2-ulosonic acid (KDO) affords the hypothesis that suitably protected KDO donors will adopt the trans, gauche conformation of their side chain and consequently be highly equatorially selective in their coupling reactions conducted at low temperature. This hypothesis is borne out by the synthesis, conformational analysis, and excellent equatorial selectivity seen on coupling of per-O-acetyl or benzyl-protected KDO donors in dichloromethane at -78 °C. Mechanistic understanding of glycosylation reactions is advancing to a stage at which predictions of selectivity can be made. In this instance, predictions of selectivity provide the first highly selective entry into KDO equatorial glycosides such as are found in the capsular polysaccharides of numerous pathogenic bacteria.
Collapse
Affiliation(s)
- Philemon Ngoje
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
30
|
Mukherji A, Kancharla PK. C–H···Anion Interactions Assisted Addition of Water to Glycals by Sterically Hindered 2,4,6-Tri-tert-butylpyridinium Hydrochloride. Org Lett 2020; 22:2191-2195. [DOI: 10.1021/acs.orglett.0c00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K. Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
31
|
Bartolo ND, Read JA, Valentín EM, Woerpel KA. Reactions of Allylmagnesium Reagents with Carbonyl Compounds and Compounds with C═N Double Bonds: Their Diastereoselectivities Generally Cannot Be Analyzed Using the Felkin-Anh and Chelation-Control Models. Chem Rev 2020; 120:1513-1619. [PMID: 31904936 PMCID: PMC7018623 DOI: 10.1021/acs.chemrev.9b00414] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review describes the additions of allylmagnesium reagents to carbonyl compounds and to imines, focusing on the differences in reactivity between allylmagnesium halides and other Grignard reagents. In many cases, allylmagnesium reagents either react with low stereoselectivity when other Grignard reagents react with high selectivity, or allylmagnesium reagents react with the opposite stereoselectivity. This review collects hundreds of examples, discusses the origins of stereoselectivities or the lack of stereoselectivity, and evaluates why selectivity may not occur and when it will likely occur.
Collapse
Affiliation(s)
- Nicole D. Bartolo
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| | - Jacquelyne A. Read
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, UT 84112, USA
| | - Elizabeth M. Valentín
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, Susquehanna University, 514
University Avenue, Selinsgrove, PA 17870, USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| |
Collapse
|
32
|
McMahon CM, Isabella CR, Windsor IW, Kosma P, Raines RT, Kiessling LL. Stereoelectronic Effects Impact Glycan Recognition. J Am Chem Soc 2020; 142:2386-2395. [PMID: 31930911 DOI: 10.1021/jacs.9b11699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recognition of distinct glycans is central to biology, and lectins mediate this function. Lectin glycan preferences are usually centered on specific monosaccharides. In contrast, human intelectin-1 (hItln-1, also known as Omentin-1) is a soluble lectin that binds a range of microbial sugars, including β-d-galactofuranose (β-Galf), d-glycerol 1-phosphate, d-glycero-d-talo-oct-2-ulosonic acid (KO), and 3-deoxy-d-manno-oct-2-ulosonic acid (KDO). Though these saccharides differ dramatically in structure, they share a common feature-an exocyclic vicinal diol. How and whether such a small fragment is sufficient for recognition was unclear. We tested several glycans with this epitope and found that l-glycero-α-d-manno-heptose and d-glycero-α-d-manno-heptose possess the critical diol motif yet bind weakly. To better understand hItln-1 recognition, we determined the structure of the hItln-1·KO complex using X-ray crystallography, and our 1.59 Å resolution structure enabled unambiguous assignment of the bound KO conformation. This carbohydrate conformation was present in >97% of the KDO/KO structures in the Protein Data Bank. Bioinformatic analysis revealed that KO and KDO adopt a common conformation, while heptoses prefer different conformers. The preferred conformers of KO and KDO favor hItln-1 engagement, but those of the heptoses do not. Natural bond orbital (NBO) calculations suggest these observed conformations, including the side chain orientations, are stabilized by not only steric but also stereoelectronic effects. Thus, our data highlight a role for stereoelectronic effects in dictating the specificity of glycan recognition by proteins. Finally, our finding that hItln-1 avoids binding prevalent glycans with a terminal 1,2-diol (e.g., N-acetyl-neuraminic acid and l-glycero-α-d-manno-heptose) suggests the lectin has evolved to recognize distinct bacterial species.
Collapse
Affiliation(s)
- Caitlin M McMahon
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Christine R Isabella
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Ian W Windsor
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Paul Kosma
- Department of Chemistry , University of Natural Resources and Life Sciences , A-1190 Vienna , Austria
| | - Ronald T Raines
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Laura L Kiessling
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
33
|
Hawsawi M, Wickramasinghe A, Crich D. Use of Phenols as Nucleophiles in the Zbiral Oxidative Deamination of N-Acetyl Neuraminic Acid: Isolation and Characterization of Tricyclic 3-Keto-2-deoxy-nonulosonic Acid (KDN) Derivatives via an Intermediate Vinyl Diazonium Ion. J Org Chem 2019; 84:14688-14700. [PMID: 31608634 PMCID: PMC6858517 DOI: 10.1021/acs.joc.9b02279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It is well established that the N-nitrosoamide derived from peracetylated derivatives of N-acetyl neuraminic acid on treatment with a mixture of sodium isopropoxide and trifluoroethanol, followed by the addition of acetic acid, gives an oxidative deamination product, in which the AcN(NO)-C5 bond is replaced with a AcO-C5 bond with the retention of configuration, affording a practical synthesis of 2-keto-3-deoxy-d-glycero-d-galactononulosonic acid (KDN) derivatives. Application of other strong acids, including hydrogen fluoride, thioacetic acid, trifluoromethanesulfonic acid, and hydrogen azide, functions similarly to afford KDN derivatives functionalized at the 5-position. We describe our attempts to extend the range of useful nucleophiles employed in this oxidative deamination process to include phenols and thiophenols, resulting in the discovery of a new branch of the general reaction and the formation of a series of products resulting from substitution of the 5-acetamido group and of the 4-acetoxy group from neuraminic acid. A mechanistic rationale for the formation of these products is advanced according to which, in the absence of acids of pKa ≤ 8, the intermediate diazonium ion resulting from the elimination of acetic acid and nitrogen from the nitrosoacetamide undergoes elimination of acetic acid from the 4-position to afford a highly electrophilic alkenediazonium ion. Reversible conjugate addition of the nucleophile to the 4-position then initiates the reaction cascade leading to the ultimate products.
Collapse
Affiliation(s)
- Mohammed Hawsawi
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Anura Wickramasinghe
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| |
Collapse
|
34
|
Dhakal B, Crich D. Synthesis and Stereocontrolled Equatorially Selective Glycosylation Reactions of a Pseudaminic Acid Donor: Importance of the Side-Chain Conformation and Regioselective Reduction of Azide Protecting Groups. J Am Chem Soc 2018; 140:15008-15015. [PMID: 30351022 DOI: 10.1021/jacs.8b09654] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pseudaminic acid is an amino deoxy sialic acid whose glycosides are essential components of many pathogenic Gram-negative bacterial cell walls including those from Pseudomonas aeruginosa, Vibrio cholerae, Campylobacter jejuni, Campylobacter coli, Vibrio vulnificus, and Pseudoalteromonas distincta. The study of pseudaminic acid glycosides is however hampered by poor availability from nature and the paucity of good synthetic methods and limited to no understanding of the factors controlling stereoselectivity. Conformational analysis of the side chains of various stereoisomeric sialic acids suggested that the side chain of pseudaminic acid would take up the most electron-withdrawing trans, gauche-conformation, as opposed to the gauche, gauche conformation of N-acetyl neuraminic acid and the gauche, trans-conformtion of 7- epi N-acetyl neuraminic acid, leading to the prediction of high equatorial selectivity. This prediction is borne out by the synthesis of a suitably protected pseudaminic acid donor from N-acetyl neuraminic acid in 20 steps and 5% overall yield and by the exquisite equatorial selectivity it displays in coupling reactions with typical glycosyl acceptors. The selectivity of the glycosylation reactions is further buttressed by the development and implementation of conditions for the regioselective release of the two amines from the corresponding azides, such as required for the preparation of the lipopolysaccharides. These findings open the way to the synthesis and study of pseudaminic acid-based bacterial lipopolysaccharides and, importantly in the broader context of glycosylation reactions in general, underline the significant role played by side-chain conformation in the control of reactivity and selectivity.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
35
|
Wen P, Crich D. Allylic Strain as a Stereocontrol Element in the Hydrogenation of 3-Hydroxymethyl-cyclohex-3-en-1,2,5-triol Derivatives. Synthesis of the Carbasugar Pseudo-2-deoxy-α-D-glucopyranose. Tetrahedron 2018; 74:5183-5191. [PMID: 30505021 DOI: 10.1016/j.tet.2018.04.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
By adaptation of a literature method developed in the glucose series and standard protecting group manipulations a 2-deoxy-D-glucose derivative is converted to a series of 1R,2R,5R-3-hydroxymethyl-cyclohexen-1,2,5-triol derivatives whose reduction to the corresponding diastereomeric D-gluco and L-ido-2-deoxy carbasugars is studied. When the hydroxymethyl group is tied up in a cyclic isopropylidene acetal with the adjacent 6-hydroxy group the cis-fused products with the ido-configuration are formed preferentially whereas protection of the hydroxymethyl group as a methoxymethyl ether results in the formation of the D-gluco isomer on hydrogenation over Raney nickel. This result is rationalized in terms of the minimization of allylic strain in the course of the reduction, enables the preparation of the carbasugar pseudo-2-deoxy-α-D-glucopyranose, and suggests that the conformation of the side chain is an important control element in the chemistry of the pseudosugars as it is in the sugars themselves.
Collapse
Affiliation(s)
- Peng Wen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| |
Collapse
|
36
|
Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. The Experimental Evidence in Support of Glycosylation Mechanisms at the S N1-S N2 Interface. Chem Rev 2018; 118:8242-8284. [PMID: 29846062 PMCID: PMC6135681 DOI: 10.1021/acs.chemrev.8b00083] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical review of the state-of-the-art evidence in support of the mechanisms of glycosylation reactions is provided. Factors affecting the stability of putative oxocarbenium ions as intermediates at the SN1 end of the mechanistic continuum are first surveyed before the evidence, spectroscopic and indirect, for the existence of such species on the time scale of glycosylation reactions is presented. Current models for diastereoselectivity in nucleophilic attack on oxocarbenium ions are then described. Evidence in support of the intermediacy of activated covalent glycosyl donors is reviewed, before the influences of the structure of the nucleophile, of the solvent, of temperature, and of donor-acceptor hydrogen bonding on the mechanism of glycosylation reactions are surveyed. Studies on the kinetics of glycosylation reactions and the use of kinetic isotope effects for the determination of transition-state structure are presented, before computational models are finally surveyed. The review concludes with a critical appraisal of the state of the art.
Collapse
Affiliation(s)
- Philip Ouma Adero
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Harsha Amarasekara
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Peng Wen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Université Paris-Sud Université Paris-Saclay , 1 avenue de la Terrasse , 91198 Gif-sur-Yvette , France
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
37
|
Dharuman S, Amarasekara H, Crich D. Interplay of Protecting Groups and Side Chain Conformation in Glycopyranosides. Modulation of the Influence of Remote Substituents on Glycosylation? J Org Chem 2018; 83:10334-10351. [PMID: 30063354 PMCID: PMC6131524 DOI: 10.1021/acs.joc.8b01459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The synthesis and
conformational analysis of a series of phenyl
2,3,6-tri-O-benzyl-β-d-thio galacto-
and glucopyranosides and their 6S-deuterio isotopomers,
with systematic variation of the protecting group at the 4-position,
are described. For the galactopyranosides, replacement of a 4-O-benzyl ether by a 4-O-alkanoyl or aroyl
ester results in a small but measurable shift in side chain population
away from the trans,gauche conformation
and in favor of the gauche,trans conformer. In the glucopyranoside series on the other hand, replacement
of a 4-O-benzyl ether by a 4-O-alkanoyl
or aroyl ester results in a small but measurable increase in the population
of the trans,gauche conformer at
the expense of the gauche,gauche conformer. The possible modulating effect of these conformational
changes on the well-known changes in the anomeric reactivity of glycosyl
donors as a function of protecting group is discussed, raising the
possibility that larger changes may be observed at the transition
state for glycosylation. A comparable study with a series of ethyl
2,3,4-tri-O-benzyl-β-d-thioglucopyranosides
reveals that no significant influence in side chain population is
observed on changing the O6 protecting group.
Collapse
Affiliation(s)
- Suresh Dharuman
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Harsha Amarasekara
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
38
|
Kerins L, Byrne S, Gabba A, Murphy PV. Anomer Preferences for Glucuronic and Galacturonic Acid and Derivatives and Influence of Electron-Withdrawing Substituents. J Org Chem 2018; 83:7714-7729. [DOI: 10.1021/acs.joc.8b00610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Louise Kerins
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sylvester Byrne
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Adele Gabba
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
39
|
Herczeg M, Demeter F, Balogh T, Kelemen V, Borbás A. Rapid Synthesis of l
-Idosyl Glycosyl Donors from α-Thioglucosides for the Preparation of Heparin Disaccharides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Tímea Balogh
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Viktor Kelemen
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| |
Collapse
|
40
|
Parent JF, Deslongchamps P. Bent bonds (τ) and the antiperiplanar hypothesis, and the reactivity at the anomeric center in pyranosides. Org Biomol Chem 2018; 14:11183-11198. [PMID: 27834970 DOI: 10.1039/c6ob02263d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The stereoselectivity of nucleophilic addition on oxocarbenium ions derived from the bicyclic pyranoside model with or without a C2-OR group can be understood through the use of the bent-bond and the antiperiplanar hypothesis in conjunction with the concept of hyperconjugation as an alternative interpretive model of structure and reactivity.
Collapse
Affiliation(s)
- Jean-François Parent
- Département de chimie, Faculté des sciences et de génie, Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la médecine, Québec, Québec G1V 0A6, Canada.
| | - Pierre Deslongchamps
- Département de chimie, Faculté des sciences et de génie, Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la médecine, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
41
|
Amarasekara H, Dharuman S, Kato T, Crich D. Synthesis of Conformationally-Locked cis- and trans-Bicyclo[4.4.0] Mono-, Di-, and Trioxadecane Modifications of Galacto- and Glucopyranose; Experimental Limiting 3J H,H Coupling Constants for the Estimation of Carbohydrate Side Chain Populations and Beyond. J Org Chem 2018; 83:881-897. [PMID: 29241001 PMCID: PMC5775050 DOI: 10.1021/acs.joc.7b02891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hexopyranose side chains populate three staggered conformations, whose proportions can be determined from the three sets of ideal limiting 3JH5,H6R and 3JH5,H6S coupling constants in combination with the time-averaged experimental coupling constants. Literature values for the limiting coupling constants, obtained by the study of model compounds, the use of the Haasnoot-Altona and related equations, or quantum mechanical computations, can result in computed negative populations of one of the three ideal conformations. Such values arise from errors in the limiting coupling constants and/or from the population of nonideal conformers. We describe the synthesis and analysis of a series of cis- and trans-fused mono-, di-, and trioxabicyclo[4.4.0]octane-like compounds. Correction factors for the application of data from internal models (-CH(OR)-CH(OR)-) to terminal systems (-CH(OR)-CH2(OR)) are deduced from comparison of further models, and applied where necessary. Limiting coupling constants so-derived are applied to the side chain conformations of three model hexopyranosides, resulting in calculated conformer populations without negative values. Although, developed primarily for hexopyranose side chains, the limiting coupling constants are suitable, with the correction factors presented, for application to the side chains of higher carbon sugars and to conformation analysis of acyclic diols and their derivatives in a more general sense.
Collapse
Affiliation(s)
- Harsha Amarasekara
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Suresh Dharuman
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Takayuki Kato
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
42
|
El Ashry ESH, Awad LF, Al Moaty MNA, Ghabbour HA, Barakat A. Stereoselective synthesis of novel thioglycosyl heterocycles. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Read JA, Yang Y, Woerpel KA. Additions of Organomagnesium Halides to α-Alkoxy Ketones: Revision of the Chelation-Control Model. Org Lett 2017; 19:3346-3349. [DOI: 10.1021/acs.orglett.7b01161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jacquelyne A. Read
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yingying Yang
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - K. A. Woerpel
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
44
|
Zhou J, Lv S, Zhang D, Xia F, Hu W. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. J Org Chem 2017; 82:2599-2621. [DOI: 10.1021/acs.joc.6b03017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Siying Lv
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Zhang
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
45
|
Dhakal B, Buda S, Crich D. Stereoselective Synthesis of 5-epi-α-Sialosides Related to the Pseudaminic Acid Glycosides. Reassessment of the Stereoselectivity of the 5-Azido-5-deacetamidosialyl Thioglycosides and Use of Triflate as Nucleophile in the Zbiral Deamination of Sialic Acids. J Org Chem 2016; 81:10617-10630. [PMID: 27806203 PMCID: PMC5148678 DOI: 10.1021/acs.joc.6b02221] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With a view to the eventual synthesis of glycosyl donors for the stereocontrolled synthesis of pseudaminic acid glycosides, the stereocontrolled synthesis of a d-glycero-d-gulo sialic acid adamantanylthioglycoside carrying an axial azide at the 5-position is described. The synthesis employs levulinic acid as nucleophile in the oxidative deamination of an N-acetylneuraminic acid thioglycoside leading to the formation of a 3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (KDN) derivative selectively protected as 5-O-levulinate. Replacement of the levulinate by triflate enables introduction of the axial azide and hence formation of the glycosyl donor. A shorter synthesis uses trifluoromethanesulfonate as nucleophile in the oxidative deamination step when the 5-O-triflyl KDN derivative is obtained directly. Glycosylation reactions conducted with the 5-azido-d-glycero-d-gulo-configured sialyl adamantanylthioglycoside at -78 °C are selective for the formation of the equatorial glycosides, suggesting that the synthesis of equatorial pseudaminic acid glycosides will be possible as suitable donors become available. A comparable N-acetylneuraminic acid adamantanylthioglycoside carrying an equatorial azide at the 5-position was also found to be selective for equatorial glycoside formation under the same conditions, suggesting that reinvestigation of other azide-protected NeuAc donors is merited. Glycosylation stereoselectivity in the d-glycero-d-gulo series is discussed in terms of the side-chain conformation of the donor.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Szymon Buda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
46
|
Imamura A, Matsuzawa N, Sakai S, Udagawa T, Nakashima S, Ando H, Ishida H, Kiso M. The Origin of High Stereoselectivity in Di-tert-butylsilylene-Directed α-Galactosylation. J Org Chem 2016; 81:9086-9104. [DOI: 10.1021/acs.joc.6b01685] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akihiro Imamura
- Department
of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Naomi Matsuzawa
- Department
of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shizuo Sakai
- Department
of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Taro Udagawa
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shinya Nakashima
- Department
of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiromune Ando
- Department
of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida
Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideharu Ishida
- Department
of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Makoto Kiso
- Department
of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida
Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
47
|
Dharuman S, Crich D. Determination of the Influence of Side-Chain Conformation on Glycosylation Selectivity using Conformationally Restricted Donors. Chemistry 2016; 22:4535-42. [PMID: 26880055 PMCID: PMC4792696 DOI: 10.1002/chem.201505019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 01/28/2023]
Abstract
The synthesis of a series of conformationally locked mannopyranosyl thioglycosides in which the C6-O6 bond adopts either the gauche,gauche, gauche,trans, or trans,gauche conformation is described, and their influence on glycosylation stereoselectivity investigated. Two 4,6-O-benzylidene-protected mannosyl thioglycosides carrying axial or equatorial methyl groups at the 6-position were also synthesized and the selectivity of their glycosylation reactions studied to enable a distinction to be made between steric and stereoelectronic effects. The presence of an axial methoxy group at C6 in the bicyclic donor results in a decreased preference for formation of the β-mannoside, whereas an axial methyl group has little effect on selectivity. The result is rationalized in terms of through-space stabilization of a transient intermediate oxocarbenium ion by the axial methoxy group resulting in a higher degree of SN 1-like character in the glycosylation reaction. Comparisons are made with literature examples and exceptions are discussed in terms of pervading steric effects layered on top of the basic stereoelectronic effect.
Collapse
Affiliation(s)
- Suresh Dharuman
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
48
|
Laroussarie A, Barycza B, Andriamboavonjy H, Tamigney Kenfack M, Blériot Y, Gauthier C. Synthesis of the Tetrasaccharide Repeating Unit of the β-Kdo-Containing Exopolysaccharide from Burkholderia pseudomallei and B. cepacia Complex. J Org Chem 2015; 80:10386-96. [DOI: 10.1021/acs.joc.5b01823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anaïs Laroussarie
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Barbara Barycza
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
- Department
of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida
25, 50-375 Wroclaw, Poland
| | - Hanitra Andriamboavonjy
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Marielle Tamigney Kenfack
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Yves Blériot
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Charles Gauthier
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| |
Collapse
|
49
|
Adero PO, Furukawa T, Huang M, Mukherjee D, Retailleau P, Bohé L, Crich D. Cation Clock Reactions for the Determination of Relative Reaction Kinetics in Glycosylation Reactions: Applications to Gluco- and Mannopyranosyl Sulfoxide and Trichloroacetimidate Type Donors. J Am Chem Soc 2015; 137:10336-45. [PMID: 26207807 PMCID: PMC4545385 DOI: 10.1021/jacs.5b06126] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of a cation clock method based on the intramolecular Sakurai reaction for probing the concentration dependence of the nucleophile in glycosylation reactions is described. The method is developed for the sulfoxide and trichloroacetimidate glycosylation protocols. The method reveals that O-glycosylation reactions have stronger concentration dependencies than C-glycosylation reactions consistent with a more associative, S(N)2-like character. For the 4,6-O-benzylidene-directed mannosylation reaction a significant difference in concentration dependence is found for the formation of the β- and α-anomers, suggesting a difference in mechanism and a rationale for the optimization of selectivity regardless of the type of donor employed. In the mannose series the cyclization reaction employed as clock results in the formation of cis and trans-fused oxabicyclo[4,4,0]decanes as products with the latter being strongly indicative of the involvement of a conformationally mobile transient glycosyl oxocarbenium ion. With identical protecting group arrays cyclization in the glucopyranose series is more rapid than in the mannopyranose manifold. The potential application of related clock reactions in other carbenium ion-based branches of organic synthesis is considered.
Collapse
Affiliation(s)
- Philip O. Adero
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA
| | - Takayuki Furukawa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA
| | - Min Huang
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Debaraj Mukherjee
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA
| |
Collapse
|
50
|
Angles d’Ortoli T, Sjöberg NA, Vasiljeva P, Lindman J, Widmalm G, Bergenstråhle-Wohlert M, Wohlert J. Temperature Dependence of Hydroxymethyl Group Rotamer Populations in Cellooligomers. J Phys Chem B 2015; 119:9559-70. [DOI: 10.1021/acs.jpcb.5b02866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Thibault Angles d’Ortoli
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Nils A. Sjöberg
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Polina Vasiljeva
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jonas Lindman
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Malin Bergenstråhle-Wohlert
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|