1
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
2
|
Narayanan S J J, Tripathi D, Verma P, Adhikary A, Dutta AK. Secondary Electron Attachment-Induced Radiation Damage to Genetic Materials. ACS OMEGA 2023; 8:10669-10689. [PMID: 37008102 PMCID: PMC10061531 DOI: 10.1021/acsomega.2c06776] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Reactions of radiation-produced secondary electrons (SEs) with biomacromolecules (e.g., DNA) are considered one of the primary causes of radiation-induced cell death. In this Review, we summarize the latest developments in the modeling of SE attachment-induced radiation damage. The initial attachment of electrons to genetic materials has traditionally been attributed to the temporary bound or resonance states. Recent studies have, however, indicated an alternative possibility with two steps. First, the dipole-bound states act as a doorway for electron capture. Subsequently, the electron gets transferred to the valence-bound state, in which the electron is localized on the nucleobase. The transfer from the dipole-bound to valence-bound state happens through a mixing of electronic and nuclear degrees of freedom. In the presence of aqueous media, the water-bound states act as the doorway state, which is similar to that of the presolvated electron. Electron transfer from the initial doorway state to the nucleobase-bound state in the presence of bulk aqueous media happens on an ultrafast time scale, and it can account for the decrease in DNA strand breaks in aqueous environments. Analyses of the theoretically obtained results along with experimental data have also been discussed.
Collapse
Affiliation(s)
- Jishnu Narayanan S J
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Divya Tripathi
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Pooja Verma
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Amitava Adhikary
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Achintya Kumar Dutta
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Zhu L, Luo M, Zhang Y, Fang F, Li M, An F, Zhao D, Zhang J. Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Hu Z, Zhou Q, Jiao Z, Qin P, Wang F, Xia Y, Zhang T, Jie J, Su H. Low Energy Photoionization of Phosphorothioate DNA-Oligomers and Ensuing Hole Transfer. J Phys Chem B 2022; 126:8699-8707. [PMID: 36259641 DOI: 10.1021/acs.jpcb.2c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphorothioate (PS) modified oligonucleotides (S-DNA) naturally exist in bacteria and archaea genome and are widely used as an antisense strategy in gene therapy. However, the introduction of PS as a redox active site may trigger distinct UV photoreactions. Herein, by time-resolved spectroscopy, we observe that 266 nm excitation of S-DNA d(Aps)20 and d(ApsA)10 leads to direct photoionization on the PS moiety to form hemi-bonded -P-S∴S-P- radicals, in addition to A base ionization to produce A+•/A(-H)•. Fluorescence spectroscopy and global analysis indicate that an unusual charge transfer state (CT) between the A and PS moiety might populate in competition with the common CT state among bases as key intermediate states responsible for S-DNA photoionization. Significantly, the photoionization bifurcating to PS and A moieties of S-DNA is discovered, suggesting that the PS moiety could capture the oxidized site and protect the remaining base against ionization lesion, shedding light on the understanding of its existence in living organisms.
Collapse
Affiliation(s)
- Zheng Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qian Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zeqing Jiao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Peixuan Qin
- University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Fei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ye Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Tianfeng Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
5
|
Denisov SA, Ward S, Shcherbakov V, Stark AD, Kaczmarek R, Radzikowska-Cieciura E, Debnath D, Jacobs T, Kumar A, Sevilla MD, Pernot P, Dembinski R, Mostafavi M, Adhikary A. Modulation of the Directionality of Hole Transfer between the Base and the Sugar-Phosphate Backbone in DNA with the Number of Sulfur Atoms in the Phosphate Group. J Phys Chem B 2022; 126:430-442. [PMID: 34990129 PMCID: PMC8776618 DOI: 10.1021/acs.jpcb.1c09068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work shows that S atom substitution in phosphate controls the directionality of hole transfer processes between the base and sugar-phosphate backbone in DNA systems. The investigation combines synthesis, electron spin resonance (ESR) studies in supercooled homogeneous solution, pulse radiolysis in aqueous solution at ambient temperature, and density functional theory (DFT) calculations of in-house synthesized model compound dimethylphosphorothioate (DMTP(O-)═S) and nucleotide (5'-O-methoxyphosphorothioyl-2'-deoxyguanosine (G-P(O-)═S)). ESR investigations show that DMTP(O-)═S reacts with Cl2•- to form the σ2σ*1 adduct radical -P-S[Formula: see text]Cl, which subsequently reacts with DMTP(O-)═S to produce [-P-S[Formula: see text]S-P-]-. -P-S[Formula: see text]Cl in G-P(O-)═S undergoes hole transfer to Gua, forming the cation radical (G•+) via thermally activated hopping. However, pulse radiolysis measurements show that DMTP(O-)═S forms the thiyl radical (-P-S•) by one-electron oxidation, which did not produce [-P-S[Formula: see text]S-P-]-. Gua in G-P(O-)═S is oxidized unimolecularly by the -P-S• intermediate in the sub-picosecond range. DFT thermochemical calculations explain the differences in ESR and pulse radiolysis results obtained at different temperatures.
Collapse
Affiliation(s)
- Sergey A. Denisov
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay 91405 Cedex, France
| | - Samuel Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA
| | - Viacheslav Shcherbakov
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay 91405 Cedex, France
| | - Alexander D. Stark
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA
| | - Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Ewa Radzikowska-Cieciura
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Dipra Debnath
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA
| | - Taisiya Jacobs
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA
| | - Anil Kumar
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA
| | - Michael D. Sevilla
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA
| | - Pascal Pernot
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay 91405 Cedex, France
| | - Roman Dembinski
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA,Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay 91405 Cedex, France
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA
| |
Collapse
|
6
|
Calvo JS, Villones RLE, York NJ, Stefaniak E, Hamilton GE, Stelling AL, Bal W, Pierce BS, Meloni G. Evidence for a Long-Lived, Cu-Coupled and Oxygen-Inert Disulfide Radical Anion in the Assembly of Metallothionein-3 Cu(I) 4-Thiolate Cluster. J Am Chem Soc 2022; 144:709-722. [PMID: 34985880 PMCID: PMC9029059 DOI: 10.1021/jacs.1c03984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The human copper-binding protein metallothionein-3 (MT-3) can reduce Cu(II) to Cu(I) and form a polynuclear Cu(I)4-Cys5-6 cluster concomitant with intramolecular disulfide bonds formation, but the cluster is unusually inert toward O2 and redox-cycling. We utilized a combined array of rapid-mixing spectroscopic techniques to identify and characterize the transient radical intermediates formed in the reaction between Zn7MT-3 and Cu(II) to form Cu(I)4Zn(II)4MT-3. Stopped-flow electronic absorption spectroscopy reveals the rapid formation of transient species with absorption centered at 430-450 nm and consistent with the generation of disulfide radical anions (DRAs) upon reduction of Cu(II) by MT-3 cysteine thiolates. These DRAs are oxygen-stable and unusually long-lived, with lifetimes in the seconds regime. Subsequent DRAs reduction by Cu(II) leads to the formation of a redox-inert Cu(I)4-Cys5 cluster with short Cu-Cu distances (<2.8 Å), as revealed by low-temperature (77 K) luminescence spectroscopy. Rapid freeze-quench Raman and electron paramagnetic resonance (EPR) spectroscopy characterization of the intermediates confirmed the DRA nature of the sulfur-centered radicals and their subsequent oxidation to disulfide bonds upon Cu(II) reduction, generating the final Cu(I)4-thiolate cluster. EPR simulation analysis of the radical g- and A-values indicate that the DRAs are directly coupled to Cu(I), potentially explaining the observed DRA stability in the presence of O2. We thus provide evidence that the MT-3 Cu(I)4-Cys5 cluster assembly process involves the controlled formation of novel long-lived, copper-coupled, and oxygen-stable disulfide radical anion transient intermediates.
Collapse
Affiliation(s)
- Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Nicholas J York
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35401, United States
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Grace E Hamilton
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Brad S Pierce
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35401, United States
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
7
|
Song R, Wang H, Zhang M, Liu Y, Meng X, Zhai S, Wang C, Gong T, Wu Y, Jiang X, Bu W. Near‐Infrared Light‐Triggered Chlorine Radical (
.
Cl) Stress for Cancer Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruixue Song
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Han Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Xianfu Meng
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Shaojie Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Chao‐chao Wang
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Xingwu Jiang
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
8
|
Song R, Wang H, Zhang M, Liu Y, Meng X, Zhai S, Wang CC, Gong T, Wu Y, Jiang X, Bu W. Near-Infrared Light-Triggered Chlorine Radical ( . Cl) Stress for Cancer Therapy. Angew Chem Int Ed Engl 2020; 59:21032-21040. [PMID: 32667130 DOI: 10.1002/anie.202007434] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Indexed: 11/11/2022]
Abstract
Free radicals with reactive chemical properties can fight tumors without causing drug resistance. Reactive oxygen species (ROS) has been widely used for cancer treatment, but regrettably, the common O2 and H2 O2 deficiency in tumors sets a severe barrier for sufficient ROS production, leading to unsatisfactory anticancer outcomes. Here, we construct a chlorine radical (. Cl) nano-generator with SiO2 -coated upconversion nanoparticles (UCNPs) on the inside and Ag0 /AgCl hetero-dots on the outside. Upon near-infrared (NIR) light irradiation, the short-wavelength emission UCNP catalyzes . Cl generation from Ag0 /AgCl with no dependence on O2 /H2 O2 . . Cl with strong oxidizing capacity and nucleophilicity can attack biomolecules in cancer cells more effectively than ROS. This . Cl stress treatment will no doubt broaden the family of oxidative stress-induced antitumor strategies by using non-oxygen free radicals, which is significant in the development of new anticancer agents.
Collapse
Affiliation(s)
- Ruixue Song
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Han Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.,Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xianfu Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Shaojie Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chao-Chao Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Xingwu Jiang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.,Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China.,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
9
|
Kaczmarek R, Ward S, Debnath D, Jacobs T, Stark AD, Korczyński D, Kumar A, Sevilla MD, Denisov SA, Shcherbakov V, Pernot P, Mostafavi M, Dembinski R, Adhikary A. One Way Traffic: Base-to-Backbone Hole Transfer in Nucleoside Phosphorodithioate. Chemistry 2020; 26:9495-9505. [PMID: 32059063 PMCID: PMC7416487 DOI: 10.1002/chem.202000247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Indexed: 12/26/2022]
Abstract
The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S- )=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+ -P(S- )=S. The ionization potential of G-P(S- )=S was calculated to be slightly lower than that of guanine in 5'-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S- )=S led to dithiyl radical (P-2S. ) formation on the μs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S- )=S concentrations showed a bimolecular conversion of P-2S. to the σ2 -σ*1 -bonded dimer anion radical [-P-2S- . 2S-P-]- [ΔG (150 K, DFT)=-7.2 kcal mol-1 ]. However, [-P-2S- . 2S-P-]- formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=-1.4 kcal mol-1 ]. Neither P-2S. nor [-P-2S- . 2S-P-]- oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.
Collapse
Affiliation(s)
- Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Samuel Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Dipra Debnath
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Taisiya Jacobs
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Alexander D Stark
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Dariusz Korczyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Anil Kumar
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Sergey A Denisov
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Viacheslav Shcherbakov
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Pascal Pernot
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Roman Dembinski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| |
Collapse
|
10
|
Jie J, Xia Y, Huang CH, Zhao H, Yang C, Liu K, Song D, Zhu BZ, Su H. Sulfur-centered hemi-bond radicals as active intermediates in S-DNA phosphorothioate oxidation. Nucleic Acids Res 2020; 47:11514-11526. [PMID: 31724721 PMCID: PMC7145531 DOI: 10.1093/nar/gkz987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorothioate (PS) modifications naturally appear in bacteria and archaea genome and are widely used as antisense strategy in gene therapy. But the chemical effects of PS introduction as a redox active site into DNA (S-DNA) is still poorly understood. Herein, we perform time-resolved spectroscopy to examine the underlying mechanisms and dynamics of the PS oxidation by potent radicals in free model, in dinucleotide, and in S-oligomer. The crucial sulphur-centered hemi-bonded intermediates -P–S∴S–P- were observed and found to play critical roles leading to the stable adducts of -P–S–S–P-, which are backbone DNA lesion products. Moreover, the oxidation of the PS moiety in dinucleotides d[GPSG], d[APSA], d[GPSA], d[APSG] and in S-oligomers was monitored in real-time, showing that PS oxidation can compete with adenine but not with guanine. Significantly, hole transfer process from A+• to PS and concomitant -P–S∴S–P- formation was observed, demonstrating the base-to-backbone hole transfer unique to S-DNA, which is different from the normally adopted backbone-to-base hole transfer in native DNA. These findings reveal the distinct backbone lesion pathway brought by the PS modification and also imply an alternative -P–S∴S–P-/-P–S–S–P- pathway accounting for the interesting protective role of PS as an oxidation sacrifice in bacterial genome.
Collapse
Affiliation(s)
- Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ye Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chun-Hua Huang
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kunhui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ben-Zhan Zhu
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Ma J, Denisov SA, Adhikary A, Mostafavi M. Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides. Int J Mol Sci 2019; 20:ijms20194963. [PMID: 31597345 PMCID: PMC6801490 DOI: 10.3390/ijms20194963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Among the radicals (hydroxyl radical (•OH), hydrogen atom (H•), and solvated electron (esol−)) that are generated via water radiolysis, •OH has been shown to be the main transient species responsible for radiation damage to DNA via the indirect effect. Reactions of these radicals with DNA-model systems (bases, nucleosides, nucleotides, polynucleotides of defined sequences, single stranded (ss) and double stranded (ds) highly polymeric DNA, nucleohistones) were extensively investigated. The timescale of the reactions of these radicals with DNA-models range from nanoseconds (ns) to microseconds (µs) at ambient temperature and are controlled by diffusion or activation. However, those studies carried out in dilute solutions that model radiation damage to DNA via indirect action do not turn out to be valid in dense biological medium, where solute and water molecules are in close contact (e.g., in cellular environment). In that case, the initial species formed from water radiolysis are two radicals that are ultrashort-lived and charged: the water cation radical (H2O•+) and prethermalized electron. These species are captured by target biomolecules (e.g., DNA, proteins, etc.) in competition with their inherent pathways of proton transfer and relaxation occurring in less than 1 picosecond. In addition, the direct-type effects of radiation, i.e., ionization of macromolecule plus excitations proximate to ionizations, become important. The holes (i.e., unpaired spin or cation radical sites) created by ionization undergo fast spin transfer across DNA subunits. The exploration of the above-mentioned ultrafast processes is crucial to elucidate our understanding of the mechanisms that are involved in causing DNA damage via direct-type effects of radiation. Only recently, investigations of these ultrafast processes have been attempted by studying concentrated solutions of nucleosides/tides under ambient conditions. Recent advancements of laser-driven picosecond electron accelerators have provided an opportunity to address some long-term puzzling questions in the context of direct-type and indirect effects of DNA damage. In this review, we have presented key findings that are important to elucidate mechanisms of complex processes including excess electron-mediated bond breakage and hole transfer, occurring at the single nucleoside/tide level.
Collapse
Affiliation(s)
- Jun Ma
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215000, China.
| | - Sergey A Denisov
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, CEDEX, France.
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA.
| | - Mehran Mostafavi
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, CEDEX, France.
| |
Collapse
|
12
|
Ma J, Denisov SA, Marignier JL, Pernot P, Adhikary A, Seki S, Mostafavi M. Ultrafast Electron Attachment and Hole Transfer Following Ionizing Radiation of Aqueous Uridine Monophosphate. J Phys Chem Lett 2018; 9:5105-5109. [PMID: 30132673 PMCID: PMC6126959 DOI: 10.1021/acs.jpclett.8b02170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The primary localization process of radiation-induced charges (holes (cation radical sites) and excess electrons) remains poorly understood, even at the level of monomeric DNA/RNA models, in particular, in an aqueous environment. We report the first spectroscopic study of charge transfer occurring in radiolysis of aqueous uridine 5'-monophosphate (UMP) solutions and its components: uridine, uracil, ribose, and phosphate. Our results show that prehydrated electrons effectively attach to the base site of UMP; the holes in UMP formed by either direct ionization or reaction of UMP with the radiation-mediated water cation radical (H2O•+) facilely localize on the ribose site, despite the fact that a part of them were initially created on either the phosphate or uracil. The nature of phosphate-to-sugar hole transfer is characterized as a barrierless intramolecular electron transfer with a time constant of 2.5 ns, while the base-to-sugar hole transfer occurs much faster, within a 5 ps electron pulse.
Collapse
Affiliation(s)
- Jun Ma
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, Orsay 91405 Cedex, France
- Corresponding Author:,
| | - Sergey A. Denisov
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, Orsay 91405 Cedex, France
| | - Jean-Louis Marignier
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, Orsay 91405 Cedex, France
| | - Pascal Pernot
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, Orsay 91405 Cedex, France
| | - Amitava Adhikary
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510
| | - Mehran Mostafavi
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, Orsay 91405 Cedex, France
- Corresponding Author:,
| |
Collapse
|
13
|
Ma J, Marignier JL, Pernot P, Houée-Levin C, Kumar A, Sevilla MD, Adhikary A, Mostafavi M. Direct observation of the oxidation of DNA bases by phosphate radicals formed under radiation: a model of the backbone-to-base hole transfer. Phys Chem Chem Phys 2018; 20:14927-14937. [PMID: 29786710 DOI: 10.1039/c8cp00352a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In irradiated DNA, by the base-to-base and backbone-to-base hole transfer processes, the hole (i.e., the unpaired spin) localizes on the most electropositive base, guanine. Phosphate radicals formed via ionization events in the DNA-backbone must play an important role in the backbone-to-base hole transfer process. However, earlier studies on irradiated hydrated DNA, on irradiated DNA-models in frozen aqueous solution and in neat dimethyl phosphate showed the formation of carbon-centered radicals and not phosphate radicals. Therefore, to model the backbone-to-base hole transfer process, we report picosecond pulse radiolysis studies of the reactions between H2PO4˙ with the DNA bases - G, A, T, and C in 6 M H3PO4 at 22 °C. The time-resolved observations show that in 6 M H3PO4, H2PO4˙ causes the one-electron oxidation of adenine, guanine and thymine, by forming the cation radicals via a single electron transfer (SET) process; however, the rate constant of the reaction of H2PO4˙ with cytosine is too low (<107 L mol-1 s-1) to be measured. The rates of these reactions are influenced by the protonation states and the reorganization energies of the base radicals and of the phosphate radical in 6 M H3PO4.
Collapse
Affiliation(s)
- Jun Ma
- Laboratoire de Chimie Physique, CNRS/Université Paris-Sud 11, Bâtiment 349, 91405 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Black PJ, Miller AS, Hayes JJ. Radioresistance of GGG sequences to prompt strand break formation from direct-type radiation damage. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:411-422. [PMID: 27349757 PMCID: PMC5093048 DOI: 10.1007/s00411-016-0660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work, we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single-strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation.
Collapse
Affiliation(s)
- Paul J Black
- Department of Radiation Oncology, Columbia University, New York, NY, 10027, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
15
|
Sevilla MD, Becker D, Kumar A, Adhikary A. Gamma and Ion-Beam Irradiation of DNA: Free Radical Mechanisms, Electron Effects, and Radiation Chemical Track Structure. Radiat Phys Chem Oxf Engl 1993 2016; 128:60-74. [PMID: 27695205 DOI: 10.1016/j.radphyschem.2016.04.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The focus of our laboratory's investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ-) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre-), and aqueous (or, solvated) electrons (eaq-)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species.
Collapse
Affiliation(s)
- Michael D Sevilla
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - David Becker
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| |
Collapse
|
16
|
Adhikary A, Kumar A, Bishop CT, Wiegand TJ, Hindi RM, Adhikary A, Sevilla MD. π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs. J Phys Chem B 2015; 119:11496-505. [PMID: 26237072 DOI: 10.1021/acs.jpcb.5b05162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, iminyl σ-radical formation in several one-electron-oxidized cytosine analogs, including 1-MeC, cidofovir, 2'-deoxycytidine (dCyd), and 2'-deoxycytidine 5'-monophosphate (5'-dCMP), were investigated in homogeneous, aqueous (D2O or H2O) glassy solutions at low temperatures by employing electron spin resonance (ESR) spectroscopy. Upon employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones, thus confirming its assignment. ESR and DFT studies show that the cytosine iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical [cytosine π-aminyl radical, C(N4-H)(•)]. Employing 1-MeC samples at various pHs ranging from ca. 8 to 11, ESR studies show that the tautomeric equilibrium between C(N4-H)(•) and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that, in the iminyl σ-radical, the unpaired spin is localized on the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form, as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG = -32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in double-stranded DNA by a radiation-induced ionization-deprotonation process that is only 10 kcal/mol above the lowest energy path.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Anil Kumar
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Casandra T Bishop
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Tyler J Wiegand
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Ragda M Hindi
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Ananya Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| |
Collapse
|
17
|
Karwowski BT. The influence of phosphorothioate on charge migration in single and double stranded DNA: a theoretical approach. Phys Chem Chem Phys 2015. [PMID: 26219639 DOI: 10.1039/c5cp01382h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study the influence of the phosphorothioate internucleotide bond on the electronic properties of single and double-stranded short nucleotides has been investigated at the M06-2X/6-31+G** level of theory in the gaseous phase. Due to the chirality of the phosphorus atom in a phosphorothioate (PT) internucleotide diester bond, the adiabatic/vertical mode of electron affinity/ionization potential, spin density and molecular orbital distribution, as well as structural analysis were taken under consideration for the single stranded (ss) R(P) and S(P) diastereomers of d[G(PS)G] and for double stranded (ds) d[G(PS)G]*d[C(PO)C], in comparison with the corresponding parent phosphate compounds. Moreover, the excitation states, HOMO and LUMO energies were calculated using a TD-DFT methodology at the M06-2X/6-31+G**//M06-2X/6-31++G** level of theory in the aqueous phase. The obtained results show that the PT plays a significant role in the case of ss-oligonucleotides, and to a much smaller extent in ds-oligomers.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- Food Science Department, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
18
|
Zdrowowicz M, Chomicz L, Żyndul M, Wityk P, Rak J, Wiegand TJ, Hanson CG, Adhikary A, Sevilla MD. 5-Thiocyanato-2'-deoxyuridine as a possible radiosensitizer: electron-induced formation of uracil-C5-thiyl radical and its dimerization. Phys Chem Chem Phys 2015; 17:16907-16. [PMID: 26059609 PMCID: PMC4481187 DOI: 10.1039/c5cp02081f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this work, we have synthesized 5-thiocyanato-2'-deoxyuridine (SCNdU) along with the C6-deuterated nucleobase 5-thiocyanatouracil (6-D-SCNU) and studied their reactions with radiation-produced electrons. ESR spectra in γ-irradiated nitrogen-saturated frozen homogeneous solutions (7.5 M LiCl in H2O or D2O) of these compounds show that electron-induced S-CN bond cleavage occurs to form a thiyl radical (dU-5-S˙ or 6-D-U-5-S˙) and CN(-)via the initial π-anion radical (SCNdU˙(-)) intermediate in which the excess electron is on the uracil base. HPLC and LC-MS/MS studies of γ-irradiated N2-saturated aqueous solutions of SCNdU in the presence of sodium formate as a OH-radical scavenger at ambient temperature show the formation of the dU-5S-5S-dU dimer in preference to dU by about 10 to 1 ratio. This shows that both possible routes of electron-induced bond cleavage (dUC5-SCN and S-CN) in SCNdU˙(-) and dU-5-S˙ formation are preferred for the production of the σ-type uracilyl radical (dU˙) by 10 fold. DFT/M06-2x/6-31++G(d,p) calculations employing the polarizable continuum model (PCM) for aqueous solutions show that dU-5-S˙ and CN(-) formation was thermodynamically favored by over 15 kcal mol(-1) (ΔG) compared to dU˙ and SCN(-) production. The activation barriers for C5-S and S-CN bond cleavage in SCNdU˙(-) amount to 8.7 and 4.0 kcal mol(-1), respectively, favoring dU-5-S˙ and CN(-) formation. These results support the experimental observation of S-CN bond cleavage by electron addition to SCNdU that results in the formation of dU-5-S˙ and the subsequent dU-5S-5S-dU dimer. This establishes SCNdU as a potential radiosensitizer that could cause intra- and inter-strand crosslinking as well as DNA-protein crosslinking via S-S dimer formation.
Collapse
Affiliation(s)
- Magdalena Zdrowowicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Karwowski BT. The Influence of the Terminal Phosphorothioate Diester Bond on the DNA Oxidation Process. An Experimental and Theoretical Approach. Molecules 2015; 20:12400-11. [PMID: 26184129 PMCID: PMC6331877 DOI: 10.3390/molecules200712400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/12/2015] [Accepted: 06/24/2015] [Indexed: 01/11/2023] Open
Abstract
In this study, the influence of the terminal phosphorothioate (PT) internucleotide bond in ds-DNA on the oxidation process was taken into consideration. The interaction of UV with the targeted oligonucleotide leads to an electron ejection and radical cation “hole” migration through the ds-DNA until it is trapped irreversibly in a suitable place. Phosphorothiate internucleotide bonds were detected in the bacterial genome; however, their role is still unclear. In this study a PAGE analysis of irradiated ds-DNA showed that the degradation rea ction was slowed down by the presence PT next to the anthraquinone moiety. Further, theoretical study shows that [RP] AQ-PS-dG can adopt a slightly lower ionisation potential energy and triplet excited state with a subsequent slightly higher adiabatic electron affinity value in comparison with [SP] AQ-PS-dG and AQ-PO-dG. Moreover, the energy gap between HOMO and LUMO, indicated the radical stabilisation properties of [RP] AQ-PS-dG, which can hinder the charge transfer through ds-DNA.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- Food Science Department, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
20
|
Adhikary A, Kumar A, Rayala R, Hindi RM, Adhikary A, Wnuk SF, Sevilla MD. One-electron oxidation of gemcitabine and analogs: mechanism of formation of C3' and C2' sugar radicals. J Am Chem Soc 2014; 136:15646-53. [PMID: 25296262 PMCID: PMC4227712 DOI: 10.1021/ja5083156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gemcitabine is a modified cytidine analog having two fluorine atoms at the 2'-position of the ribose ring. It has been proposed that gemcitabine inhibits RNR activity by producing a C3'• intermediate via direct H3'-atom abstraction followed by loss of HF to yield a C2'• with 3'-keto moiety. Direct detection of C3'• and C2'• during RNR inactivation by gemcitabine still remains elusive. To test the influence of 2'- substitution on radical site formation, electron spin resonance (ESR) studies are carried out on one-electron oxidized gemcitabine and other 2'-modified analogs, i.e., 2'-deoxy-2'-fluoro-2'-C-methylcytidine (MeFdC) and 2'-fluoro-2'-deoxycytidine (2'-FdC). ESR line components from two anisotropic β-2'-F-atom hyperfine couplings identify the C3'• formation in one-electron oxidized gemcitabine, but no further reaction to C2'• is found. One-electron oxidized 2'-FdC is unreactive toward C3'• or C2'• formation. In one-electron oxidized MeFdC, ESR studies show C2'• production presumably from a very unstable C3'• precursor. The experimentally observed hyperfine couplings for C2'• and C3'• match well with the theoretically predicted ones. C3'• to C2'• conversion in one-electron oxidized gemcitabine and MeFdC has theoretically been modeled by first considering the C3'• and H3O(+) formation via H3'-proton deprotonation and the subsequent C2'• formation via HF loss induced by this proximate H3O(+). Theoretical calculations show that in gemcitabine, C3'• to C2'• conversion in the presence of a proximate H3O(+) has a barrier in agreement with the experimentally observed lack of C3'• to C2'• conversion. In contrast, in MeFdC, the loss of HF from C3'• in the presence of a proximate H3O(+) is barrierless resulting in C2'• formation which agrees with the experimentally observed rapid C2'• formation.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Adhikary A, Kumar A, Palmer BJ, Todd AD, Heizer AN, Sevilla MD. Reactions of 5-methylcytosine cation radicals in DNA and model systems: thermal deprotonation from the 5-methyl group vs. excited state deprotonation from sugar. Int J Radiat Biol 2014; 90:433-45. [PMID: 24428230 DOI: 10.3109/09553002.2014.884293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To study the formation and subsequent reactions of the 5-methyl-2'-deoxycytidine cation radical (5-Me-2'-dC•(+)) in nucleosides and DNA-oligomers and compare to one-electron oxidized thymidine. MATERIALS AND METHODS Employing electron spin resonance (ESR), cation radical formation and its reactions were investigated in 5-Me-2'-dC, thymidine (Thd) and their derivatives, in fully double-stranded (ds) d[GC*GC*GC*GC*](2) and in the 5-Me-C/A mismatched, d[GGAC*AAGC:CCTAATCG], where C* = 5-Me-C. RESULTS We report 5-Me-2'-dC•(+) production by one-electron oxidation of 5-Me-2'-dC by Cl(2)•- via annealing in the dark at 155 K. Progressive annealing of 5-Me-2'-dC•(+) at 155 K produces the allylic radical (C-CH(2)•). However, photoexcitation of 5-Me-2'-dC•(+) by 405 nm laser or by photoflood lamp leads to only C3'• formation. Photoexcitation of N3-deprotonated thyminyl radical in Thd and its 5'-nucleotides leads to C3'• formation but not in 3'-TMP which resulted in the allylic radical (U-CH(2)•) and C5'• production. For excited 5-Me-2',3'-ddC•(+), absence of the 3'-OH group does not prevent C3'• formation. For d[GC*GC*GC*GC*](2) and d[GGAC*AAGC:CCTAATCG], intra-base paired proton transferred form of G cation radical (G(N1-H)•: C(+ H(+))) is found with no observable 5-Me-2'-dC•(+) formation. Photoexcitation of (G(N1-H)•:C(+ H(+))) in d[GC*GC*GC*GC*](2) produced only C1'• and not the expected photoproducts from 5-Me-2'-dC•(+). However, photoexcitation of (G(N1-H)•:C(+ H(+))) in d[GGAC*AAGC:CCTAATCG] led to C5'• and C1'• formation. CONCLUSIONS C-CH(2)• formation from 5-Me-2'-dC•(+) occurs via ground state deprotonation from C5-methyl group on the base. In the excited 5-Me-2'-dC•(+) and 5-Me-2',3'-ddC•(+), spin and charge localization at C3' followed by deprotonation leads to C3'• formation. Thus, deprotonation from C3' in the excited cation radical is kinetically controlled and sugar C-H bond energies are not the only controlling factors in these deprotonations.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, MI , USA
| | | | | | | | | | | |
Collapse
|
22
|
Zhang Q, Yu HZ, Fu Y. NHC-catalyzed homoenolate reaction of enals and nitroalkenes: computational study of mechanism, chemoselectivity and stereoselectivity. Org Chem Front 2014. [DOI: 10.1039/c4qo00036f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanistic study on the NHC-catalyzed homoenolate reaction of enals and nitroalkenes has been performed with the aid of DFT calculations.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry
- University of Science and Technology of China
- Hefei, China
| | - Hai-Zhu Yu
- Department of Polymer Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083, PR China
| | - Yao Fu
- Department of Chemistry
- University of Science and Technology of China
- Hefei, China
| |
Collapse
|