1
|
Lin FC, Xie Y, Deng T, Zink JI. Magnetism, Ultrasound, and Light-Stimulated Mesoporous Silica Nanocarriers for Theranostics and Beyond. J Am Chem Soc 2021; 143:6025-6036. [PMID: 33857372 DOI: 10.1021/jacs.0c10098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive multifunctional mesoporous silica nanoparticles (MSNs) have been studied intensively during the past decade. A large variety of mesopore capping systems have been designed, initially to show that it could be done and later for biomedical applications such as drug delivery and imaging. On-command release of cargo molecules such as drugs from the pores can be activated by a variety of stimuli. This paper focuses on three noninvasive, biologically usable external stimuli: magnetism, ultrasound, and light. We survey the variety of MSNs that have been and are being used and assess capping designs and the advantages and drawbacks of the nanoplatforms' responses to the various stimuli. We discuss important recent advances, their basic mechanisms, and their requirements for stimulation. On the basis of our survey, we identify fundamental challenges and suggest future directions for research that will unleash the full potential of these fascinating nanosystems for clinical applications.
Collapse
Affiliation(s)
- Fang-Chu Lin
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Yijun Xie
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Tian Deng
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Jeffrey I Zink
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Chen W, Cheng CA, Xiang D, Zink JI. Expanding nanoparticle multifunctionality: size-selected cargo release and multiple logic operations. NANOSCALE 2021; 13:5497-5506. [PMID: 33687426 DOI: 10.1039/d1nr00642h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Physically stimulated nanoparticles that deliver size-selected cargo and function as logic gates are reported. To achieve this goal the particle requires multiple components, and we recognized early on that the components, not just the released cargo, could be used to demonstrate logic operations (OR and AND logic). For stimuli, we chose two non-invasive types, red light and alternating magnetic fields (AMF), because they both have potential biological relevance. To realize cargo delivery with size selection and logic operations, we mechanized the surface of core@shell nanoparticles with a superparamagnetic core that generates localized heating when exposed to an AMF, and a mesoporous silica shell into which cargo molecules with different sizes were loaded. We demonstrate the core@shell nanoparticles can load the dual cargos with different sizes and subsequently release the smaller (∼0.5 nm) and bigger (∼2 nm) cargos in succession when stimulated by a red light followed by an AMF. Finally, we demonstrate that the multi-component nanoparticles could function as nanoparticle-based Boolean logic gates where AMF and red light served as the two inputs and the release of small cargo, and free cyclodextrin served as the outputs. The construction of two Boolean logic gates (OR, and AND) was realized.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, USA. and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Chi-An Cheng
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, 90095, USA and Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Danlei Xiang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Jeffrey I Zink
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, USA. and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
3
|
Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman K, Zhang LJ, Liu HJ, Luan X. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater 2020; 116:1-15. [PMID: 32911102 DOI: 10.1016/j.actbio.2020.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have received increasing interest due to their tunable particle size, large surface area, stable framework, and easy surface modification. They are increasingly being used in varying applications as delivery vehicles including bio-imaging, drug delivery, biosensors and tissue engineering etc. Precise structure control and the ability to modify surface properties of MSNs are important for their applications. This review summarises the different synthetic methods for the preparation of well-ordered MSNs with tunable pore volume as well as the approaches of drugs loading, especially highlighting the facile surface functionalization for various purposes and versatile biomedical applications in oncology. Finally, the challenges of clinical transformation of MSNs-based nanomedicines are further discussed.
Collapse
|
4
|
Wu D, Zhu ZQ, Tang HX, Shi ZE, Kang J, Liu Q, Qi J. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Theranostics 2020; 10:9808-9829. [PMID: 32863961 PMCID: PMC7449903 DOI: 10.7150/thno.43631] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: Prostate cancer has become one of the most threatening malignant tumors in men, leading to an imperative need to develop effective and safe therapies. Because of the unique metabolism of tumor cells, the tumor microenvironment (TME) exhibits distinctive properties compared with normal tissues, among which the pH difference has been utilized as an ideal antitumor strategy. Herein, we introduce a reactive oxygen species (ROS)-controlled-release nanosystem with TME-responsiveness by applying hollow mesoporous silica nanoparticles (HMSNs) as carriers loaded with calcium peroxide (CaO2) and coated with polyacrylic acid (PAA) to construct the functional material CaO2@HMSNs-PAA. The differences in pH values and exogenous ROS scavenging abilities between the tumor tissue and normal tissues and the dual pH-responsiveness from CaO2 and PAA lay a scientific foundation for the application of CaO2@HMSNs-PAA in the tumor-selective therapy for prostate cancer. Methods: The morphology and the structure of the nanosystem were characterized by the transmission electron microscope, scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, zeta potential, dynamic light scattering measurement, low-angle X-ray diffraction patterns and nitrogen adsorption/desorption isotherm. The CaO2 loading capacity and release profiles in different buffer solutions were determined by inductively coupled plasma-mass spectrometry. The in vitro intracellular uptake of CaO2@HMSNs-PAA was explored on the PC-3 prostate cancer cell line via confocal laser scanning microscopy. The CCK-8 cell proliferation assay was conducted to evaluate the cytotoxicity of CaO2@HMSNs-PAA against PC-3 cells. ROS produced by CaO2@HMSNs-PAA was observed by a fluorescence microscope. The flow cytometry was utilized to analyze the apoptosis of PC-3 cells induced by CaO2@HMSNs-PAA. The Western blot analysis was performed to detect expressions of critical mitochondria-mediated apoptosis markers in PC-3 cells after incubation with CaO2@HMSNs-PAA. The in vivo biosafety and antitumor efficacy were evaluated out on BALB/c mice and BALB/c nude mice subcutaneously transplanted with PC-3 cells, respectively. Results: Comprehensive characterizations indicated the successful synthesis of CaO2@HMSNs-PAA with significant TME-responsiveness. The experimental results demonstrated that the well-developed nanocarrier could efficiently deliver CaO2 to the tumor site and release ROS in response to the decreased pH value of TME, exerting ideal antitumor effects both in vitro and in vivo by activating the mitochondria-mediated apoptosis pathway. Simultaneously, this nanoplatform caused no detectable damage to normal tissues. Conclusions: After loading into the above nanocomposite, the free CaO2 without a significant antitumor effect can exert excellent antitumor efficacy by responsively releasing ROS under the acidic TME to induce the mitochondria-mediated apoptosis via remarkable oxidative stress and simultaneously minimize damages to normal tissues. The current study presents a new concept of “efficacy-shaping nanomedicine” for the tumor-selective treatment of prostate cancer.
Collapse
|
5
|
Cheng CA, Deng T, Lin FC, Cai Y, Zink JI. Supramolecular Nanomachines as Stimuli-Responsive Gatekeepers on Mesoporous Silica Nanoparticles for Antibiotic and Cancer Drug Delivery. Am J Cancer Res 2019; 9:3341-3364. [PMID: 31244957 PMCID: PMC6567974 DOI: 10.7150/thno.34576] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
Major objectives in nanomedicine and nanotherapy include the ability to trap therapeutic molecules inside of nano-carriers, carry therapeutics to the site of the disease with no leakage, release high local concentrations of drug, release only on demand - either autonomous or external, and kill the cancer cells or an infectious organism. This review will focus on mesoporous silica nanoparticle carriers (MSN) with a large internal pore volume suitable for carrying anticancer and antibiotic drugs, and supramolecular components that function as caps that can both trap and release the drugs on-command. Caps that are especially relevant to this review are rotaxanes and pseudorotaxanes that consist of a long chain-like molecule threaded through a cyclic molecule. Under certain conditions discussed throughout this review, the cyclic molecule can be attracted to one end of the rotaxane and in the presence of a stimulus can slide to the other end. When the thread is attached near the pore opening on MSNs, the sliding cyclic molecule can block the pore when it is near the particle or open it when it slides away. The design, synthesis and operation of supramolecular systems that act as stimuli-responsive pore capping devices that trap and release molecules for therapeutic or imaging applications are discussed. Uncapping can either be irreversible because the cap comes off, or reversible when the cyclic molecule is prevented from sliding off by a steric barrier. In the latter case the amount of cargo released (the dose) can be controlled. These nanomachines act as valves. Examples of supramolecular systems stimulated by chemical signals (pH, redox, enzymes, antibodies) or by external physical signals (light, heat, magnetism, ultrasound) are presented. Many of the systems have been studied in vitro proving that they are taken up by cancer cells and release drugs and kill the cells when stimulated. Some have been studied in mouse models; after IV injection they shrink tumors or kill intracellular pathogens after stimulation. Supramolecular constructs offer fascinating, highly controllable and biologically compatible platforms for drug delivery.
Collapse
|
6
|
Chen W, Cheng CA, Zink JI. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation. ACS NANO 2019; 13:1292-1308. [PMID: 30633500 DOI: 10.1021/acsnano.8b06655] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Noninvasive stimuli-responsive drug delivery using magnetic fields in conjunction with superparamagnetic nanoparticles offers the potential for the spatial and temporal control of drug release. When hyperthermia is not desired and control of the dosage is required, it is necessary to design a platform in which local heating on the nanoscale releases the therapeutic cargo without the bulk heating of the surrounding medium. In this paper, we report a design using a stimuli-responsive nanoparticle platform to control the dosage of the cargo released by an alternating magnetic field (AMF) actuation. A core@shell structure with a superparamagnetic doped iron oxide (MnFe2O4@CoFe2O4) nanoparticle core in a mesoporous silica shell was synthesized. The core used here has a high saturation magnetization value and a high specific loss power for heat generation under an AMF. The mesoporous shell has a high cargo-carrying capacity. A thermoresponsive molecular-based gatekeeper containing an aliphatic azo group was modified on the core@shell nanoparticles to regulate the cargo release. The mesoporous structure of the silica shell remained intact after exposure to an AMF, showing that the release of cargo is due to the removal of the gatekeepers instead of the destruction of the structure. Most importantly, we demonstrated that the amount of cargo released could be adjusted by the AMF exposure time. By applying multiple sequential exposures of AMF, we were able to release the cargo step-wise and increase the total amount of released cargo. In vitro studies showed that the death of pancreatic cancer cells treated by drug-loaded nanoparticles was controlled by different lengths of AMF exposure time due to different amount of drugs released from the carriers. The strategy developed here holds great promise for achieving the dosage, temporal, and spatial control of therapeutics delivery without the risk of overheating the particles' surroundings.
Collapse
|
7
|
Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 2018; 47:8766-8803. [PMID: 30306180 DOI: 10.1039/c8cs00658j] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous materials are ideal carriers for guest molecules and they have been widely used in analytical science. The unique mesoporous structure provides special properties including large specific surface area, tunable pore size, and excellent pore connectivity. The structural properties of mesoporous materials have been largely made use of to improve the performance of analytical methods. For instance, the large specific surface area of mesoporous materials can provide abundant active sites and increase the probability of contact between analytes and active sites to produce stronger signals, thus leading to the improvement of detection sensitivity. The connections between analytical performances and the structural properties of mesoporous materials have not been discussed previously. Understanding the "structure-performance relationship" is highly important for the development of analytical methods with excellent performance based on mesoporous materials. In this review, we discuss the structural properties of mesoporous materials that can be optimized to improve the analytical performance. The discussion is divided into five sections according to the analytical performances: (i) selectivity-related structural properties, (ii) sensitivity-related structural properties, (iii) response time-related structural properties, (iv) stability-related structural properties, and (v) recovery time-related structural properties.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Kumar N, Chen W, Cheng CA, Deng T, Wang R, Zink JI. Stimuli-Responsive Nanomachines and Caps for Drug Delivery. Enzymes 2018; 43:31-65. [PMID: 30244808 DOI: 10.1016/bs.enz.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we focus on methods that are used to trap and release on command therapeutic drugs from mesoporous silica nanoparticles (MSNs). The pores in the MSNs are large enough to accommodate a wide range of cargo molecules such as anticancer and antibiotic drugs and yet small enough to be blocked by a variety of bulky molecules that act as caps. The caps are designed to be tightly attached to the pore openings and trap the cargo molecules without leakage, but upon application of a designed stimulus detach from the nanoparticles and release the cargo. Of special emphasis in this review are nanomachines that respond to stimuli administered from external sources such as light or magnetic fields, or from chemical stimuli produced by the biological system such as a general change in pH or redox potential, or a highly specific chemical produced by a cancer cell or infectious bacterium. The goal is to release a high local concentration of the cargo only where and when it is needed, thus minimizing off-target side effects. We discuss sophisticated reversible nanomachines but also discuss some useful caps that simply break off from the nanoparticles in response to the selected stimulus. Many ingenious systems have been and are being designed; we primarily highlight those that have been demonstrated to operate in vitro and/or in vivo. In most cases the closed MSNs are endocytosed by diseased or infected cells and opened inside the cells to release the drugs. We begin with an overview of the nanoparticles and nanomachines and then present examples of drug release triggered by internal chemical stimuli from the organism and finally by external light and magnetic field stimuli.
Collapse
Affiliation(s)
- Navnita Kumar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Chi-An Cheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Tian Deng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Ruining Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States.
| |
Collapse
|
9
|
Abstract
Supramolecular interactions, such as those observed between antibodies and antigens, have been employed in developing analytical methods for several decades. One major area of interest concerns cancer research, where intricate supramolecular designs have emerged to tackle difficult analytes in complex tumor systems. Our increasing knowledge toward supramolecular systems have elicited profound interest in creating more efficient analytical approaches, evidenced by the ever-growing body of literature in the field. Some of the novel tools have indeed facilitated our understanding of cancer biology, through providing previously inaccessible information. In this review, we describe common strategies of developing supramolecular analytical methods and their implementations in cancer research. We provide an overview for each of the approaches and discuss representative examples in recent literature.
Collapse
Affiliation(s)
- Shiqun Shao
- Department of Chemistry, University of California Riverside, Riverside, CA, United States
| | - Min Xue
- Department of Chemistry, University of California Riverside, Riverside, CA, United States.
| |
Collapse
|
10
|
Ding C, Tong L, Fu J. Quadruple Stimuli-Responsive Mechanized Silica Nanoparticles: A Promising Multifunctional Nanomaterial for Diverse Applications. Chemistry 2017; 23:15041-15045. [DOI: 10.1002/chem.201704245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Indexed: 01/09/2023]
Affiliation(s)
- ChenDi Ding
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 P. R. China
| | - Ling Tong
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 P. R. China
| | - JiaJun Fu
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 P. R. China
| |
Collapse
|
11
|
Guardado-Alvarez TM, Chen W, Norton AE, Russell MM, Connick WB, Zink JI. Analyte-responsive gated hollow mesoporous silica nanoparticles exhibiting inverse functionality and an AND logic response. NANOSCALE 2016; 8:18296-18300. [PMID: 27779267 DOI: 10.1039/c6nr01640e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A multifunctional nanoparticle with designed selectivity was made using hollow mesoporous silica, ship-in-a-bottle synthesis of a crystalline solid-state detector, and protection of the crystal by acid-responsive nanogates. The system demonstrates the inverse application of the usual trapping of contents by the gate followed by their release. Instead, the gate protects the contents followed by selective exposure. Crystallization of [Pt(tpy)Cl](PF6) (tpy = 2,2':6',2''-terpyridine) inside the cavity of hollow mesoporous silica created the unique core/shell nanoparticle. The crystalline core becomes fluorescent in the presence of perchlorate. By condensing an acid-sensitive gate onto the particle, access to the pores is blocked and the crystal is protected. The new nanomaterial obeys Boolean AND logic; only the presence of both the analyte (ClO4-) and acid results in the optical response.
Collapse
Affiliation(s)
- Tania M Guardado-Alvarez
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, USA.
| | - Wei Chen
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, USA.
| | - Amie E Norton
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA.
| | - Melissa M Russell
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, USA.
| | - William B Connick
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA.
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, USA.
| |
Collapse
|
12
|
Layer-by-layer hyaluronic acid/chitosan polyelectrolyte coated mesoporous silica nanoparticles as pH-responsive nanocontainers for optical bleaching of cellulose fabrics. Carbohydr Polym 2016; 146:174-80. [DOI: 10.1016/j.carbpol.2016.03.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/07/2016] [Accepted: 03/17/2016] [Indexed: 12/23/2022]
|
13
|
Schäfer C, Ragazzon G, Colasson B, La Rosa M, Silvi S, Credi A. An Artificial Molecular Transporter. ChemistryOpen 2016; 5:120-4. [PMID: 27308223 PMCID: PMC4906471 DOI: 10.1002/open.201500217] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 11/12/2022] Open
Abstract
The transport of substrates is one of the main tasks of biomolecular machines in living organisms. We report a synthetic small-molecule system designed to catch, displace, and release molecular cargo in solution under external control. The system consists of a bistable rotaxane that behaves as an acid-base controlled molecular shuttle, whose ring component bears a tether ending with a nitrile group. The latter can be coordinated to a ruthenium complex that acts as the load, and dissociated upon irradiation with visible light. The cargo loading/unloading and ring transfer/return processes are reversible and can be controlled independently. The robust coordination bond ensures that the cargo remains attached to the device while the transport takes place.
Collapse
Affiliation(s)
- Christian Schäfer
- Photochemical Nanosciences LaboratoryDipartimento di Chimica “G. Ciamician”Alma Mater Studiorum-Università di Bolognavia Selmi 240126BolognaItaly
| | - Giulio Ragazzon
- Photochemical Nanosciences LaboratoryDipartimento di Chimica “G. Ciamician”Alma Mater Studiorum-Università di Bolognavia Selmi 240126BolognaItaly
| | - Benoit Colasson
- Photochemical Nanosciences LaboratoryDipartimento di Chimica “G. Ciamician”Alma Mater Studiorum-Università di Bolognavia Selmi 240126BolognaItaly
| | - Marcello La Rosa
- Photochemical Nanosciences LaboratoryDipartimento di Chimica “G. Ciamician”Alma Mater Studiorum-Università di Bolognavia Selmi 240126BolognaItaly
| | - Serena Silvi
- Photochemical Nanosciences LaboratoryDipartimento di Chimica “G. Ciamician”Alma Mater Studiorum-Università di Bolognavia Selmi 240126BolognaItaly
| | - Alberto Credi
- Photochemical Nanosciences LaboratoryDipartimento di Chimica “G. Ciamician”Alma Mater Studiorum-Università di Bolognavia Selmi 240126BolognaItaly
| |
Collapse
|
14
|
Nietzold C, Dietrich P, Lippitz A, Panne U, Unger W. Cyclodextrin - ferrocene host - guest complexes on silicon oxide surfaces. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.5958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- C. Nietzold
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - P. M. Dietrich
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - A. Lippitz
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - U. Panne
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - W. E. S. Unger
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| |
Collapse
|
15
|
Rühle B, Saint-Cricq P, Zink JI. Externally Controlled Nanomachines on Mesoporous Silica Nanoparticles for Biomedical Applications. Chemphyschem 2016; 17:1769-79. [DOI: 10.1002/cphc.201501167] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Bastian Rühle
- Department of Chemistry and Biochemistry; University of California, Los Angeles; 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Philippe Saint-Cricq
- Department of Chemistry and Biochemistry; University of California, Los Angeles; 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry; University of California, Los Angeles; 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| |
Collapse
|
16
|
Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated Materials for On-Command Release of Guest Molecules. Chem Rev 2016; 116:561-718. [DOI: 10.1021/acs.chemrev.5b00456] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Aznar
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Mar Oroval
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Lluís Pascual
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Jose Ramón Murguía
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Biotecnología, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
17
|
|
18
|
Li Y, Wu W, Yang J, Yuan L, Liu C, Zheng J, Yang R. Engineering a nanolab for the determination of lysosomal nitric oxide by the rational design of a pH-activatable fluorescent probe. Chem Sci 2015; 7:1920-1925. [PMID: 29899916 PMCID: PMC5966799 DOI: 10.1039/c5sc04415d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
A pH-activatable fluorescent probe, Rhod-H-NO, was designed and synthesized for the determination of lysosomal NO in living cells and in vivo.
Nitric oxide (NO) is often involved in many different physiological processes including the regulation of lysosomal functions. However, it remains a great challenge to explore the variations of NO levels in lysosomes, limiting the understanding behind its biological functions in cellular signaling pathways and various diseases. Herein, a pH-activatable fluorescent probe, Rhod-H-NO, was designed and synthesized for the determination of lysosomal NO, in which the activation response model is beneficial towards getting accurate biological information. To ensure that Rhod-H-NO can accumulate effectively and exist stably in lysosomes without interference and degradation from other active species, Rhod-H-NO was engineered into the nanopores of mesoporous silica nanoparticles (MSNs) with β-cyclodextrin (β-CD) as the gatekeeper to obtain a nanolab. The nanolab was successfully applied to detect lysosomal NO in living cells and in vivo with high time and spatial resolution. This nanolab could serve as an excellent molecular tool to exploit and elucidate the function of NO at sub-cellular levels.
Collapse
Affiliation(s)
- Yinhui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , 410082 , China . ;
| | - Wei Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , 410082 , China . ;
| | - Jinfeng Yang
- Tumor Hospital , Xiangya School of Medicine , Central South University , Changsha , 410013 , China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , 410082 , China . ;
| | - Changhui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , 410082 , China . ;
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , 410082 , China . ;
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , 410082 , China . ; .,School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha , 410004 , China
| |
Collapse
|
19
|
Knežević NŽ, Durand JO. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. NANOSCALE 2015; 7:2199-2209. [PMID: 25583539 DOI: 10.1039/c4nr06114d] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues.
Collapse
Affiliation(s)
- Nikola Ž Knežević
- Faculty of Pharmacy, European University, Trg mladenaca 5, 21000 Novi Sad, Serbia.
| | | |
Collapse
|
20
|
Yilmaz MD, Xue M, Ambrogio MW, Buyukcakir O, Wu Y, Frasconi M, Chen X, Nassar MS, Stoddart JF, Zink JI. Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms. NANOSCALE 2015; 7:1067-1072. [PMID: 25475070 DOI: 10.1039/c4nr04796f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation. Acidification also induces the release of cargo molecules. Further investigations show that the presence of both a low pH and sugar molecules provides cooperative effects which together control the rate of release.
Collapse
Affiliation(s)
- M Deniz Yilmaz
- Center for the Chemistry of Integrated Systems, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
de la Torre C, Mondragón L, Coll C, Sancenón F, Marcos MD, Martínez-Máñez R, Amorós P, Pérez-Payá E, Orzáez M. Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry 2014; 20:15309-14. [DOI: 10.1002/chem.201404382] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Indexed: 01/22/2023]
|
22
|
Huang Y, Lin Y, Ran X, Ren J, Qu X. A semipermeable enzymatic nanoreactor as an efficient modulator for reversible pH regulation. NANOSCALE 2014; 6:11328-11335. [PMID: 25141270 DOI: 10.1039/c4nr03437f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we propose a new concept for the fabrication of a semipermeable enzymatic nanoreactor as an efficient modulator to reversibly switch the pH of an aqueous environment. We used amino-functionalized, expanded mesoporous silica nanoparticles (EMSN) as a model nanocarrier to load enzymes. In order to protect enzymes from the interference of a complicated environment, polyelectrolyte multilayers (PEMs) were coated on the surface of the EMSN through layer by layer (LbL) assembly. These PEMs can serve as semipermeable membranes, allowing small molecules to diffuse in and out freely while trapping the enzymes in the nanoreactors. Compared with traditional electrochemical stimulation or optical control methods, our enzymatic regulation platform is easy to operate without complicated instruments. In addition, this system can cover a wide range of pH values and conveniently regulate pH values by simply controlling the concentrations of catalysts or reactants. Meanwhile, this strategy could be generalized to other enzymes or nanocarriers to achieve reversible pH regulation for different purposes. The switched pH values can be implemented for the modulation of the conformational changes of nucleic acids and activation of the charge conversion in drug delivery applications.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.
| | | | | | | | | |
Collapse
|
23
|
Shen Q, Liu L, Zhang W. Fabrication of a photocontrolled surface with switchable wettability based on host-guest inclusion complexation and protein resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9361-9369. [PMID: 25053175 DOI: 10.1021/la500792v] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel surface-modification strategy has been developed for the construction of a photocontrolled silicon wafer surface with switchable wettability based on host-guest inclusion complexation. The silicon wafer was first modified by guest molecule azobenzene (Azo) via a silanization reaction. Subsequently, a series of polymers with different polarities were attached to host molecule β-cyclodextrin (β-CD) to prepare β-CD-containing hemitelechelic polymers via click chemistry. Finally, a photocontrolled silicon wafer surface modified with polymers was fabricated by inclusion complexation between β-CD and Azo, and the surface properties of the substrate are dependent on the polymers we used. The elemental composition, surface morphology, and hydrophilic/hydrophobic property of the modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscope, and contact angle measurements, respectively. The antifouling property of the PEG-functionalized surface was evaluated by a protein adsorption assay using bovine serum albumin, which was also characterized by XPS. The results demonstrate that the surface modified with PEG possesses good protein-resistant properties.
Collapse
Affiliation(s)
- Qiongxia Shen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | | | | |
Collapse
|
24
|
Ren K, Wu J, Zhang Y, Yan F, Ju H. Proximity hybridization regulated DNA biogate for sensitive electrochemical immunoassay. Anal Chem 2014; 86:7494-9. [PMID: 24965810 DOI: 10.1021/ac5012377] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An electrochemical DNA biogate was designed for highly sensitive homogeneous electrochemical immunoassay by combining target-induced proximity hybridization with a mesoporous silica nanoprobe (MSN). The electroactive methylene blue (MB) was sealed in the inner pores of MSN with single-stranded DNA. In the presence of target protein and two DNA-labeled antibodies, the formed proximate complex could hybridize with the DNA strand to form a rigid double-stranded structure and thus open the biogate, which led to the release of MB entrapped in the MSN. The target protein-dependent amount of released MB could be conveniently monitored with a screen-printed carbon electrode. Moreover, the detachment process of MB could be further amplified with an in situ enzymatic recycling binding of the proximate complex with the single-stranded DNA. Using prostate-specific antigen as a model target, the proposed assay showed a wide detection range from 0.002 to 100 ng mL(-1) with a detection limit of 1.3 pg mL(-1). This strategy was simple and universal for various analytes with different affinity ligands. This method possessed great potential for convenient point-of-care testing and commercial application.
Collapse
Affiliation(s)
- Kewei Ren
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | | | | | | | | |
Collapse
|