1
|
Son YJ, Kim D, Park JW, Ko K, Yu Y, Hwang SJ. Heteromultimetallic Platform for Enhanced C-H Bond Activation: Aluminum-Incorporated Dicopper Complex Mimicking Cu-ZSM-5 Structure and Oxidative Reactivity. J Am Chem Soc 2024; 146:29810-29823. [PMID: 39420644 DOI: 10.1021/jacs.4c11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bimetallic complexes have sparked interest across various chemical disciplines, driving advancements in research. Recent advancements in this field have shed light on complex reactions in metalloenzymes and unveiled new chemical transformations. Two primary types of bimetallic platforms have emerged: (1) systems where both metals actively participate in reactivity, and (2) systems where one metal mediates the reaction while the other regulates reactivity. This study introduces a novel multinucleating ligand platform capable of integrating both types of bimetallic systems. To demonstrate the significance of this platform, we synthesized a unique dicopper complex incorporating aluminum in its coordination environment. This complex serves as the first structural model for the active site in copper-based zeolites, highlighting the role of aluminum in hydrogen atom abstraction reactivity. Comparative studies of oxidative C-H bond activation revealed that the inclusion of aluminum significantly alters the thermodynamic driving force (by -11 kcal mol-1) for bond activation and modifies the proton-coupled electron-transfer reaction mechanism, resulting in a 14-fold rate increase. Both computational and experimental data support the high modularity of this multinucleating ligand platform, offering a new approach to fine-tune the reactivity of bimetallic complexes.
Collapse
Affiliation(s)
- Yeong Jun Son
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dongyoung Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae Wan Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwangwook Ko
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeongjun Yu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Jun Hwang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
VanNatta PE, Archambault CM, Wang S, Lyu T, D’Amelio J, Martell NJ, Watson SK, Wang K, Liu Z, Kieber-Emmons MT, Yan H. High pressure-derived nonsymmetrical [Cu 2O] 2+ core for room-temperature methane hydroxylation. SCIENCE ADVANCES 2024; 10:eadq3366. [PMID: 39365853 PMCID: PMC11451512 DOI: 10.1126/sciadv.adq3366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Nonsymmetrical oxygen-bridged binuclear copper centers have been proposed and modeled as intermediates and transition states in several C─H oxidation pathways, leading to the postulation that structural dissymmetry enhances the reactivity of the bridging oxygen. However, experimentally characterizing the structure and reactivity of these transient species is remarkably challenging. Here, we report the high-pressure synthesis of a metastable nonsymmetrical dicopper-μ-oxo compound with exceptional reactivity toward the mono-oxygenation of aliphatic C─H bonds. The nonequivalent coordination environment of copper stabilizes localized mixed valency and greatly enhances the hydrogen atom abstraction activity of the bridging oxygen, enabling room-temperature hydroxylation of methane under pressure. These findings highlight the role of dissymmetry in the reactivity of binuclear copper centers and demonstrate precise control of molecular structures by mechanical means.
Collapse
Affiliation(s)
- Peter E. VanNatta
- Department of Chemistry, University of North Texas, Denton, TX 76205, USA
| | | | - Sicheng Wang
- Department of Chemistry, University of North Texas, Denton, TX 76205, USA
| | - Tengteng Lyu
- Department of Chemistry, University of North Texas, Denton, TX 76205, USA
| | - Jack D’Amelio
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah J. Martell
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Scott K. Watson
- Department of Chemistry, University of North Texas, Denton, TX 76205, USA
| | - Kunyu Wang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Zhenxian Liu
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
| | | | - Hao Yan
- Department of Chemistry, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
3
|
Arora S, Rawal P, Gupta P. Orbital Analysis Captures the Existence of a Mixed-Valent Cu III -O-Cu II Active-Site and its Role in Water-Assisted Aliphatic Hydroxylation. Chemistry 2024; 30:e202303722. [PMID: 38168869 DOI: 10.1002/chem.202303722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
The Cu-O-Cu core has been proposed as a potential site for methane oxidation in particulate methane monooxygenase. In this work, we used density functional theory (DFT) to design a mixed-valent CuIII -O-CuII species from an experimentally known peroxo-dicopper complex supported by N-donor ligands containing phenolic groups. We found that the transfer of two-protons and two-electrons from phenolic groups to peroxo-dicopper core takes place, which results to the formation of a bis-μ-hydroxo-dicopper core. The bis-μ-hydroxo-dicopper core converts to a mixed-valent CuIII -O-CuII core with the removal of a water molecule. The orbital and spin density analyses unravel the mixed-valent nature of CuIII -O-CuII . We further investigated the reactivity of this mixed-valent core for aliphatic C-H hydroxylation. Our study unveiled that mixed-valent CuIII -O-CuII core follows a hydrogen atom transfer mechanism for C-H activation. An in-situ generated water molecule plays an important role in C-H hydroxylation by acting as a proton transfer bridge between carbon and oxygen. Furthermore, to assess the relevance of a mixed-valent CuIII -O-CuII core, we investigated aliphatic C-H activation by a symmetrical CuII -O-CuII core. DFT results show that the mixed-valent CuIII -O-CuII core is more reactive toward the C-H bond than the symmetrical CuII -O-CuII core.
Collapse
Affiliation(s)
- Sumangla Arora
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667
| | - Parveen Rawal
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667
| |
Collapse
|
4
|
Bete SC, May LK, Woite P, Roemelt M, Otte M. A Copper Cage‐Complex as Mimic of the pMMO Cu
C
Site. Angew Chem Int Ed Engl 2022; 61:e202206120. [PMID: 35731651 PMCID: PMC9544873 DOI: 10.1002/anie.202206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/05/2022]
Abstract
The active site of particulate methane monooxygenase (pMMO) and its mechanism of action are not known. Recently, the CuC site emerged as a potential active site, but to date it lacks any study on biomimetic resemblance of the coordination environment provided by the enzyme. Here, the synthesis of a cage ligand providing such an environment is reported. Copper is incorporated, and coordination occurs by the two imidazole and one carboxylate group offered by the ligand. Depending on the oxidation state, it can adopt different coordination modes, as evidenced by the solid‐state structures and computational investigation. The copper(I) state readily reacts with dioxygen and thereby undergoes CH activation. Moreover, the catalytic aerobic oxidation of hydroquinones as ubiquinol mimics is shown. Clean one‐electron oxidation occurs under mild conditions and EPR analysis of the copper(II) state in the presence of water reveals striking similarities to the data obtained from pMMO.
Collapse
Affiliation(s)
- Sarah C. Bete
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Göttingen Germany
| | - Leander K. May
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Göttingen Germany
| | - Philipp Woite
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Michael Roemelt
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Matthias Otte
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Göttingen Germany
| |
Collapse
|
5
|
Bete SC, May LK, Woite P, Roemelt M, Otte M. A Copper Cage‐Complex as Mimic of the pMMO CuC Site. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sarah C. Bete
- University of Göttingen: Georg-August-Universitat Gottingen Institut für Anorganische Chemie GERMANY
| | - Leander K. May
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Anorganische Chemie GERMANY
| | - Philipp Woite
- Humboldt-Universitat zu Berlin Institut für Chemie GERMANY
| | - Michael Roemelt
- Humboldt-Universitat zu Berlin Institut für Chemie Brook-Taylor-Straße 2 12489 Berlin GERMANY
| | - Matthias Otte
- Georg-August-Universität Göttingen Institut für Anorganische Chemie, Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen GERMANY
| |
Collapse
|
6
|
Thierer LM, Brooks SH, Weberg AB, Cui P, Zhang S, Gau MR, Manor BC, Carroll PJ, Tomson NC. Macrocycle-Induced Modulation of Internuclear Interactions in Homobimetallic Complexes. Inorg Chem 2022; 61:6263-6280. [PMID: 35422117 PMCID: PMC9252315 DOI: 10.1021/acs.inorgchem.2c00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A synthetic route has been developed for a series of 3d homobimetallic complexes of Mn, Fe, Co, Ni, and Cu using three different pyridyldiimine and pyridyldialdimine macrocyclic ligands with ring sizes of 18, 20, and 22 atoms. Crystallographic analyses indicate that while the distances between the metals can be modulated by the size of the macrocycle pocket, the flexibility in the alkyl linkers used to construct the macrocycles enables the ligand to adjust the orientation of the PD(A)I fragments in response to the geometry of the [M2(μ-Cl)2]2+ core, particularly with respect to Jahn-Teller distortions. Analyses by UV-vis spectroscopy and SQUID magnetometry revealed deviations in the properties [M2(μ-Cl)2]2+-containing complexes bound by standard mononucleating ligands, highlighting the ability of macrocycles to use ring size to control the magnetic interactions of pseudo-octahedral, high-spin metal centers.
Collapse
Affiliation(s)
- Laura M. Thierer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Sam H. Brooks
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Alexander B. Weberg
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Peng Cui
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Shaoguang Zhang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Brian C. Manor
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Rhoda HM, Heyer AJ, Snyder BER, Plessers D, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis. Chem Rev 2022; 122:12207-12243. [PMID: 35077641 DOI: 10.1021/acs.chemrev.1c00915] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition-metal-exchanged zeolites perform remarkable chemical reactions from low-temperature methane to methanol oxidation to selective reduction of NOx pollutants. As with metalloenzymes, metallozeolites have impressive reactivities that are controlled in part by interactions outside the immediate coordination sphere. These second-sphere effects include activating a metal site through enforcing an "entatic" state, controlling binding and access to the metal site with pockets and channels, and directing radical rebound vs cage escape. This review explores these effects with emphasis placed on but not limited to the selective oxidation of methane to methanol with a focus on copper and iron active sites, although other transition-metal-ion zeolite reactions are also explored. While the actual active-site geometric and electronic structures are different in the copper and iron metallozeolites compared to the metalloenzymes, their second-sphere interactions with the lattice or the protein environments are found to have strong parallels that contribute to their high activity and selectivity.
Collapse
Affiliation(s)
- Hannah M Rhoda
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander J Heyer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Benjamin E R Snyder
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Max L Bols
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
8
|
Chen CY, Tsai ML. Tris(Imidazolyl) Dicopper(I) Complex and its Reactivity to Exert Catalytic Oxidation of Sterically Hindered Phenol Substrates via a [Cu2O]2+ Core. Dalton Trans 2022; 51:2428-2443. [DOI: 10.1039/d1dt04084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu ion ligated with histidine residues is a common active site motif of various Cu-containing metalloenzymes exerting versatile catalytic oxidation reactions. Due to the scarce of structurally characterized biomimetic...
Collapse
|
9
|
Chen QC, Fridman N, Tumanskii B, Gross Z. A chromophore-supported structural and functional model of dinuclear copper enzymes, for facilitating mechanism of action studies. Chem Sci 2021; 12:12445-12450. [PMID: 34603675 PMCID: PMC8480325 DOI: 10.1039/d1sc02593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Type III dicopper centres are the heart of the reactive sites of enzymes that catalyze the oxidation of catechols. Numerous synthetic model complexes have been prepared to uncover the fundamental chemistry involved in these processes, but progress is still lagging much behind that for heme enzymes. One reason is that the latter gain very much from the informative spectroscopic features of their porphyrin-based metal-chelating ligand. We now introduce sapphyrin-chelated dicopper complexes and show that they may be isolated in different oxidation states and coordination geometries, with distinctive colors and electronic spectra due to the heme-like ligands. The dicopper(i) complex 1-Cu2 was characterized by 1H and 19F NMR spectroscopy of the metal-chelating sapphyrin, the oxygenated dicopper(ii) complex 1-Cu2O2 by EPR, and crystallographic data was obtained for the tetracopper(ii)-bis-sapphyrin complex [1-Cu2O2]2. This uncovered a non-heme [Cu4(OH)4]4− cluster, held together with the aid of two sapphyrin ligands, with structural features reminiscent of those of catechol oxidase. Biomimetic activity was demonstrated by the 1-Cu2O2 catalyzed aerobic oxidation of catechol to quinone; the sapphyrin ligand aided very much in gaining information about reactive intermediates and the rate-limiting step of the reaction. Di-copper chelation by sapphyrin facilitates reaction mechanism investigations and characterization of reactive intermediates regarding biomimetic catechol oxidation.![]()
Collapse
Affiliation(s)
- Qiu-Cheng Chen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Boris Tumanskii
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
10
|
Jurgeleit R, Grimm-Lebsanft B, Flöser BM, Teubner M, Buchenau S, Senft L, Hoffmann J, Naumova M, Näther C, Ivanović-Burmazović I, Rübhausen M, Tuczek F. Catalytic Oxygenation of Hydrocarbons by Mono-μ-oxo Dicopper(II) Species Resulting from O-O Cleavage of Tetranuclear Cu I /Cu II Peroxo Complexes. Angew Chem Int Ed Engl 2021; 60:14154-14162. [PMID: 33856088 PMCID: PMC8251984 DOI: 10.1002/anie.202101035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/13/2021] [Indexed: 01/11/2023]
Abstract
One of the challenges of catalysis is the transformation of inert C-H bonds to useful products. Copper-containing monooxygenases play an important role in this regard. Here we show that low-temperature oxygenation of dinuclear copper(I) complexes leads to unusual tetranuclear, mixed-valent μ4 -peroxo [CuI /CuII ]2 complexes. These Cu4 O2 intermediates promote irreversible and thermally activated O-O bond homolysis, generating Cu2 O complexes that catalyze strongly exergonic H-atom abstraction from hydrocarbons, coupled to O-transfer. The Cu2 O species can also be produced with N2 O, demonstrating their capability for small-molecule activation. The binding and cleavage of O2 leading to the primary Cu4 O2 intermediate and the Cu2 O complexes, respectively, is elucidated with a range of solution spectroscopic methods and mass spectrometry. The unique reactivities of these species establish an unprecedented, 100 % atom-economic scenario for the catalytic, copper-mediated monooxygenation of organic substrates, employing both O-atoms of O2 .
Collapse
Affiliation(s)
- Ramona Jurgeleit
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| | - Benjamin Grimm-Lebsanft
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Benedikt Maria Flöser
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mühlheim an der Ruhr, Germany
| | - Melissa Teubner
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Department of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Sören Buchenau
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Laura Senft
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Jonas Hoffmann
- Institute for Analytical and Organic Chemistry, University of Bremen, Leobener Strasse 7, 28359, Bremen, Germany.,MAPEX, Center for Materials and Processes, University of Bremen, Bibliothekstrasse 1, 28359, Bremen, Germany
| | - Maria Naumova
- DESY, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany.,Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus D, 81377, München, Germany
| | - Michael Rübhausen
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Felix Tuczek
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| |
Collapse
|
11
|
Jurgeleit R, Grimm‐Lebsanft B, Flöser BM, Teubner M, Buchenau S, Senft L, Hoffmann J, Naumova M, Näther C, Ivanović‐Burmazović I, Rübhausen M, Tuczek F. Katalytische Oxygenierung von Kohlenwasserstoffen durch Mono‐μ‐oxo‐Dikupfer(II)‐Spezies erzeugt durch O‐O‐Spaltung von tetranuklearen Cu
I
/Cu
II
‐Peroxo‐Komplexen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ramona Jurgeleit
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Straße 2 24118 Kiel Deutschland
| | - Benjamin Grimm‐Lebsanft
- Institut für Nanostruktur- und Festkörperphysik Center for Free Electron Laser Science (CFEL) Universität Hamburg Luruper Chaussee 149 22761 Hamburg Deutschland
| | - Benedikt Maria Flöser
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Straße 2 24118 Kiel Deutschland
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mühlheim an der Ruhr Deutschland
| | - Melissa Teubner
- Institut für Nanostruktur- und Festkörperphysik Center for Free Electron Laser Science (CFEL) Universität Hamburg Luruper Chaussee 149 22761 Hamburg Deutschland
- Department of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Sören Buchenau
- Institut für Nanostruktur- und Festkörperphysik Center for Free Electron Laser Science (CFEL) Universität Hamburg Luruper Chaussee 149 22761 Hamburg Deutschland
| | - Laura Senft
- Department of Chemistry and Pharmacy Friedrich-Alexander-University of Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Deutschland
| | - Jonas Hoffmann
- Institute for Analytical and Organic Chemistry University of Bremen Leobener Straße 7 28359 Bremen Deutschland
- MAPEX, Center for Materials and Processes University of Bremen Bibliothekstrasse 1 28359 Bremen Deutschland
| | - Maria Naumova
- DESY, Deutsches Elektronen-Synchrotron (DESY) Notkestraße 85 22607 Hamburg Deutschland
| | - Christian Näther
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Straße 2 24118 Kiel Deutschland
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and Pharmacy Friedrich-Alexander-University of Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Deutschland
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus D 81377 München Deutschland
| | - Michael Rübhausen
- Institut für Nanostruktur- und Festkörperphysik Center for Free Electron Laser Science (CFEL) Universität Hamburg Luruper Chaussee 149 22761 Hamburg Deutschland
| | - Felix Tuczek
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Straße 2 24118 Kiel Deutschland
| |
Collapse
|
12
|
Behera PK, Choudhury P, Sahu SK, Sahu RR, Harvat AN, McNulty C, Stitgen A, Scanlon J, Kar M, Rout L. Oxygen Bridged Bimetallic CuMoO
4
Nanocatalyst for Benzylic Alcohol Oxidation; Mechanism and DFT Study. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Laxmidhar Rout
- Department of Chemistry Berhampur University Odisha 760007 India
- Adjunct Faculty Department of Chemistry IISER 760010 Berhampur Odisha India
| |
Collapse
|
13
|
Yelin S, Limberg C. Molecular Structural Motifs and O2 Activation Inspired by Enzymes and Solid Catalysts. Catal Letters 2020. [DOI: 10.1007/s10562-019-02918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Zhang S, Zhao L. A merged copper(I/II) cluster isolated from Glaser coupling. Nat Commun 2019; 10:4848. [PMID: 31649254 PMCID: PMC6813345 DOI: 10.1038/s41467-019-12889-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/08/2019] [Indexed: 12/04/2022] Open
Abstract
Ubiquitous copper-oxygen species are pivotal in enabling multifarious oxidation reactions in biological and chemical transformations. We herein construct a macrocycle-protected mixed-valence cluster [(tBuC≡CCuI3)-(μ2-OH)-CuII] by merging a copper acetylide cluster with a copper-oxygen moiety formed in Glaser coupling. This merged Cu(I/II) cluster shows remarkably strong oxidation capacity, whose reduction potential is among the most positive for Cu(II) and even comparable with some Cu(III) species. Consequently, the cluster exhibits high hydrogen atom transfer (HAT) reactivity with inert hydrocarbons. In contrast, the degraded [CuII-(μ2-OH)-CuII] embedded in a small macrocyclic homologue shows no HAT reactivity. Theoretical calculations indicate that the strong oxidation ability of Cu(II) in [(tBuC≡CCuI3)-(μ2-OH)-CuII] is mainly ascribed to the uneven charge distribution of Cu(I) ions in the tBuC≡CCuI3 unit because of significant [dCu(I) → π*(C≡C)] back donation. The present study on in situ formed metal clusters opens a broad prospect for mechanistic studies of Cu-based catalytic reactions. Copper-oxygen species in organometallic complexes and enzymes are involved in many oxidation reactions. Here, the authors synthesize a macrocycle-protected mixed valence Cu(I/II) cluster with an unusually strong oxidation capacity and apply it to hydrogen atom transfer reactions with inert hydrocarbons.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Brezicki G, Kammert JD, Gunnoe TB, Paolucci C, Davis RJ. Insights into the Speciation of Cu in the Cu-H-Mordenite Catalyst for the Oxidation of Methane to Methanol. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00852] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gordon Brezicki
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - James D. Kammert
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, McCormick Road,
P.O. Box 400319, Charlottesville, Virginia 22904-4741, United States
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - Robert J. Davis
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| |
Collapse
|
16
|
Syntheses, Structures, and Catalytic Hydrocarbon Oxidation Properties of N-Heterocycle-Sulfonated Schiff Base Copper(II) Complexes. INORGANICS 2019. [DOI: 10.3390/inorganics7020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reaction of the o-[(o-hydroxyphenyl)methylideneamino]benzenesulfonic acid (H2L) (1) with CuCl2·2H2O in the presence of pyridine (py) leads to [Cu(L)(py)(EtOH)] (2) which, upon further reaction with 2,2’-bipyridine (bipy), pyrazine (pyr), or piperazine (pip), forms [Cu(L)(bipy)]·MeOH (3), [Cu2(L)2(μ-pyr)(MeOH)2] (4), or [Cu2(L)2(μ-pip)(MeOH)2] (5), respectively. The Schiff base (1) and the metal complexes (2–5) are stabilized by a number of non-covalent interactions to form interesting H-bonded multidimensional polymeric networks (except 3), such as zigzag 1D chain (in 1), linear 1D chain (in 2), hacksaw double chain 1D (in 4) and 2D motifs (in 5). These copper(II) complexes (2–5) catalyze the peroxidative oxidation of cyclic hydrocarbons (cyclooctane, cyclohexane, and cyclohexene) to the corresponding products (alcohol and ketone from alkane; alcohols, ketone, and epoxide from alkene), under mild conditions. For the oxidation of cyclooctane with hydrogen peroxide as oxidant, used as a model reaction, the best yields were generally achieved for complex 3 in the absence of any promoter (20%) or in the presence of py or HNO3 (26% or 30%, respectively), whereas 2 displayed the highest catalytic activity in the presence of HNO3 (35%). While the catalytic reactions were significantly faster with py, the best product yields were achieved with the acidic additive.
Collapse
|
17
|
Materne K, Spröwitz C, Braun-Cula B, Limberg C. Extending the Toolbox for the Modular Arrangement of Functions at Xanthene/Dibenzofuran Platforms: Introduction of Directly Linked Transition Metals beside Bismuthanes. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karolin Materne
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christin Spröwitz
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Beatrice Braun-Cula
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Limberg
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
18
|
Li ST, Braun-Cula B, Hoof S, Limberg C. Copper(i) complexes based on ligand systems with two different binding sites: synthesis, structures and reaction with O 2. Dalton Trans 2018; 47:544-560. [PMID: 29239430 DOI: 10.1039/c7dt03752j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of the ligand systems L1 and L2 with two different N3-binding sites linked through a dibenzofuran spacer and their coordination properties towards a variety of CuI precursors are reported. The reaction of L1 with copper halides leads to the formation of a bimetallic species [(L1)(CuICl)2] (1), and metallodimers [((L1)(CuIX)2)2(μ-(Cu)(μ-X)2)] (2: X = Br, 3: X = I) in which two dicopper complexes are bridged by a (μ-(Cu)(μ-X)2)-moiety whereas L2 reacts with copper chloride to afford {[Cu(L2)Cl2]}n (8). Furthermore, starting from L1 in combination with copper(i) salts of weakly coordinating anions the dicopper complexes [(L1)(CuI(NCCH3))2](BF4)2 (4), [(L1)(CuI(NCCH3))(Cu(Y))](Y) (5: Y = OTf, 6: Y = ClO4) and [(L1)(Cu(dppe))](PF6)2 (7) were isolated, and employing L2, the complexes [(L2)(CuI(NCCH3))2](Z)2 (9: Z = PF6, 10: Z = OTf) and [(L2)(Cu(dppe))](PF6)2 (11) were obtained. Complexes 4-6 as well as 9 and 10 react rapidly with O2 to form metastable O2 adducts in acetone at -90 °C, where O2 is bound between the two copper centers within one dicopper molecule, as evidenced by UV/Vis spectroscopy, kinetic investigations, Raman spectroscopy and studies with ligands containing the isolated donor sites. The reactivity of the O2 adducts towards selected substrates was also investigated, showing their ability to act as electrophiles as well as nucleophiles.
Collapse
Affiliation(s)
- S T Li
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | | | | | | |
Collapse
|
19
|
Wang G, Huang L, Chen W, Zhou J, Zheng A. Rationally designing mixed Cu–(μ-O)–M (M = Cu, Ag, Zn, Au) centers over zeolite materials with high catalytic activity towards methane activation. Phys Chem Chem Phys 2018; 20:26522-26531. [DOI: 10.1039/c8cp04872j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The direct conversion of methane to methanol on [Cu(μ-O)M]2+ (M = Cu, Ag, Zn, Au) bimetal centers in ZSM-5 zeolite is investigated using periodic DFT for the first time.
Collapse
Affiliation(s)
- Guiru Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Ling Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Jian Zhou
- Shanghai Research Institute of Petrochemical Technology
- SINOPEC
- Shanghai 201208
- P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| |
Collapse
|
20
|
Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chem Rev 2017; 118:2718-2768. [DOI: 10.1021/acs.chemrev.7b00344] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin E. R. Snyder
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max L. Bols
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Robert A. Schoonheydt
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bert F. Sels
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
21
|
Ali G, VanNatta PE, Ramirez DA, Light KM, Kieber-Emmons MT. Thermodynamics of a μ-oxo Dicopper(II) Complex for Hydrogen Atom Abstraction. J Am Chem Soc 2017; 139:18448-18451. [DOI: 10.1021/jacs.7b10833] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghazanfar Ali
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - David A. Ramirez
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Kenneth M. Light
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | | |
Collapse
|
22
|
Möller F, Piontek S, Miller RG, Apfel UP. From Enzymes to Functional Materials-Towards Activation of Small Molecules. Chemistry 2017; 24:1471-1493. [PMID: 28816379 DOI: 10.1002/chem.201703451] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Indexed: 12/12/2022]
Abstract
The design of non-noble metal-containing heterogeneous catalysts for the activation of small molecules is of utmost importance for our society. While nature possesses very sophisticated machineries to perform such conversions, rationally designed catalytic materials are rare. Herein, we aim to raise the awareness of the overall common design and working principles of catalysts incorporating aspects of biology, chemistry, and material sciences.
Collapse
Affiliation(s)
- Frauke Möller
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Stefan Piontek
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Reece G Miller
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| |
Collapse
|
23
|
Hannigan SF, Arnoff AI, Neville SE, Lum JS, Golen JA, Rheingold AL, Orth N, Ivanović‐Burmazović I, Liebhäuser P, Rösener T, Stanek J, Hoffmann A, Herres‐Pawlis S, Doerrer LH. On the Way to a Trisanionic {Cu
3
O
2
} Core for Oxidase Catalysis: Evidence of an Asymmetric Trinuclear Precursor Stabilized by Perfluoropinacolate Ligands. Chemistry 2017; 23:8212-8224. [DOI: 10.1002/chem.201605926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Steven F. Hannigan
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - Amanda I. Arnoff
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - Sarah E. Neville
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - June S. Lum
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - James A. Golen
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Nicole Orth
- Lehrstuhl für Bioanorganische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Lehrstuhl für Bioanorganische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Patricia Liebhäuser
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Thomas Rösener
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Julia Stanek
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Alexander Hoffmann
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Sonja Herres‐Pawlis
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Linda H. Doerrer
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| |
Collapse
|
24
|
Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chem Rev 2017; 117:2059-2107. [PMID: 28103018 PMCID: PMC5963733 DOI: 10.1021/acs.chemrev.6b00636] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A longstanding research goal has been to understand the nature and role of copper-oxygen intermediates within copper-containing enzymes and abiological catalysts. Synthetic chemistry has played a pivotal role in highlighting the viability of proposed intermediates and expanding the library of known copper-oxygen cores. In addition to the number of new complexes that have been synthesized since the previous reviews on this topic in this journal (Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013-1046 and Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076), the field has seen significant expansion in the (1) range of cores synthesized and characterized, (2) amount of mechanistic work performed, particularly in the area of organic substrate oxidation, and (3) use of computational methods for both the corroboration and prediction of proposed intermediates. The scope of this review has been limited to well-characterized examples of copper-oxygen species but seeks to provide a thorough picture of the spectroscopic characteristics and reactivity trends of the copper-oxygen cores discussed.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Nicole L Gagnon
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin D Neisen
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Debanjan Dhar
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andrew D Spaeth
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Gereon M Yee
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Arvidsson AA, Zhdanov VP, Carlsson PA, Grönbeck H, Hellman A. Metal dimer sites in ZSM-5 zeolite for methane-to-methanol conversion from first-principles kinetic modelling: is the [Cu–O–Cu]2+motif relevant for Ni, Co, Fe, Ag, and Au? Catal Sci Technol 2017. [DOI: 10.1039/c6cy02521h] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction energy landscapes for the direct conversion of methane to methanol over ZSM-5 for Cu, Ni, Co and Fe dimer sites.
Collapse
Affiliation(s)
- Adam A. Arvidsson
- Competence Centre for Catalysis
- Department of Physics
- Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
| | - Vladimir P. Zhdanov
- Competence Centre for Catalysis
- Department of Physics
- Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
| | - Per-Anders Carlsson
- Competence Centre for Catalysis
- Department of Physics
- Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
| | - Henrik Grönbeck
- Competence Centre for Catalysis
- Department of Physics
- Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
| | - Anders Hellman
- Competence Centre for Catalysis
- Department of Physics
- Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
| |
Collapse
|
26
|
McMoran EP, Powell DR, Perez F, Rowe GT, Yang L. Synthesis and Characterization of Copper Complexes with CuICuI, Cu1.5Cu1.5m and CuIICuII Core Structures Supported by a Flexible Dipyridylamide Ligand. Inorg Chem 2016; 55:11462-11472. [DOI: 10.1021/acs.inorgchem.6b02006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ethan P. McMoran
- Department
of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| | - Douglas R. Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Felio Perez
- Integrated Microscopy Center, University of Memphis, Memphis, Tennessee 38152, United States
| | - Gerard T. Rowe
- Department
of Chemistry and Physics, University of South Carolina—Aiken, Aiken, South Carolina 29801, United States
| | - Lei Yang
- Department
of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| |
Collapse
|
27
|
Li ST, Braun-Cula B, Hoof S, Dürr M, Ivanović-Burmazović I, Limberg C. Ligands with Two Different Binding Sites and O2Reactivity of their Copper(I) Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sin Ting Li
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Beatrice Braun-Cula
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Santina Hoof
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Maximilian Dürr
- Universität Erlangen-Nürnberg; Lehrstuhl für Bioanorganische Chemie; Egerlandstraße 1 91058 Erlangen Germany
| | - Ivana Ivanović-Burmazović
- Universität Erlangen-Nürnberg; Lehrstuhl für Bioanorganische Chemie; Egerlandstraße 1 91058 Erlangen Germany
| | - Christian Limberg
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
28
|
|
29
|
Karahalis GJ, Thangavel A, Chica B, Bacsa J, Dyer RB, Scarborough CC. Synthesis and Catalytic Reactivity of a Dicopper(II) μ-η2:η2-Peroxo Species Supported by 1,4,7-Tri-tert-butyl-1,4,7-triazacyclononane. Inorg Chem 2016; 55:1102-7. [DOI: 10.1021/acs.inorgchem.5b02205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregory J. Karahalis
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Arumugam Thangavel
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Bryant Chica
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
30
|
Zhang N, Liu D, Zhang H, Yu J, Wu Z, Zhu Q, Zhou H. Cadmium(ii) supramolecular complexes constructed from a phenylbenzoxazole-based ligand: self-assembly, structural features and nonlinear optical properties. RSC Adv 2016. [DOI: 10.1039/c6ra16821c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Four novel Cd(ii) supramolecular complexes (1–4) have been prepared and their luminescent and nonlinear optical properties have been researched. Complexes 1 and 3 showed obvious nonlinear absorption when compared with to complexes 2 and 4.
Collapse
Affiliation(s)
- Na Zhang
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Dan Liu
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Huihui Zhang
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Jianhua Yu
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Zhichao Wu
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Qiyong Zhu
- Department of Chemistry
- Huainan Normal College
- Huainan
- 232001 P. R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| |
Collapse
|
31
|
Wang L, Zhu Y, Wu Z, Li Z, Zhou H, Wu J, Tian Y. Influence of anions on decomposition of Schiff base ligand determines the structure and magnetic property of dinuclear copper(II) complexes. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Ribeiro AP, Martins LM, Hazra S, Pombeiro AJ. Catalytic oxidation of cyclohexane with hydrogen peroxide and a tetracopper(II) complex in an ionic liquid. CR CHIM 2015. [DOI: 10.1016/j.crci.2015.03.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Vanelderen P, Snyder BER, Tsai ML, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI. Spectroscopic Definition of the Copper Active Sites in Mordenite: Selective Methane Oxidation. J Am Chem Soc 2015; 137:6383-92. [DOI: 10.1021/jacs.5b02817] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pieter Vanelderen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Center
for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg
23, 3000 Leuven, Belgium
| | - Benjamin E. R. Snyder
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ming-Li Tsai
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ryan G. Hadt
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Julie Vancauwenbergh
- Center
for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg
23, 3000 Leuven, Belgium
| | - Olivier Coussens
- Center
for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg
23, 3000 Leuven, Belgium
| | - Robert A. Schoonheydt
- Center
for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg
23, 3000 Leuven, Belgium
| | - Bert F. Sels
- Center
for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg
23, 3000 Leuven, Belgium
| | - Edward I. Solomon
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Palomas D, Kalamaras C, Haycock P, White AJP, Hellgardt K, Horton A, Crimmin MR. Re-evaluating selectivity as a determining factor in peroxidative methane oxidation by multimetallic copper complexes. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00462d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of multimetallic copper(ii) complexes have been re-investigated for methane oxidation with H2O2.
Collapse
Affiliation(s)
- David Palomas
- Department of Chemistry
- Imperial College London
- South Kensington
- London
- UK
| | - Christos Kalamaras
- Department of Chemical Engineering
- Imperial College London
- South Kensington
- London
- UK
| | - Peter Haycock
- Department of Chemistry
- Imperial College London
- South Kensington
- London
- UK
| | | | - Klaus Hellgardt
- Department of Chemical Engineering
- Imperial College London
- South Kensington
- London
- UK
| | - Andrew Horton
- PTI/RE Experimentation
- Emerging Technologies Shell Global Solutions International B.V
- Amsterdam
- The Netherlands
| | - Mark R. Crimmin
- Department of Chemistry
- Imperial College London
- South Kensington
- London
- UK
| |
Collapse
|
35
|
Majouga AG, Beloglazkina EK, Yudina AV, Mironov AV, Zyk NV. Oxidative dehydrogenation of 5-(pyridine-2-yl-methyl)-2-thioxo-4-imidazolidinones in complexation reaction with copper(II) chloride. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2014.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Abstract
In order to address how diverse metalloprotein active sites, in particular those containing iron and copper, guide O₂binding and activation processes to perform diverse functions, studies of synthetic models of the active sites have been performed. These studies have led to deep, fundamental chemical insights into how O₂coordinates to mono- and multinuclear Fe and Cu centers and is reduced to superoxo, peroxo, hydroperoxo, and, after O-O bond scission, oxo species relevant to proposed intermediates in catalysis. Recent advances in understanding the various factors that influence the course of O₂activation by Fe and Cu complexes are surveyed, with an emphasis on evaluating the structure, bonding, and reactivity of intermediates involved. The discussion is guided by an overarching mechanistic paradigm, with differences in detail due to the involvement of disparate metal ions, nuclearities, geometries, and supporting ligands providing a rich tapestry of reaction pathways by which O₂is activated at Fe and Cu sites.
Collapse
|
37
|
Alayon EMC, Nachtegaal M, Bodi A, Ranocchiari M, van Bokhoven JA. Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Phys Chem Chem Phys 2015; 17:7681-93. [DOI: 10.1039/c4cp03226h] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The zeolite framework stabilizes the mono(μ-oxo)dicopper core, which is the active species in methane to methanol conversion.
Collapse
Affiliation(s)
| | | | - Andras Bodi
- Paul Scherrer Institute
- Villigen
- CH-5232 Switzerland
| | | | | |
Collapse
|
38
|
Hazra S, Karmakar A, Guedes da Silva MDFC, Dlháň L, Boča R, Pombeiro AJL. Sulfonated Schiff base dinuclear and polymeric copper(ii) complexes: crystal structures, magnetic properties and catalytic application in Henry reaction. NEW J CHEM 2015. [DOI: 10.1039/c5nj00330j] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aqueous medium syntheses and nitroaldol catalytic studies of three pseudohalide bridged copper(ii) complexes characterized by single crystal X-ray structure analysis and variable temperature magnetic studies are reported.
Collapse
Affiliation(s)
- Susanta Hazra
- Centro de Química Estrutural
- Complexo I, Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Anirban Karmakar
- Centro de Química Estrutural
- Complexo I, Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| | | | - L'ubor Dlháň
- Institute of Inorganic Chemistry
- FCHPT
- Slovak University of Technology
- Bratislava
- Slovakia
| | - Roman Boča
- Department of Chemistry
- FPV
- University of SS Cyril and Methodius
- Trnava
- Slovakia
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Complexo I, Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| |
Collapse
|
39
|
Ray K, Pfaff FF, Wang B, Nam W. Status of Reactive Non-Heme Metal–Oxygen Intermediates in Chemical and Enzymatic Reactions. J Am Chem Soc 2014; 136:13942-58. [DOI: 10.1021/ja507807v] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kallol Ray
- Department
of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Florian Felix Pfaff
- Department
of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Bin Wang
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
40
|
Liu LL, Wu Y, Wang Z, Zhu J, Zhao Y. Mechanistic Insight into the Copper-Catalyzed Phosphorylation of Terminal Alkynes: A Combined Theoretical and Experimental Study. J Org Chem 2014; 79:6816-22. [DOI: 10.1021/jo5007174] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Liu Leo Liu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0343, United States
| | - Yile Wu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zeshu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Halvagar M, Solntsev PV, Lim H, Hedman B, Hodgson KO, Solomon E, Cramer CJ, Tolman WB. Hydroxo-bridged dicopper(II,III) and -(III,III) complexes: models for putative intermediates in oxidation catalysis. J Am Chem Soc 2014; 136:7269-72. [PMID: 24821432 PMCID: PMC4046753 DOI: 10.1021/ja503629r] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 12/21/2022]
Abstract
A macrocyclic ligand (L(4-)) comprising two pyridine(dicarboxamide) donors was used to target reactive copper species relevant to proposed intermediates in catalytic hydrocarbon oxidations by particulate methane monooxygenase and heterogeneous zeolite systems. Treatment of LH4 with base and Cu(OAc)2·H2O yielded (Me4N)2[L2Cu4(μ4-O)] (1) or (Me4N)[LCu2(μ-OH)] (2), depending on conditions. Complex 2 was found to undergo two reversible 1-electron oxidations via cyclic voltammetry and low-temperature chemical reactions. On the basis of spectroscopy and theory, the oxidation products were identified as novel hydroxo-bridged mixed-valent Cu(II)Cu(III) and symmetric Cu(III)2 species, respectively, that provide the first precedence for such moieties as oxidation catalysis intermediates.
Collapse
Affiliation(s)
- Mohammad
Reza Halvagar
- Department
of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center,
and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Pavlo V. Solntsev
- Department
of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center,
and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Hyeongtaek Lim
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Britt Hedman
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward
I. Solomon
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Christopher J. Cramer
- Department
of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center,
and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department
of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center,
and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Esguerra KVN, Fall Y, Petitjean L, Lumb JP. Controlling the Catalytic Aerobic Oxidation of Phenols. J Am Chem Soc 2014; 136:7662-8. [PMID: 24784319 DOI: 10.1021/ja501789x] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kenneth Virgel N. Esguerra
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Yacoub Fall
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Laurène Petitjean
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
43
|
|
44
|
Haack P, Limberg C. Molecular Cu(II)-O-Cu(II) complexes: still waters run deep. Angew Chem Int Ed Engl 2014; 53:4282-93. [PMID: 24615854 DOI: 10.1002/anie.201309505] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Indexed: 11/07/2022]
Abstract
Research on O2 activation at ligated Cu(I) is fueled by its biological relevance and the quest for efficient oxidation catalysts. A rarely observed reaction is the formation of a Cu(II) -O-Cu(II) species, which is more special than it appears at first sight: a single oxo ligand between two Cu(II) centers experiences considerable electron density, and this makes the corresponding complexes reactive and difficult to access. Hence, only a small number of these compounds have been synthesized and characterized unequivocally to date, and as biological relevance was not apparent, they remained unappreciated. However, recently they moved into the spotlight, when Cu(II) -O-Cu(II) cores were proposed as the active species in the challenging oxidation of methane to methanol at the surface of a Cu-grafted zeolite and in the active center of the copper enzyme particulate methane monooxygenase. This Minireview provides an overview of these systems with a special focus on their reactivity and spectroscopic features.
Collapse
Affiliation(s)
- Peter Haack
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany)
| | | |
Collapse
|
45
|
Tsai ML, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI. [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation. J Am Chem Soc 2014; 136:3522-9. [PMID: 24524659 DOI: 10.1021/ja4113808] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding the formation mechanism of the [Cu2O](2+) active site in Cu-ZSM-5 is important for the design of efficient catalysts to selectively convert methane to methanol and related value-added chemicals and for N2O decomposition. Spectroscopically validated DFT calculations are used here to evaluate the thermodynamic and kinetic requirements for formation of [Cu2O](2+) active sites from the reaction between binuclear Cu(I) sites and N2O in the 10-membered rings Cu-ZSM-5. Thermodynamically, the most stable Cu(I) center prefers bidentate coordination with a close to linear bite angle. This binuclear Cu(I) site reacts with N2O to generate the experimentally observed [Cu2O](2+) site. Kinetically, the reaction coordinate was evaluated for two representative binuclear Cu(I) sites. When the Cu-Cu distance is sufficiently short (<4.2 Å), N2O can bind in a "bridged" μ-1,1-O fashion and the oxo-transfer reaction is calculated to proceed with a low activation energy barrier (2 kcal/mol). This is in good agreement with the experimental Ea for N2O activation (2.5 ± 0.5 kcal/mol). However, when the Cu-Cu distance is long (>5.0 Å), N2O binds in a "terminal" η(1)-O fashion to a single Cu(I) site of the dimer and the resulting E(a) for N2O activation is significantly higher (16 kcal/mol). Therefore, bridging N2O between two Cu(I) centers is necessary for its efficient two-electron activation in [Cu2O](2+) active site formation. In nature, this N2O reduction reaction is catalyzed by a tetranuclear CuZ cluster that has a higher E(a). The lower E(a) for Cu-ZSM-5 is attributed to the larger thermodynamic driving force resulting from formation of strong Cu(II)-oxo bonds in the ZSM-5 framework.
Collapse
Affiliation(s)
- Ming-Li Tsai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | |
Collapse
|
46
|
Hazra S, Mukherjee S, Guedes da Silva MFC, Pombeiro AJL. A cyclic tetranuclear cuboid type copper(ii) complex doubly supported by cyclohexane-1,4-dicarboxylate: molecular and supramolecular structure and cyclohexane oxidation activity. RSC Adv 2014. [DOI: 10.1039/c4ra06986b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rare isolated tetranuclear 3d complex with a single metal CDC cuboid cage. It catalyzes cyclohexane peroxidative oxidation without any promoter.
Collapse
Affiliation(s)
- Susanta Hazra
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisboa, Portugal
| | - Sanghamitra Mukherjee
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisboa, Portugal
| | | | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisboa, Portugal
| |
Collapse
|