1
|
Alberoni C, Pavan G, Scattolin T, Aliprandi A. Critical Aspects and Challenges in the Design of Small Molecules for Electrochemiluminescence (ECL) Application. Chempluschem 2024; 89:e202400142. [PMID: 38687095 DOI: 10.1002/cplu.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Electrochemiluminescence (ECL) has gained renewed interest due to the strong parallel development of luminophores in the field of organic light emitting diodes (OLEDs) with which this technique shares several aspects. In this perspective review we discuss the most relevant advances of the past 15 years in the study of organic and organometallic compounds as ECL emitters, by dividing them in three different classes: i) fluorescent emitters, ii) phosphorescent emitters and iii) Thermally Activated Delayed Fluorescence (TADF) emitters; then, water-soluble organic luminophores will be also discussed. We focus on how their design, their photo- and electrochemical properties and, in particular, the nature of the emitter, affect their efficiency in ECL. Regardless of the type of luminophore or the photoluminescence quantum yield (PLQY), the literature converges on the fact that the most determining aspect is the stability of the oxidized/reduced form of the emitter. Even if phosphorescent emitters can show outstanding efficiency, this often requires the absence of oxygen. In the case of TADFs, there is also a strong dependence of photoluminescence both in terms of PLQY and emission energy on the polarity of the media, so compounds, that appear promising in organic solvents, may be very inefficient in aqueous media.
Collapse
Affiliation(s)
- Chiara Alberoni
- Dipartimento di Scienze Chimiche, Università degli Studi di, Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Giulio Pavan
- Dipartimento di Scienze Chimiche, Università degli Studi di, Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di, Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Alessandro Aliprandi
- Dipartimento di Scienze Chimiche, Università degli Studi di, Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
2
|
Song SS, Zhan J, Zhu HT, Bao JY, Wang AJ, Yuan PX, Feng JJ. Palladium nanospheres-embedded metal-organic frameworks to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene in aqueous solution for ultrasensitive Cu 2+ detection. Analyst 2024; 149:426-434. [PMID: 38099364 DOI: 10.1039/d3an01729j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Nowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated via in situ reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl2) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride. Then, the influence of protons on the ECL response of BET was studied in detail to obtain stronger ECL emission using potassium persulfate (K2S2O8) as co-reactant in aqueous environment. As a result, a 1.47-fold ECL efficiency enlargement of BET/K2S2O8 was harvested at the Pd@MOFs/GCE, where Ru(bpy)32+ behaved as a standard. Based on the fact that the ECL signals of the BET-covered Pd@MOFs modified glassy carbon electrode (simplified as BET/Pd@MOFs/GCE) can be quenched by Cu2+, the as-built ECL sensor showed a wide linear range (1.0-100.0 pM) and a limit of detection (LOD) as low as 0.12 pM. Hence, such research offers huge potential to promote the development of organic emitters in ECL biosensors and environmental monitoring.
Collapse
Affiliation(s)
- Shu-Shu Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiale Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jing-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
3
|
A comparative study on photophysics of meso-substituted mono- and bis-BODIPY carbazoles. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Skelton E, Erasquin U, Sukul A, Zuercher A, White J, Bythell BJ, Cimatu KLA. Visible Light-Assisted Coordination of a Rh(III)-BODIPY Complex to Guanine. Inorg Chem 2023; 62:3368-3380. [PMID: 36795094 DOI: 10.1021/acs.inorgchem.2c03289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Most photodynamic therapeutics (PDTs) used in cancer treatment require oxygen to work efficiently to terminate cancer cells. These PDTs do not efficiently treat tumors in hypoxic conditions. Rh(III) polypyridyl complexes have been reported to have a photodynamic therapeutic effect in hypoxic conditions when exposed to UV light. UV light can damage tissue and cannot penetrate deep to reach cancer cells. This work proposes the coordination of a BODIPY fluorophore to a rhodium metal center to form a Rh(III)-BODIPY complex that enhances the reactivity of the rhodium under visible light. This complex formation is facilitated with the BODIPY as the highest occupied molecular orbital (HOMO), while the lowest unoccupied molecular orbital (LUMO) is localized on the Rh(III) metal center. Irradiation of the BODIPY transition at ∼524 nm can cause an indirect electron transfer from the orbital of the BODIPY-centered HOMO to the Rh(III)-centered LUMO, populating the dσ* orbital. In addition, photo binding of the Rh complex covalently coordinated to the N (7) position of guanine in an aqueous solution was also observed by mass spectrometry after chloride dissociation upon irradiation with green visible light (532 nm LED). Calculated thermochemistry values of the Rh complex reaction in methanol, acetonitrile, water, and guanine were determined using DFT calculations. All enthalpic reactions and Gibbs free energies were identified as endothermic and nonspontaneous, respectively. This observation supports the chloride dissociation using 532 nm light. This Rh(III)-BODIPY complex expands the class of visible light-activated Rh(III) photocisplatin analogs that may have potential photodynamic therapeutic activity for the treatment of cancers in hypoxic conditions.
Collapse
Affiliation(s)
- Eli Skelton
- College of Arts and Sciences, Department of Chemistry and Biochemistry, 133 University Terrace, Chemistry Building Ohio University, Athens, Ohio 45701, United States
| | - Uriel Erasquin
- College of Arts and Sciences, Department of Chemistry and Biochemistry, 133 University Terrace, Chemistry Building Ohio University, Athens, Ohio 45701, United States
| | - Abhijit Sukul
- College of Arts and Sciences, Department of Chemistry and Biochemistry, 133 University Terrace, Chemistry Building Ohio University, Athens, Ohio 45701, United States
| | - Aoife Zuercher
- College of Arts and Sciences, Department of Chemistry and Biochemistry, 133 University Terrace, Chemistry Building Ohio University, Athens, Ohio 45701, United States
| | - Jessica White
- College of Arts and Sciences, Department of Chemistry and Biochemistry, 133 University Terrace, Chemistry Building Ohio University, Athens, Ohio 45701, United States
| | - Benjamin J Bythell
- College of Arts and Sciences, Department of Chemistry and Biochemistry, 133 University Terrace, Chemistry Building Ohio University, Athens, Ohio 45701, United States
| | - Katherine Leslee Asetre Cimatu
- College of Arts and Sciences, Department of Chemistry and Biochemistry, 133 University Terrace, Chemistry Building Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
5
|
Xu F, Zhang D, Lu Q, Zhang R, Xia J. Rational design of fluorescent chemosensor for Pd 2+ based on the formation of cyclopalladated complex. Talanta 2023; 253:123967. [PMID: 36195028 DOI: 10.1016/j.talanta.2022.123967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
According to the assumption that the formation of C-Pd bond becomes a cyclopalladated complex (CPC), we designed and synthesized two C-N-N pincer ligands of BODIPY appended 2,2'-bipyridine derivatives (BP and BPB). It has been confirmed that the C-Pd bond does exist and plays a crucial role in "on-off" fluorescence behavior. Based on it, a coordination-induced fluorescence quenching sensor for Pd2+ was constructed. The results indicated that BP possessed high sensitivity and specificity for Pd2+ in solution. The limit of detection (LOD) of BP is determined to be 0.97 nM within a linear range between 1.0 and 50.0 nM, meanwhile, the platinum-group ions demonstrate no interference. The bio-imaging application of BP was investigated and it exhibited a promising vitro test for fluorescent imaging of Pd2+ ions in MCF-7 cells. Meanwhile, BPB coated sensor label for Pd2+ was set up. The visible color variation was displayed under UV light with increasing concentrations of Pd2+. Briefly speaking, fluorescence probes of BP and BPB offer new approaches for Pd2+ detection in a lab and on-site test, as well as the vivo imaging. Then, with the aid of (TD)DFT calculation, the internal reason for the optical difference between the two ligands was disclosed. This concept of CPC containing a Pd-C covalent bond provides a promising perspective of coordination fluorescence sensors.
Collapse
Affiliation(s)
- Feng Xu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Dongkui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qingyi Lu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Rui Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Instituted and Technology, Wuhan, 400073, Hubei, China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
6
|
Xiao P, Zhang Z, Ge J, Deng Y, Chen X, Zhang JR, Deng Z, Kambe Y, Talapin DV, Wang Y. Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning. Nat Commun 2023; 14:49. [PMID: 36599825 PMCID: PMC9813348 DOI: 10.1038/s41467-022-35702-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
All-inorganic nanocrystals (NCs) are of great importance in a range of electronic devices. However, current all-inorganic NCs suffer from limitations in their optical properties, such as low fluorescence efficiencies. Here, we develop a general surface treatment strategy to obtain intensely luminescent all-inorganic NCs (ILANs) by using designed metal salts with noncoordinating anions that play a dual role in the surface treatment process: (i) removing the original organic ligands and (ii) binding to unpassivated Lewis basic sites to preserve the photoluminescent (PL) properties of the NCs. The absolute photoluminescence quantum yields (PLQYs) of red-emitting CdSe/ZnS NCs, green-emitting CdSe/CdZnSeS/ZnS NCs and blue-emitting CdZnS/ZnS NCs in polar solvents are 97%, 80% and 72%, respectively. Further study reveals that the passivated Lewis basic sites of ILANs by metal cations boost the efficiency of radiative recombination of electron-hole pairs. While the passivation of Lewis basic sites leads to a high PLQY of ILANs, the exposed Lewis acidic sites provide the possibility for in situ tuning of the functions of NCs, creating opportunities for direct optical patterning of functional NCs with high resolution.
Collapse
Affiliation(s)
- Pengwei Xiao
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Zhoufan Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Junjun Ge
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Yalei Deng
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Xufeng Chen
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Jian-Rong Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Zhengtao Deng
- grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, 210023 Nanjing, China
| | - Yu Kambe
- NanoPattern Technologies, Inc., Chicago, IL 60637 USA
| | - Dmitri V. Talapin
- grid.170205.10000 0004 1936 7822Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637 USA
| | - Yuanyuan Wang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
7
|
Jiang T, Tian LC, Huang C, Zhu BX, Chen DM, Zhu C. A new fluorescent chemosensor based on 2,2’-bipyridyl acylhydrazone Schiff base: Synthesis, sensing properties, and coordination behaviors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Jung G, Kim N, Bae SW. Photophysical properties of furan-bridged dimeric boron-dipyrromethene derivatives (BODIPYs). JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221143738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to investigate the changes in the spectroscopic properties of dimeric boron-dipyrromethenes (BODIPYs), four BODIPY derivatives are synthesized, including a monomer BODIPY in which a furyl group is substituted at the meso position and a dimer BODIPY with a furan group as a bridge. The four synthesized BODIPY derivatives are characterized through nuclear magnetic resonance and mass spectrometry. Photophysical properties such as ultraviolet–visible absorbance and the fluorescence emission of monomers (mT1 and mT2) and dimers (biT1 and biT2) are studied in eight different solvents. In addition, the relationship of their structural properties and optical properties are also considered through density functional theory calculations. The covalent link between the two BODIPY units using a furan group has a profound effect on the optical properties of the dimeric BODIPYs. We believe that an understanding of the synthesis and physical properties of dimeric BODIPYs will have a promising perspective in designing new BODIPY derivatives and predicting their spectroscopic characteristics in the future.
Collapse
Affiliation(s)
- Galam Jung
- Green Materials and Chemistry Group, Korea Institute of Industrial Technology, Cheonan, South Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju, South Korea
| | - Se Won Bae
- Green Materials and Chemistry Group, Korea Institute of Industrial Technology, Cheonan, South Korea
- Department of Chemistry and Cosmetics, Jeju National University, Jeju, South Korea
| |
Collapse
|
9
|
Dwivedi BK, Dwivedi AD, Pandey DS. BODIPY-Based Multichromophoric Tripodal System as a Multifunctional Material. J Phys Chem B 2022; 126:8279-8289. [PMID: 36217611 DOI: 10.1021/acs.jpcb.2c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The strategic design, synthesis, and thorough characterizations of a redox-active BODIPY-based tripodal system (tri-BDP) displaying efficient aggregation-induced emission (AIE), great sensitivity toward the viscosity of a medium, ability for triplet photosensitization, singlet oxygen generation, and photooxidation have been described. The photophysical properties of tri-BDP in various solvents and in the solid state have been extensively investigated. It displayed efficient AIE and green (∼520) emission in acetonitrile/ether mixture and red (∼621 nm) emission in the solid state. Detailed viscosity-dependent studies suggested that it can act as a fluorescent molecular rotor. Triplet photosensitization, singlet oxygen generation, and photooxidation studies in the presence of 1,3-diphenylisobenzofuran and 1,5-dihydroxyl naphthalene suggested its high efficiency toward intersystem crossing and singlet oxygen generation. Detailed electrochemical investigations suggested the redox activity of the system. Hence, this system represents multifunctional features and can be applied as a functional material for various applications.
Collapse
Affiliation(s)
- Bhupendra Kumar Dwivedi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi221005 (UP), India.,Madhya Pradesh Medicolegal Institute, Bhopal462001, India
| | - Ambikesh Dhar Dwivedi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi221005 (UP), India
| | - Daya Shankar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi221005 (UP), India
| |
Collapse
|
10
|
Xu Z, Wu F, Zhu D, Fu H, Shen Z, Lei J. BODIPY-based metal-organic frameworks as efficient electrochemiluminescence emitters for telomerase detection. Chem Commun (Camb) 2022; 58:11515-11518. [PMID: 36149384 DOI: 10.1039/d2cc04722e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A boron dipyrromethene (BODIPY)-based metal-organic framework (MOF) nanoemitter was for the first time designed with enhanced electrochemiluminescence (ECL) intensity due to the suppression of non-radiative dissipation originating from the ordered arrangement of BODIPY molecules in the framework. Thus, an ECL biosensor was developed for telomerase detection with excellent performance in real samples.
Collapse
Affiliation(s)
- Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Da Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Lv X, Li Y, Cui B, Fang Y, Wang L. Electrochemiluminescent sensor based on an aggregation-induced emission probe for bioanalytical detection. Analyst 2022; 147:2338-2354. [PMID: 35510524 DOI: 10.1039/d2an00349j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, with the rapid development of electrochemiluminescence (ECL) sensors, more luminophores have been designed to achieve high-throughput and reliable analysis. Impressively, after the proposed fantastic concept of "aggregation-induced electrochemiluminescence (AIECL)" by Cola, the application of AIECL emitters provides more abundant choices for the further improvement of ECL sensors. In this review, we briefly report the phenomenon, principle and representative applications of aggregation-induced emission (AIE) and AIECL emitters. Moreover, it is noteworthy that the cases of AIECL sensors for bioanalytical detection are summarized in detail, from 2017 to now. Finally, inspired by the applications of AIECL emitters, relevant prospects and challenges for AIECL sensors are proposed, which is of great significance for exploring more advanced bioanalytical detection technology.
Collapse
Affiliation(s)
- Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
12
|
Li Z, Zhou Y, Cui Y, Liang G. Dual-potential electrochemiluminescent film constructed from single AIE luminogens for the sensitive detection of malachite green. NANOSCALE 2022; 14:7711-7719. [PMID: 35579044 DOI: 10.1039/d2nr01009g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploiting efficient electrochemiluminescent (ECL) luminogens is crucial for the development of high-performance ECL sensors. Herein, a kind of efficient luminogen (BTPEBT) consisting of benzothiadiazole (BTD) as an electron acceptor and tetraphenylethylene (TPE) as an electron donor was facilely synthesized through a one-step Suzuki reaction. BTPEBT showed typical aggregation-induced emission (AIE) effects with a high solid-state quantum yield of 69.8%. The fabricated solid-state ECL film that is based on single AIE luminogens presented unique dual-potential ECL properties for the first time. The bright ECL of this film could be observed by the naked eye with a satisfactory ECL efficiency of 22.8%. The dense ECL film showed a low electron-transfer resistance, which favors electron transfer among AIE luminogens, electrolytes and the electrode, giving rise to bright ECL emission. The bright ECL film was developed as an ECL sensor for the sensitive and selective detection of malachite green (MG) in a broad linear range from 10-10 to 10-5 M. The limit of detection (LOD) was as low as 7.6 × 10-11 M. Moreover, the ECL sensing platform was further employed to detect MG in a real fish tissue sample with high sensitivity and good specificity. More importantly, the recycled BTPEBT film had good reproducibility for MG detection. The novel dual-potential ECL film constructed from single AIE luminogens provides a promising platform for the sensitive detection of MG in the food industry.
Collapse
Affiliation(s)
- Zihua Li
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yusheng Zhou
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yuhan Cui
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guodong Liang
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Synthesis and photophysical properties of pyridyl- and quinolinyl-substituted bis(arylthienyl)pyridines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Zhang X, Lu W, Ma C, Wang T, Zhu JJ, Zare RN, Min Q. Insights into Electrochemiluminescence Dynamics by Synchronizing Real-Time Electrical, Luminescent, and Mass Spectrometric Measurements. Chem Sci 2022; 13:6244-6253. [PMID: 35733885 PMCID: PMC9159085 DOI: 10.1039/d2sc01317g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Electrochemiluminescence (ECL) comprises a sophisticated cascade of reactions. Despite advances in mechanistic studies by electrochemistry and spectroscopy, a lack of access to dynamic molecular information renders many plausible ECL pathways unclear or unproven. Here we describe the construction of a real-time ECL mass spectrometry (MS) platform (RT-Triplex) for synchronization of dynamic electrical, luminescent, and mass spectrometric outputs during ECL events. This platform allows immediate and continuous sampling of newly born species at the Pt wire electrode of a capillary electrochemical (EC) microreactor into MS, enabling characterization of short-lived intermediates and the multi-step EC processes. Two ECL pathways of luminol are validated by observing the key intermediates α-hydroxy hydroperoxide and diazaquinone and unraveling their correlation with applied voltage and ECL emission. Moreover, a “catalytic ECL route” of boron dipyrromethene (BODIPY) involving homogeneous oxidation of tri-n-propylamine with the BODIPY radical cation is proposed and verified. A real-time electrochemiluminescence mass spectrometry platform (RT-Triplex) was developed for revealing ECL mechanisms by synchronization of dynamic electrical, luminescent, and mass spectrometric signals at the electrode–electrolyte interface.![]()
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Weifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| | - Tao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
15
|
Liu JL, Zhang JQ, Zhou Y, Xiao DR, Zhuo Y, Chai YQ, Yuan R. Crystallization-Induced Enhanced Electrochemiluminescence from Tetraphenyl Alkene Nanocrystals for Ultrasensitive Sensing. Anal Chem 2021; 93:10890-10897. [PMID: 34313108 DOI: 10.1021/acs.analchem.1c01258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organic materials with diverse structures and brilliant glowing colors have been attracting extensive attention in optical electronic devices and electrochemiluminescence (ECL) fields and are currently faced with the issue of low ECL efficiency. Herein, a series of tetraphenyl alkene nanocrystals (TPA NCs) with an ordered molecular structure were synthesized to explore regularities in the crystallization-induced enhanced (CIE) ECL emission effects by altering the number and position of vinyl on the backbone of TPA molecules. Among those TPA NCs, tetraphenyl-1,3-butadiene (TPB) NCs exhibit the brightest ECL emission via a coreactant pathway, with the relative ECL efficiency of up to 31.53% versus the standard [Ru(bpy)3]2+/TEA system, which is thousands of times higher than that of free TPB molecules. The high ECL efficiency of TPB NCs originates from the effective electron transfer of unique J-aggregates on the a axis of the nanocrystals to notably promote radiative transition and the restriction on the free rotation of TPB molecules to further suppress the nonradiative transition, which has exhibited great potential in ultrasensitive biosensing, efficient light-emitting devices, and clear ECL imaging fields. As a proof of concept, since dopamine (DA) can form benzoquinone species by electrochemical oxidation to realize intermediate radical quenching and excited-state quenching on the TPB NCs/TEA system, the TPB NCs with the CIE ECL effect are used to construct an ultrasensitive ECL-sensing platform for the determination of DA with a lower detection limit of 3.1 nM.
Collapse
Affiliation(s)
- Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Qi Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
16
|
Arcudi F, Ðorđević L, Rebeccani S, Cacioppo M, Zanut A, Valenti G, Paolucci F, Prato M. Lighting up the Electrochemiluminescence of Carbon Dots through Pre- and Post-Synthetic Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100125. [PMID: 34258161 PMCID: PMC8261489 DOI: 10.1002/advs.202100125] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/28/2021] [Indexed: 05/19/2023]
Abstract
Carbon dots (CDs), defined by their size of less than 10 nm, are a class of photoluminescent (PL) and electrochemiluminescent (ECL) nanomaterials that include a variety of carbon-based nanoparticles. However, the control of their properties, especially ECL, remains elusive and afflicted by a series of problems. Here, the authors report CDs that display ECL in water via coreactant ECL, which is the dominant mechanism in biosensing applications. They take advantage of a multicomponent bottom-up approach for preparing and studying the luminescence properties of CDs doped with a dye acting as PL and ECL probe. The dependence of luminescence properties on the surface chemistry is further reported, by investigating the PL and ECL response of CDs with surfaces rich in primary, methylated, or propylated amino groups. While precursors that contribute to the core characterize the PL emission, the surface states influence the efficiency of the excitation-dependent PL emission. The ECL emission is influenced by surface states from the organic shell, but states of the core strongly interact with the surface, influencing the ECL efficiency. These findings offer a framework of pre- and post-synthetic design strategies to improve ECL emission properties, opening new opportunities for exploring biosensing applications of CDs.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 1Trieste34127Italy
- Present address:
Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Luka Ðorđević
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 1Trieste34127Italy
- Present address:
Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Sara Rebeccani
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 2Bologna40126Italy
| | - Michele Cacioppo
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 1Trieste34127Italy
- Carbon Bionanotechnology GroupCenter for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramón 182Donostia‐San Sebastián20014Spain
| | - Alessandra Zanut
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 2Bologna40126Italy
- Present address:
Tandon School of EngineeringNew York UniversityBrooklynNY11201USA
| | - Giovanni Valenti
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 2Bologna40126Italy
| | - Francesco Paolucci
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 2Bologna40126Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 1Trieste34127Italy
- Carbon Bionanotechnology GroupCenter for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramón 182Donostia‐San Sebastián20014Spain
- IkerbasqueBasque Foundation for ScienceBilbao48013Spain
| |
Collapse
|
17
|
Yan M, Xin J, Fan L, Ye J, Xiao T, Huang J, Yang X. Electrochemistry and Electrochemiluminescence of Coumarin Derivative Microrods: Mechanism Insights. Anal Chem 2021; 93:3461-3469. [PMID: 33573377 DOI: 10.1021/acs.analchem.0c04783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organic molecules and related nanomaterials have attracted extensive attention in the realm of electrochemiluminescence (ECL). Herein, a well-known electroluminescence (EL) dopant 2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinolizino-[9,9a,1gh] coumarin (C545T) is selected as a new ECL illuminant, which shows a high photoluminescence quantum yield of nearly 100% and excellent ECL performance in the organic phase. For utilizing C545T to achieve ECL detection in aqueous solution, organic microrods of C545T (C545T MRs) were synthesized by a precipitation method. Cyclic voltammetry and differential pulse voltammetry of C545T and C545T MRs in acetonitrile or phosphate buffer showed one reduction and multiple oxidation peaks, suggesting that the multiple charge states of C545T could be produced by continuous electron- or hole-injection processes. The annihilated ECL emission of C545T and C545T MRs was observed using ECL transient technology. In the presence of triethanolamine (TEOA) or potassium persulfate (K2S2O8), C545T MRs can also give bright anodic and cathodic ECL emission at the GCE/water interface. The proposed ECL system not only has multichannel ECL emission but also shows intense yellow emission (569 nm) with a relative ECL efficiency of 0.81 when TEOA was used as a coreactant. Benefiting from the strong ECL emission of the C545T MRs/TEOA system and the quenching effect of dopamine (DA) on ECL, a convenient sensor for DA was developed with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianhui Xin
- University of Science and Technology of China, Hefei, Anhui 230026, China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Libing Fan
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jing Ye
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ting Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Shen F, Wang T, Yu X, Li Y. Free radical oxidation reaction for selectively solvatochromic sensors with dynamic sensing ability. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Li Z, Qin W, Liang G. A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. NANOSCALE 2020; 12:8828-8835. [PMID: 32253405 DOI: 10.1039/d0nr01025a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bright and metal-free mass-amplifying electrochemiluminescence film (MAEF) performing in aqueous media was reported for the first time. Systematic studies demonstrated that the film substrates have a remarkable influence on the electrochemiluminescence (ECL) performance. Gold substrates promote ECL reactions and the subsequent radiative decay process simultaneously, affording an unconventional 507-fold ECL enhancement. Such a gold-enhanced MAEF is opposite to ECL systems previously reported, in which the use of gold electrodes normally results in decreased ECL intensity due to passivation of the gold surface by oxide formation. More importantly, the ECL intensity of the MAEF is linearly amplified through facilely regulating luminogen loading. Morphological analysis reveals that the film consists of grass-like nanowires with a diameter of 57 nm, which facilitate electrical communication between the luminogen, electrode, and supporting electrolyte, giving rise to the mass-amplifying ECL. The bright ECL of the solid film in aqueous media can be readily observed by the naked eye, entirely different from visible ECL systems reported in which ruthenium complexes dissolved/dispersed in solution are used as the luminogens. The film is further utilized to detect dopamine (DA), an important biomolecule related to nervous diseases, in aqueous media, with a low detection limit of 3.3 × 10-16 M. Furthermore, a facile method based on grayscale analysis of ECL images (GAEI) of the film was developed for visual and ultrasensitive DA detection in aqueous media.
Collapse
Affiliation(s)
- Zihua Li
- PCFM and GDHPPC labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | | | | |
Collapse
|
20
|
Hohlfeld BF, Gitter B, Flanagan KJ, Kingsbury CJ, Kulak N, Senge MO, Wiehe A. Exploring the relationship between structure and activity in BODIPYs designed for antimicrobial phototherapy. Org Biomol Chem 2020; 18:2416-2431. [PMID: 32186571 DOI: 10.1039/d0ob00188k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A synthetic strategy to BODIPY dyes is presented giving access to a range of new compounds relevant in the context of antimicrobial photodynamic therapy (aPDT). BODIPYs with the 8-(4-fluoro-3-nitrophenyl) and the 8-pentafluorophenyl substituents were used for the synthesis of new mono- and dibrominated BODIPYs. The para-fluorine atoms in these electron-withdrawing groups facilitate functional modification via nucleophilic aromatic substitution (SNAr) with a number of amines and thio-carbohydrates. Subsequently, the antibacterial phototoxic activity of these BODIPYs has been assessed in bacterial assays against the Gram-positive germ S. aureus and also against the Gram-negative germ P. aeruginosa. The bacterial assays allowed to identify substitution patterns which ensured antibacterial activity not only in phosphate-buffered saline (PBS) but also in the presence of serum, hereby more realistically modelling the complex biological environment that is present in clinical applications.
Collapse
Affiliation(s)
- Benjamin F Hohlfeld
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany and Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany and biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | - Burkhard Gitter
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | - Keith J Flanagan
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland
| | - Christopher J Kingsbury
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany and Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland
| | - Arno Wiehe
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany and biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| |
Collapse
|
21
|
Mikysek T, Nikolaou P, Kafexholli M, Šimůnek P, Váňa J, Marková A, Vala M, Valenti G. Photophysical and Electrochemiluminescence of Coumarin‐Based Oxazaborines. ChemElectroChem 2020. [DOI: 10.1002/celc.201902102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomáš Mikysek
- Department of Analytical Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Pavlos Nikolaou
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Mirjeta Kafexholli
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Petr Šimůnek
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Aneta Marková
- Brno University of Technology, Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Martin Vala
- Brno University of Technology, Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
22
|
Filatov MA. Heavy-atom-free BODIPY photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer. Org Biomol Chem 2019; 18:10-27. [PMID: 31750502 DOI: 10.1039/c9ob02170a] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organic photosensitizers possessing efficient intersystem crossing (ISC) and forming long-living triplet excited states, play a crucial role in a number of applications. A common approach in the design of such dyes relies on the introduction of heavy atoms (e.g. transition metals or halogens) into the structure, which promote ISC via spin-orbit coupling interaction. In recent years, alternative methods to enhance ISC have been actively studied. Among those, the generation of triplet excited states through photoinduced electron transfer (PET) in heavy-atom-free molecules has attracted particular attention because it allows for the development of photosensitizers with programmed triplet state and fluorescence quantum yields. Due to their synthetic accessibility and tunability of optical properties, boron dipyrromethenes (BODIPYs) are so far the most perspective class of photosensitizers operating via this mechanism. This article reviews recently reported heavy-atom-free BODIPY donor-acceptor dyads and dimers which produce long-living triplet excited states and generate singlet oxygen. Structural factors which affect PET and concomitant triplet state formation in these molecules are discussed and the reported data on triplet state yields and singlet oxygen generation quantum yields in various solvents are summarized. Finally, examples of recent applications of these systems are highlighted.
Collapse
Affiliation(s)
- Mikhail A Filatov
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
23
|
Oliden-Sánchez A, Sola-Llano R, Bañuelos J, García-Moreno I, Uriel C, López JC, Gómez AM. Tuning the Photonic Behavior of Symmetrical bis-BODIPY Architectures: The Key Role of the Spacer Moiety. Front Chem 2019; 7:801. [PMID: 31850302 PMCID: PMC6902057 DOI: 10.3389/fchem.2019.00801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/06/2019] [Indexed: 01/16/2023] Open
Abstract
Herein we describe the synthesis, computationally assisted spectroscopy, and lasing properties of a new library of symmetric bridged bis-BODIPYs that differ in the nature of the spacer. Access to a series of BODIPY dimers is straightforward through synthetic modifications of the pending ortho-hydroxymethyl group of readily available C-8 (meso) ortho-hydroxymethyl phenyl BODIPYs. In this way, we have carried out the first systematic study of the photonic behavior of symmetric bridged bis-BODIPYs, which is effectively modulated by the length and/or stereoelectronic properties of the spacer unit. The designed bis-BODIPYs display bright fluorescence and laser emission in non-polar media. The fluorescence response is governed by the induction of a non-emissive intramolecular charge transfer (ICT) process, which is significantly enhanced in polar media. The effectiveness of the fluorescence quenching and also the prevailing charge transfer mechanism (from the spacer itself or between the BODIPY units) rely directly on the electron-releasing ability of the spacer. Moreover, the linker moiety can also promote intramolecular excitonic interactions, leading to excimer-like emission characterized by new spectral bands and the lengthening of lifetimes. The substantial influence of the bridging moiety on the emission behavior of these BODIPY dyads and their solvent-sensitivity highlight the intricate molecular dynamics upon excitation in multichromophoric systems. In this regard, the present work represents a breakthrough in the complex relationship between the molecular structure of the chromophores and their photophysical signatures, thus providing key guidelines for rationalizing the design of tailored bis-BODIPYs with potential advanced applications.
Collapse
Affiliation(s)
- Ainhoa Oliden-Sánchez
- Molecular Spectroscopy Laboratory, Science and Technology Faculty, Physical Chemistry Department, Basque Country University (UPV/EHU), Bilbao, Spain
| | - Rebeca Sola-Llano
- Molecular Spectroscopy Laboratory, Science and Technology Faculty, Physical Chemistry Department, Basque Country University (UPV/EHU), Bilbao, Spain
| | - Jorge Bañuelos
- Molecular Spectroscopy Laboratory, Science and Technology Faculty, Physical Chemistry Department, Basque Country University (UPV/EHU), Bilbao, Spain
| | - Inmaculada García-Moreno
- Laser Materials Laboratory, "Rocasolano" Physical Chemistry Institute, Department of Low-Dimension Systems, Surfaces and Condensed Matter, CSIC, Madrid, Spain
| | - Clara Uriel
- Bioorganic Chemistry Department, Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain
| | - J Cristobal López
- Bioorganic Chemistry Department, Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain
| | - Ana M Gómez
- Bioorganic Chemistry Department, Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain
| |
Collapse
|
24
|
Electroreduction of 8-(thiophen-2-yl)- and 8-(phenyl)- dipyrrometheneboron difluorides. A mechanistic study by cyclic voltammetric digital simulation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Çetindere S, Tümay SO, Şenocak A, Kılıç A, Durmuş M, Demirbaş E, Yeşilot S. Novel pyrene-BODIPY dyes based on cyclotriphosphazene scaffolds: Synthesis, photophysical and spectroelectrochemical properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Potocny AM, Teesdale JJ, Marangoz A, Yap GPA, Rosenthal J. Spectroscopic and 1O 2 Sensitization Characteristics of a Series of Isomeric Re(bpy)(CO) 3Cl Complexes Bearing Pendant BODIPY Chromophores. Inorg Chem 2019; 58:5042-5050. [PMID: 30942580 DOI: 10.1021/acs.inorgchem.9b00102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two new Re(I)bipyridyltricarbonyl chloride complexes, Re(BB3)(CO)3Cl and Re(BB4)(CO)3Cl, featuring BODIPY groups appended to the 5,5'- or 6,6'-positions of the bipyridine ligand, respectively, were synthesized as structurally isomeric compliments to a previously reported 4,4'-substituted homologue, Re(BB2)(CO)3Cl. X-ray crystal structures of the compounds show that the 4,4'-, 5,5'-, and 6,6'-substitution patterns place the BODIPY groups at progressively shorter distances of 9.43, 8.39, and 5.56 Å, respectively, from the complexes' Re centers. The photophysical properties of the isomeric complexes were investigated to ascertain the manner in which the heavy rhenium atom might induce intersystem crossing of the pendant BODIPY moieties positioned at progressively shorter through-space distances. Electronic absorption spectroscopy revealed that the three metal complexes retain the strong visible absorption features characteristic of the bpyBODIPY (BB2-BB4) ligands; however, the fluorescence of the parent borondipyrromethane appended ligands is attenuated by more than an order of magnitude in Re(BB2)(CO)3Cl and Re(BB3)(CO)3Cl and by more than two orders of magnitude in Re(BB4)(CO)3Cl. Furthermore, phosphorescence from Re(BB4)(CO)3Cl is observed under a nitrogen atmosphere, consistent with highly efficient ISC to the triplet-excited state. Singlet oxygen sensitization studies confirm that all three complexes produce singlet oxygen with quantum yields that increase as the distance of the BODIPY groups to the heavy rhenium center is decreased. The trends observed across the series of rhenium complexes with respect to emission and 1O2 sensitization properties can be rationalized in terms of the varied distal separation between the metal center and BODIPY groups in each system.
Collapse
Affiliation(s)
- Andrea M Potocny
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Justin J Teesdale
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Alize Marangoz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
27
|
Wei X, Zhu M, Cheng Z, Lee M, Yan H, Lu C, Xu J. Aggregation‐Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angew Chem Int Ed Engl 2019; 58:3162-3166. [DOI: 10.1002/anie.201900283] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/27/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| | - Zhe Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Mengjeu Lee
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| |
Collapse
|
28
|
Wei X, Zhu M, Cheng Z, Lee M, Yan H, Lu C, Xu J. Aggregation‐Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900283] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| | - Zhe Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Mengjeu Lee
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| |
Collapse
|
29
|
Zhang Y, Zhang R, Yang X, Qi H, Zhang C. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal 2018; 9:9-19. [PMID: 30740252 PMCID: PMC6355466 DOI: 10.1016/j.jpha.2018.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Electrogenerated chemiluminescence (electrochemiluminescence, ECL) generates species at electrode surfaces, which undergoes electron-transfer reactions and forms excited states to emit light. It has become a very powerful analytical technique and has been widely used in such as clinical testing, biowarfare agent detection, and pharmaceutical analysis. This review focuses on the current trends of molecular recognition-based biosensing methods for pharmaceutical analysis since 2010. It introduces a background of ECL and presents the recent ECL developments in ECL immunoassay (ECLIA), immunosensors, enzyme-based biosensors, aptamer-based biosensors, and molecularly imprinted polymers (MIP)-based sensors. At last, the future perspective for these analytical methods is briefly discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Medpace Bioanalytical Laboratories, 5365 Medpace Way, Cincinnati, OH 45227, USA
| | - Rui Zhang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
30
|
Wu L, Eberhart M, Nayak A, Brennaman MK, Shan B, Meyer TJ. A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation. J Am Chem Soc 2018; 140:15062-15069. [DOI: 10.1021/jacs.8b10132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lei Wu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael Eberhart
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Animesh Nayak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - M. Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bing Shan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
31
|
Du R, Cui S, Sun Z, Liu M, Zhang Y, Wu Q, Wu C, Guo F, Zhao L. Highly fluorescent hyperbranched BODIPY-based conjugated polymer dots for cellular imaging. Chem Commun (Camb) 2018; 53:8612-8615. [PMID: 28721419 DOI: 10.1039/c7cc04230b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first hyperbranched BODIPY-based conjugated polymer dots (Pdots) were reported. The Pdots showed quantum yields of as high as 22%, which is 40% higher than their linear counterparts. The Pdots were successfully applied in cell-labelling applications. These results demonstrated that hyperbranched polymers are a very promising material for biological imaging and applications.
Collapse
Affiliation(s)
- Rongxin Du
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Shuang Cui
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| | - Zezhou Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ming Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| | - Changfeng Wu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fengyun Guo
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
32
|
Turnbull WL, Luyt LG. Amino-Substituted 2,2'-Bipyridine Ligands as Fluorescent Indicators for Zn II and Applications for Fluorescence Imaging of Prostate Cells. Chemistry 2018; 24:14539-14546. [PMID: 30051526 DOI: 10.1002/chem.201803051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/21/2018] [Indexed: 12/26/2022]
Abstract
ZnII concentrations in malignant prostate tissues are much lower than in benign or healthy, suggesting that ZnII levels are a potential biomarker for prostate cancer (PCa). Five 2,2'-bipyridine ligands were synthesized containing amino substituents with varying electron-donating ability for investigation as fluorescent ZnII indicators. The excited state characteristics of the ligands were explored by UV/Vis and fluorescence spectroscopy. 3,3'-Diamino-2,2'-bipyridine (1) was previously shown to be weakly fluorescent as a result of π→π* transitions. The other four ligands have properties consistent with an n→π* intraligand charge transfer excited state. Strongly donating amino and aminophenyl (2 and 4) substituents gave low quantum yields, while weaker donating benzimidazole substituents (6 and 7) gave high quantum yields. Absorption and fluorescence wavelengths underwent bathochromic shifts upon ZnII binding in a majority of cases. Quantum yields drastically increased upon ZnII binding for 1 and 2, but decreased for 4, 6, and 7. Compounds 6 and 7 were incubated with PC-3, DU 145 and BPH-1 cells to determine their ZnII sensing abilities in a biological system. Weak fluorescence was observed in BPH-1 cells and subsequent incubation with ZnII caused fluorescence intensity to increase. No fluorescence was observed in PCa cell lines. Further investigation of these ligands may allow for quantitative determination of ZnII concentrations in ex vivo tissue samples.
Collapse
Affiliation(s)
- William L Turnbull
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.,London Regional Cancer Program, Lawson Health Research Institute, 790 Commissioners Road East, London, Ontario, N6A 4 L6, Canada.,Departments of Oncology and Medical Imaging, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
33
|
Effect of methyl at the 1-phenyl of tetraaryl substituted imidazole boron difluoride complexes: synthesis, characterization, photophysical and electrochemical studies. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1507-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Kurowska A, Brzeczek-Szafran A, Zassowski P, Lapkowski M, Domagala W, Wagner P, Wagner K. Mono and di-substituted BODIPY with electron donating carbazole, thiophene, and 3,4-ethylenedioxythiophene units. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Blázquez-Moraleja A, Cerdán L, García-Moreno I, Avellanal-Zaballa E, Bañuelos J, Jimeno ML, López-Arbeloa I, Chiara JL. Stereochemical and Steric Control of Photophysical and Chiroptical Properties in Bichromophoric Systems. Chemistry 2018; 24:3802-3815. [DOI: 10.1002/chem.201705698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | - Luis Cerdán
- Instituto Química-Física “Rocasolano”; IQFR-CSIC; Serrano 119 28006 Madrid Spain
| | | | - Edurne Avellanal-Zaballa
- Departamento de Química Física; Universidad del País Vasco-EHU, Facultad de Ciencias y Tecnología; Apartado 644 48080 Bilbao Spain
| | - Jorge Bañuelos
- Departamento de Química Física; Universidad del País Vasco-EHU, Facultad de Ciencias y Tecnología; Apartado 644 48080 Bilbao Spain
| | - M. Luisa Jimeno
- Centro Nacional de Química Orgánica “Manuel Lora Tamayo”; CENQUIOR-CSIC; Juan de la Cierva 3 28006 Madrid Spain
| | - Iñigo López-Arbeloa
- Departamento de Química Física; Universidad del País Vasco-EHU, Facultad de Ciencias y Tecnología; Apartado 644 48080 Bilbao Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General; IQOG-CSIC; Juan de la Cierva 3 28006 Madrid Spain
| |
Collapse
|
36
|
Ishimatsu R, Shintaku H, Adachi C, Nakano K, Imato T. Electrogenerated Chemiluminescence of a BODIPY Derivative with Extended Conjugation. ChemistrySelect 2017. [DOI: 10.1002/slct.201702449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ryoichi Ishimatsu
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Japan Science and Technology Agency, ERATO Adachi Molecular Exciton Engineering Projectc/oOPERA
| | - Hirosato Shintaku
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Organic Photonics Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Japan Science and Technology Agency, ERATO Adachi Molecular Exciton Engineering Projectc/oOPERA
| | - Koji Nakano
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Toshihiko Imato
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Japan Science and Technology Agency, ERATO Adachi Molecular Exciton Engineering Projectc/oOPERA
| |
Collapse
|
37
|
Cristóbal López J, Del Rio M, Oliden A, Bañuelos J, López-Arbeloa I, García-Moreno I, Gómez AM. Solvent-Sensitive Emitting Urea-Bridged bis-BODIPYs: Ready Access by a One-Pot Tandem Staudinger/Aza-Wittig Ureation. Chemistry 2017; 23:17511-17520. [PMID: 28853181 DOI: 10.1002/chem.201703383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/08/2022]
Abstract
Herein we describe the synthesis, and computationally aided photophysical characterization of a new set of urea-bridged bis-BODIPY derivatives. These new dyads are efficiently obtained by a one-pot tandem Staudinger/aza-Wittig ureation protocol, from easily accessible meso-phenyl ortho-azidomethyl BODIPYs. These symmetric bis-BODIPYs outstand by a high absorption probability and excellent fluorescence and laser emission in less polar media. Nevertheless, this emission ability decreases in more polar media, which is ascribed to a light-induced charge-transfer from the urea spacer to the dipyrrin core, a process that can be modulated by appropriate changes in the substitution pattern of the BODIPY core. Furthermore, this ureation protocol can also be employed for the direct conjugation of our BODIPY-azides to amine-containing compounds, thus providing access to fluorescent non-symmetric ureas.
Collapse
Affiliation(s)
- J Cristóbal López
- Bio-organic Chemistry Department, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Mayca Del Rio
- Bio-organic Chemistry Department, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ainhoa Oliden
- Departamento Química Física, Universidad del País Vasco-EHU, Aptd. 644, 48080, Bilbao, Spain
| | - Jorge Bañuelos
- Departamento Química Física, Universidad del País Vasco-EHU, Aptd. 644, 48080, Bilbao, Spain
| | - Iñigo López-Arbeloa
- Departamento Química Física, Universidad del País Vasco-EHU, Aptd. 644, 48080, Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Sistemas de baja Dimensionalidad, SuperficiesyMateria Condensada, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Ana M Gómez
- Bio-organic Chemistry Department, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
38
|
Barbon SM, Buddingh JV, Maar RR, Gilroy JB. Boron Difluoride Adducts of a Flexidentate Pyridine-Substituted Formazanate Ligand: Property Modulation via Protonation and Coordination Chemistry. Inorg Chem 2017; 56:12003-12011. [DOI: 10.1021/acs.inorgchem.7b01984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Stephanie M. Barbon
- Department of Chemistry and the Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - Jasmine V. Buddingh
- Department of Chemistry and the Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - Ryan R. Maar
- Department of Chemistry and the Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| |
Collapse
|
39
|
Synthesis and electrochemical characterization of BODIPY dyes bearing polymerizable substituents. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Guo W, Liu Y, Cao Z, Su B. Imaging Analysis Based on Electrogenerated Chemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Zhou J, He Y, Zhang B, Sun Q, Zou G. Spectrum-based and color-selective electrochemiluminescence immunoassay for determining human prostate specific antigen in near-infrared region. Talanta 2017; 165:117-121. [DOI: 10.1016/j.talanta.2016.12.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/07/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
|
42
|
Xiang G, Wang X, Li MSM, Lac K, Wang S, Ding Z. Probing Excimers of Pt(II) Compounds with Phenyl-1,2,3-Triazolyl and Pyridyl-1,2,4-Triazolyl Chelate Ligands by Means of Electrochemiluminescence. ChemElectroChem 2017. [DOI: 10.1002/celc.201700059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guiming Xiang
- Department of Chemistry; University of Western Ontario; London, Ontario N6 A 5B7 Canada
| | - Xiang Wang
- Department Of Chemistry; Queen's University; Kingston, Ontario K7 L 3N6 Canada
| | - Michelle S. M. Li
- Department of Chemistry; University of Western Ontario; London, Ontario N6 A 5B7 Canada
| | - Kevin Lac
- Department of Chemistry; University of Western Ontario; London, Ontario N6 A 5B7 Canada
| | - Suning Wang
- Department Of Chemistry; Queen's University; Kingston, Ontario K7 L 3N6 Canada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; School of Chemistry; Beijing Institute of Technology; 5 South Zhongguancun Street Beijing P.R. China
| | - Zhifeng Ding
- Department of Chemistry; University of Western Ontario; London, Ontario N6 A 5B7 Canada
| |
Collapse
|
43
|
Rizzo F, Polo F, Bottaro G, Fantacci S, Antonello S, Armelao L, Quici S, Maran F. From Blue to Green: Fine-Tuning of Photoluminescence and Electrochemiluminescence in Bifunctional Organic Dyes. J Am Chem Soc 2017; 139:2060-2069. [DOI: 10.1021/jacs.6b12247] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fabio Rizzo
- Institute
of Molecular
Science and Technologies (ISTM), National Research Council (CNR), PST-CNR, via Fantoli
16/15, 20138 Milano, Italy
- Institute of Molecular
Science and Technologies (ISTM), National Research Council (CNR),
and INSTM, c/o Department of Chemistry, University of Milano, via Golgi 19, 20133 Milano, Italy
| | - Federico Polo
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Gregorio Bottaro
- Institute
of Condensed
Matter Chemistry and Technologies for Energy (ICMATE), National Research
Council (CNR), c/o Department of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Simona Fantacci
- Institute of Molecular
Science and Technologies (ISTM), National Research Council (CNR),
c/o Department of Chemistry, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Sabrina Antonello
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Lidia Armelao
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Institute
of Condensed
Matter Chemistry and Technologies for Energy (ICMATE), National Research
Council (CNR), c/o Department of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Silvio Quici
- Institute of Molecular
Science and Technologies (ISTM), National Research Council (CNR),
and INSTM, c/o Department of Chemistry, University of Milano, via Golgi 19, 20133 Milano, Italy
| | - Flavio Maran
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
44
|
Zhao Y, Xue D, Qi H, Zhang C. Twisted configuration pyrene derivative: exhibiting pure blue monomer photoluminescence and electrogenerated chemiluminescence emissions in non-aqueous media. RSC Adv 2017. [DOI: 10.1039/c7ra01586k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methyl benzoate-pyrene, a pyrene derivative with a twisted configuration, exhibited monomer photoluminescence and electrogenerated chemiluminescence emissions.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| | - Honglan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| | - Chengxiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| |
Collapse
|
45
|
Yao C, Song H, Wan Y, Ma K, Zheng C, Cui H, Xin P, Ji X, Deng S. Electro-Photodynamic Visualization of Singlet Oxygen Induced by Zinc Porphyrin Modified Microchip in Aqueous Media. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34833-34843. [PMID: 27762540 DOI: 10.1021/acsami.6b10213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A porphyrin-based electro-photodynamic imaging system was fabricated for monitoring the concentration of oxygen. Distinct from the electrochemiluminescent (ECL) inability of numerous organic species in aqueous solutions, a strong and stable red irradiation at 634 nm could be stimulated electrochemically on zinc(II) meso-tetra(4-carboxyphenyl) porphine (ZnTCPP)/tetraoctylammonium bromide (TOAB) in the physiological condition. In terms of in situ electron paramagnetic resonance and ECL spectroscopies, the nature of ECL was thoroughly investigated, being exactly the chemiluminescence from singlet oxygen (1O2) produced during the successive electro-reduction of ZnTCPP. Meanwhile, the excellent film-making capacity of amphiphilic TOAB as a potent ion barrier granted the luminophores a micro-order and patternable electrode modification. Such platform was exceptionally tolerant of pH variation, facilitating a durable solid-state ECL visualization under potentiostatic electrolysis and time exposure in the charge-coupled device (CCD) camera. For flow-injection and real-time detection, a chip-mounted microfluidic cell was customized and manufactured. A sensitive and simple vision-sensing of O2 was further achieved with a real determination limit as low as a few micromolar level. The developed ECL imaging system is a good prototype and an eco-friendly technique in the cathodic range, and thus, it would supplement the primary anodic imaging library, showing great promise for multiplexed and colorimetric assays as well as oxygen-involved activity studies in the future.
Collapse
Affiliation(s)
- Chuanguang Yao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
| | - Hongxin Song
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
| | - Ying Wan
- Intelligent Microsystem Technology and Engineering Center, School of Mechanical Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
| | - Chenyu Zheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
| | - Hongda Cui
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
| | - Peng Xin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
| | - Xubo Ji
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, P.R. China
- Materials Research Science and Engineering Centers (MRSEC), Department of Chemistry, Penn State University , University Park, Pennsylvania 16801, United States
| |
Collapse
|
46
|
Haghighatbin MA, Lo SC, Burn PL, Hogan CF. Electrochemically tuneable multi-colour electrochemiluminescence using a single emitter. Chem Sci 2016; 7:6974-6980. [PMID: 28451132 PMCID: PMC5356027 DOI: 10.1039/c6sc01912a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/22/2016] [Indexed: 11/21/2022] Open
Abstract
A single starting component electrochemiluminescence system from which red, green, blue or white emission can be obtained, depending on the applied potential or the mode of the ECL experiment, is described. The convoluted ECL spectral responses observed at different potentials are readily explained using a 3D-ECL technique, where the ECL spectral profile is continuously monitored as a function of potential during voltammetric scanning. The 3D plots obtained using this technique implicate cross-annihilation ECL reactions involving the complex itself and stable products resulting from its electrolysis. Combining this information with knowledge of the energetic requirements of the various reactions involved, suggests a mechanism involving traces of two emissive products, related to the loss of a methyl group from the triazole moiety. These products, while barely detectable electrochemically, are sufficiently emissive to influence and even dominate the ECL emission under some conditions.
Collapse
Affiliation(s)
- Mohammad A Haghighatbin
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences , La Trobe University , Melbourne , Victoria 3086 , Australia .
| | - Shih-Chun Lo
- Centre for Organic Photonics & Electronics (COPE) , The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , Queensland 4072 , Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics (COPE) , The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , Queensland 4072 , Australia
| | - Conor F Hogan
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences , La Trobe University , Melbourne , Victoria 3086 , Australia .
| |
Collapse
|
47
|
Chauhan P, Chu K, Yan N, Ding Z. Comparison study of electrochemiluminescence of boron-dipyrromethene (BODIPY) dyes in aprotic and aqueous solutions. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Design, Synthesis, Characterization and Electrochemical Properties of BODIPY Dyes Containing Mono, Bis-2-Naphthyloxyhexyloxy and 4-(Benzyloxy)Phenoxyhexyloxy Groups. J Fluoresc 2016; 26:2257-2266. [PMID: 27592353 DOI: 10.1007/s10895-016-1921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
In this study, the synthesis of boron dipyrromethene dyes containing mono, bis-2-naphthyloxyhexyloxy and 4-(benzyloxy)phenoxyhexyloxy groups has been reported. Boron dipyrromethene dyes were synthesized from the mono, bis-benzaldehyde derivatives with 2,4-dimethylpyrrole in dichloromethane in the presence of trifluoroacetic, 2,3-dichloro-5,6-dicyano-p-benzoquinon, triethyl amine and boron trifluoride diethyl etherate, respectively. Electrochemical characterization of boron dipyrromethene dyes were carried out with voltammetric measurements. Electrochemical studies show that boron dipyrromethene dyes containing mono, bis-2-naphthyloxyhexyloxy and 4-(benzyloxy)phenoxyhexyloxy groups have reversible one reduction potentials unlike irreversible one oxidation potentials. Graphical Abstract ᅟ.
Collapse
|
49
|
Stachelek P, Harriman A. Electronic Communication in Closely Connected BODIPY-Based Bichromophores. J Phys Chem A 2016; 120:8104-8113. [PMID: 27661763 DOI: 10.1021/acs.jpca.6b08284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A small series of closely spaced, bichromophoric boron dipyrromethene (BODIPY) derivatives has been examined by optical spectroscopy and compared to the corresponding mononuclear dyes. The compounds vary according to the site of attachment and also by the nature of alkyl or aryl substituents incorporated into the dipyrrin backbone. Excitonic coupling splits the lowest-energy absorption transition in each case, but to highly variable degrees. There are also marked changes in the fluorescence quantum yields across the series but much less variation in the excited-state lifetimes. After comparing different models, it is concluded that the ideal dipole approximation gives a crude qualitative representation of the observed splitting of the absorption transition, but the extended dipole approach is not applicable to these systems. Agreement is substantially improved by employing a model that takes into account the dihedral angle between the planes of the two dipyrrin units. The large variation in radiative rate constants, and those for the accompanying nonradiative processes, is accountable in terms of electronic coupling and/or intensity borrowing between the two excitonic states. In all cases, the dihedral angle between the two BODIPY units plays a key role.
Collapse
Affiliation(s)
- Patrycja Stachelek
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
50
|
Yamamura M, Takizawa H, Gobo Y, Nabeshima T. Stable neutral radicals of planar N2O2-type dipyrrin platinum complexes: hybrid radicals of the delocalized organic π-orbital and platinum d-orbital. Dalton Trans 2016; 45:6834-8. [PMID: 26875528 DOI: 10.1039/c5dt05039a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neutral radicals of N2O2-dipyrrin platinum complexes were synthesized by the reaction of dipyrrin ligands with PtCl2(cod) and successive one-electron oxidation. The radicals are very stable even under aerobic and ambient conditions. X-ray crystallographic analysis revealed the stacking array of the planar dipyrrin complex moieties. The ESR signals were broadened and significantly downfield shifted. The absorption spectra exhibited NIR bands. These results indicated a delocalized radical character with a contribution by the platinum d-orbital.
Collapse
Affiliation(s)
- M Yamamura
- Graduate School of Pure & Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - H Takizawa
- Graduate School of Pure & Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Y Gobo
- Graduate School of Pure & Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - T Nabeshima
- Graduate School of Pure & Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|