1
|
Pissas M, Ferentinos E, Kyritsis P, Sanakis Y. Field-Induced Slow Magnetization Relaxation of a Tetrahedral S=2 Fe IIS 4-Containing Complex. Chempluschem 2024; 89:e202400109. [PMID: 38727531 DOI: 10.1002/cplu.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Indexed: 06/09/2024]
Abstract
In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2-5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero-field splitting parameters of 1 which were previously determined by high- frequency and -field electron paramagnetic resonance and Mössbauer spectroscopies.
Collapse
Affiliation(s)
- Michael Pissas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341, Ag. Paraskevi, Attiki, Greece
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15571, Athens, Greece
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15571, Athens, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341, Ag. Paraskevi, Attiki, Greece
| |
Collapse
|
2
|
Halcrow MA. Mix and match - controlling the functionality of spin-crossover materials through solid solutions and molecular alloys. Dalton Trans 2024; 53:13694-13708. [PMID: 39119634 DOI: 10.1039/d4dt01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The influence of dopant molecules on the structure and functionality of spin-crossover (SCO) materials is surveyed. Two aspects of the topic are well established. Firstly, isomorphous inert metal ion dopants in SCO lattices are a useful probe of the energetics of SCO processes. Secondly, molecular alloys of iron(II)/triazole coordination polymers containing mixtures of ligands were used to tune their spin-transitions towards room temperature. More recent examples of these and related materials are discussed that reveal new insights into these questions. Complexes which are not isomorphous can also be co-crystallised, either as solid solutions of the precursor molecules or as a random distribution of homo- and hetero-leptic centres in a molecular alloy. This could be a powerful method to manipulate SCO functionality. Published molecular alloys show different SCO behaviours, which may or may not include allosteric switching of their chemically distinct metal sites.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Kobayashi F, Yoshida A, Gemba M, Takatsu Y, Tadokoro M. Solvent vapour-responsive structural transformations in molecular crystals composed of a luminescent mononuclear aluminium(III) complex. Dalton Trans 2024; 53:11689-11696. [PMID: 38847374 DOI: 10.1039/d4dt00747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Investigations into the construction of functional molecular crystals and their external stimuli-induced structural transformations represent compelling research topics, particularly for the advancement of sensors and memory devices. However, reports on the development of molecular crystals constructed from discrete mononuclear complex units and exhibiting structural transformations via the adsorption/desorption of guest molecules are scarce. In this study, we synthesised three molecular crystals composed of [Al(sap)(acac)(H2O)]·(solvent) (H2sap = 2-salicylideneaminophenol, acac = acetylacetonate, solvent = Me2CO (Al·Me2CO), MeCN (Al·MeCN), or DMSO (Al·DMSO)), and demonstrated solvent vapour-responsive reversible crystal-to-crystal structural transformations in Al·Me2CO and Al·MeCN. For Al·DMSO, exposure to DMSO vapour led to the formation of DMSO-coordinated compound [Al(sap)(acac)(DMSO)], indicating an irreversible structural transformation. This solvent vapour-responsive system incorporates a luminescent mononuclear aluminium(III) complex (λmax = 539-552 nm, Φem = 0.07-0.27) as the molecular building unit for the porous-like framework. Therefore, we synthesised a new functional molecular material and a potential molecular building unit that facilitates guest fixation through hydrogen-bonding.
Collapse
Affiliation(s)
- Fumiya Kobayashi
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Azuki Yoshida
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Misato Gemba
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuta Takatsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Tadokoro
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Chantarangkul C, Patigo A, McMurtrie JC, Clérac R, Rouzières M, Gómez-Coca S, Ruiz E, Harding P, Harding DJ. Thermal Jahn-Teller Distortion Changes and Slow Relaxation of Magnetization in Mn(III) Schiff Base Complexes. Inorg Chem 2024; 63:12858-12869. [PMID: 38934463 PMCID: PMC11256760 DOI: 10.1021/acs.inorgchem.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
The impact that the anion and alkyl group has on the electronic structures and magnetic properties of four mononuclear Mn(III) complexes is explored in [Mn(salEen-Br)2]Y (salEen-Br = 2-{[2-(ethylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 1 and BF4-·1/3CH2Cl2 2) and [Mn(salBzen-Br)2]Y (salBzen-Br = 2-{[2-(benzylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 3 and BF4- 4). X-ray structures of [Mn(salEen-Br)2]ClO4·0.45C6H14 1-hexane, [Mn(salEen-Br)2]BF4·0.33CH2Cl2·0.15C6H14 2-dcm-hexane, and 3-4 reveal that they crystallize in ambient conditions in the monoclinic P21/c space group. Lowering the temperature, 2-dcm-hexane uniquely exhibits a structural phase transition toward a monoclinic P21/n crystal structure determined at 100 K with the unit cell trebling in size. Remarkably, at room temperature, the axially elongated Jahn-Teller axis in 2-dcm-hexane is poorly defined but becomes clearer at low temperature after the phase transition. Magnetic susceptibility measurements of 1-4 reveal that only 3 and 4 show slow relaxation of magnetization with Δeff/kB = 27.9 and 20.7 K, implying that the benzyl group is important for observing single-molecule magnet (SMM) properties. Theoretical calculations demonstrate that the alkyl group subtly influences the orbital levels and therefore very likely the observed SMM properties.
Collapse
Affiliation(s)
- Chantalaksana Chantarangkul
- Functional
Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apinya Patigo
- Functional
Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - John C. McMurtrie
- Queensland
University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Rodolphe Clérac
- University
of Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mathieu Rouzières
- University
of Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Silvia Gómez-Coca
- Departament
de Química Inorgànica i Orgànica, Institut de
Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Eliseo Ruiz
- Departament
de Química Inorgànica i Orgànica, Institut de
Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Phimphaka Harding
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| | - David J. Harding
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Wang YH, Gao ZN, Liang S, Jie Li, Wei WJ, Han SD, Zhang YQ, Hu JX, Wang GM. Synergism of Light-Induced [4 + 4] Cycloaddition and Electron Transfer Toward Switchable Photoluminescence and Single-Molecule Magnet Behavior in a Dy 4 Cubane. RESEARCH (WASHINGTON, D.C.) 2024; 7:0411. [PMID: 38974011 PMCID: PMC11223772 DOI: 10.34133/research.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024]
Abstract
Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.
Collapse
Affiliation(s)
- Yu-Han Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Zhen-Ni Gao
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Shuai Liang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Jie Li
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Wu-Ji Wei
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Song-De Han
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology,
Nanjing Normal University, Nanjing 210023, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Bridová T, Rajnák C, Titiš J, Samoľová E, Tran K, Malina O, Bieńko A, Renz F, Gembický M, Boča R. A mononuclear Fe(III) complex showing thermally induced spin crossover and slow magnetic relaxation with reciprocating thermal behaviour. Dalton Trans 2024; 53:10824-10828. [PMID: 38887079 DOI: 10.1039/d4dt00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
AC susceptibility measurements of [FeIII(L5)(NCSe)] reveal a field supported slow magnetic relaxation. On cooling, the relaxation time of the high-frequency fraction decreases which is a sign of reciprocating thermal behaviour. The relaxation time for the low-frequency mode at T = 2.0 K is as high as τ(LF) = 2.0 s.
Collapse
Affiliation(s)
- Terézia Bridová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Cyril Rajnák
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Ján Titiš
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - Kevin Tran
- Institute of Inorganic Chemistry, Leibniz University, Hannover, D-30167, Germany
| | - Ondřéj Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University, Hannover, D-30167, Germany
| | - Milan Gembický
- X-ray Crystallography Facility, UC San Diego, 5128 Urey Hall MC 0358, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Roman Boča
- Faculty of Health Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia.
| |
Collapse
|
7
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Wang JL, Zhou HY, Zhao L, Meng YS, Liu T. Reversible light-induced spin state switching in a dinuclear Fe(II) spin crossover complex. Dalton Trans 2024; 53:7669-7676. [PMID: 38646797 DOI: 10.1039/d3dt02691d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A dinuclear Fe(II) spin crossover (SCO) complex with the formula [Fe2L5(NCS)4]·2DMF·2H2O (1) was synthesised from 1-naphthylimino-1,2,4-triazole (L). Complex 1 exhibits an incomplete thermally induced spin transition with a transition temperature T1/2 of 95 K and a thermally trapped metastable high-spin state at low temperatures. Furthermore, it undergoes a reversible light-induced spin crossover by alternate irradiation with 532 and 808 nm lasers.
Collapse
Affiliation(s)
- Jun-Li Wang
- School of Chemistry and Materials Engineering, Xinxiang University, 191 Jinsui Rd., 453003 Xinxiang, China.
| | - Hang-Yue Zhou
- School of Chemistry and Materials Engineering, Xinxiang University, 191 Jinsui Rd., 453003 Xinxiang, China.
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024 Dalian, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024 Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024 Dalian, China
| |
Collapse
|
9
|
Zenno H, Sekine Y, Zhang Z, Hayami S. Solvation/desolvation induced reversible distortion change and switching between spin crossover and single molecular magnet behaviour in a cobalt(II) complex. Dalton Trans 2024; 53:5861-5870. [PMID: 38411596 DOI: 10.1039/d3dt03936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coexistence and switching between spin-crossover (SCO) and single molecular magnet (SMM) behaviours in one single complex may lead to materials that exhibit bi-stable and stimuli sensitive properties in a wide temperature range and under multiple conditions; unfortunately, the conflict and dilemma in the principle of approaching SCO and SMM molecules make it particularly difficult; at low temperature, low spin (LS) SCO molecules possess highly symmetrical geometry and isotropic spins, which are not suitable for SMM behaviour. Herein, we overcome this issue by using a rationally designed Co(II) mononuclear complex [Co(MeOphterpy)2] (ClO4)2 (1; MeOphterpy = 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine), the magnetic properties of which reversibly respond to desolvation and solvation. The solvated structure reinforced a low distortion of the coordination sphere via hydrogen bonding between ligands and methanol molecules, while in the desolvated structure a methoxy group flipping occurred, increasing the distortion of the coordination sphere and stabilising the HS state at low temperature, which exhibited a field-induced slow magnetic relaxation, resulting in a reversible switching between SCO and SMM properties within one molecule.
Collapse
Affiliation(s)
- Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Zhongyue Zhang
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
10
|
Rabelo R, Toma L, Julve M, Lloret F, Pasán J, Cangussu D, Ruiz-García R, Cano J. How the spin state tunes the slow magnetic relaxation field dependence in spin crossover cobalt(II) complexes. Dalton Trans 2024; 53:5507-5520. [PMID: 38416047 DOI: 10.1039/d4dt00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel family of cobalt(II) compounds with tridentate pyridine-2,6-diiminephenyl type ligands featuring electron-withdrawing substituents of general formula [Co(n-XPhPDI)2](ClO4)2·S [n-XPhPDI = 2,6-bis(N-n-halophenylformimidoyl)pyridine with n = 4 (1-3) and 3 (4); X = I (1), Br (2 and 4) and Cl (3); S = MeCN (1 and 2) and EtOAc (3)] has been synthesised and characterised by single-crystal X-ray diffraction, electron paramagnetic resonance, and static (dc) and dynamic (ac) magnetic measurements combined with theoretical calculations. The structures of 1-4 consist of mononuclear bis(chelating) cobalt(II) complex cations, [CoII(n-XPhPDI)2]2+, perchlorate anions, and acetonitrile (1 and 2) or ethyl acetate (3) molecules of crystallisation. This unique series of mononuclear six-coordinate octahedral cobalt(II) complexes displays both thermally-induced low-spin (LS)/high-spin (HS) transition and field-induced slow magnetic relaxation in both LS and HS states. A complete LS ↔ HS transition occurs for 1 and 2, while it is incomplete for 4, one-third of the complexes being HS at low temperatures. In contrast, 3 remains HS in all the temperature range. 1 and 2 show dual spin relaxation dynamics under the presence of an applied dc magnetic field (Hdc), with the occurrence of faster- (FR) and slower-relaxing (SR) processes at lower (Hdc = 1.0 kOe) and higher fields (Hdc = 2.5 kOe), respectively. On the contrary, 3 and 4 exhibit only SR and FR relaxations, regardless of Hdc. Overall, the distinct field-dependence of the single-molecule magnet (SMM) behaviour along with this family of spin-crossover (SCO) cobalt(II)-n-XPhPDI complexes is dominated by Raman mechanisms and, occasionally, with additional temperature-independent Intra-Kramer [LS or HS (D > 0)] or Quantum Tunneling of Magnetisation mechanisms [HS (D < 0)] also contributing.
Collapse
Affiliation(s)
- Renato Rabelo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança Campus Samambaia, Goiânia, GO, Brazil
| | - Luminita Toma
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança Campus Samambaia, Goiânia, GO, Brazil
| | - Rafael Ruiz-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Joan Cano
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| |
Collapse
|
11
|
Fischer TE, Janetzki JT, M Zahir FZ, Gable RW, Starikova AA, Boskovic C. Tuning valence tautomerism in a family of dinuclear cobalt complexes incorporating a conjugated bridging bis(dioxolene) ligand with weak communication. Dalton Trans 2024. [PMID: 38236053 DOI: 10.1039/d3dt04162j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Valence tautomerism (VT) involves the stimulated reversible intramolecular electron transfer between a redox-active metal and ligand. Dinuclear cobalt complexes bridged by bis(dioxolene) ligands can undergo thermally-induced VT with access to {CoIII-cat-cat-CoIII}, {CoIII-cat-SQ-CoII} and {CoII-SQ-SQ-CoII} states (cat2- = catecholate, SQ˙- = semiquinonate, CoIII refers to low spin CoIII, CoII refers to high spin CoII). The resulting potential for two-step VT interconversions offers increased functionality over mononuclear examples. In this study, the bis(dioxolene) ligand 3,3',4,4'-tetrahydroxy-5,5'-dimethoxy-benzaldazine (thMH4) was paired with Mentpa (tpa = tris(2-pyridylmethyl)amine, n = 0-3 corresponds to methylation at 6-position of the pyridine rings) to afford [{Co(Mentpa)}2(thM)](PF6)2 (1a, n = 0; 2a, n = 2; 3a, n = 3). Structural, magnetic susceptibility and spectroscopic data show that 1a and 3a remain in the temperature invariant {CoIII-cat-cat-CoIII} and {CoII-SQ-SQ-CoII} forms in the solid state, respectively. In contrast, 2a exhibits incomplete thermally-induced VT between these two tautomeric forms via the mixed {CoIII-cat-SQ-CoII} tautomer. In solution, room temperature electronic absorption spectra are consistent with the assignments from the solid-state, with VT observed only for 2a. From electrochemistry, the proximity of the two 1e--processes for the thMn- ligand indicates weak electronic communication between the two dioxolene units, supporting the potential for a two-step VT interconversion in thMn- containing complexes. Comparison of the redox potentials of the Co and thMn- processes suggests that only 2a has these processes in sufficient proximity to afford the thermally-induced VT observed experimentally. Density functional theory calculations are consistent with the prerequisite energy ordering for a two-step transition for 2a, and temperature invariant {CoIII-cat-cat-CoIII} and {CoII-SQ-SQ-CoII} states for 1a and 3a, respectively. This work presents the third example, and the first formally conjugated example, of a bridging bis(dioxolene) ligand that can afford two-step VT in a Co complex, suggesting new possibilities towards applications based on multistep switching.
Collapse
Affiliation(s)
- Tristan E Fischer
- School of Chemistry, University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Jett T Janetzki
- School of Chemistry, University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - F Zahra M Zahir
- School of Chemistry, University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Robert W Gable
- School of Chemistry, University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090, Rostov-on-Don, Russian Federation
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Parkville, 3010 Victoria, Australia.
| |
Collapse
|
12
|
Gou X, Wu Y, Wang M, Liu N, Lan W, Zhang YQ, Shi W, Cheng P. The influence of light on the field-induced magnetization dynamics of two Er(III) coordination polymers with different halogen substituents. Dalton Trans 2023; 53:148-152. [PMID: 38018387 DOI: 10.1039/d3dt02714g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Photocontrolled magnetic properties are fundamental for the applications of molecular magnets, which have the features of high time and space resolution; however, such magnetic properties are highly challenging to be achieved owing to the weak light-matter interactions. Herein, the influence of in situ light irradiation on the field-induced magnetization dynamics of two Er(III) coordination polymers 1 and 2 with the same coordination skeletons but different halogen substituents was studied. 1 and 2, and their in situ photoexcited products 1a and 2a, display field-induced magnetization dynamics based on Orbach and/or Raman processes. The magnetization dynamics are fine-modulated by the synergetic effect of light irradiation and a ligand substituent, due to the charge re-distribution of the excited states of the ligand.
Collapse
Affiliation(s)
- Xiaoshuang Gou
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuewei Wu
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengmeng Wang
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ning Liu
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenlong Lan
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yi-Quan Zhang
- School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wei Shi
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Meng K, Guo L, Sun X. Strategies and applications of generating spin polarization in organic semiconductors. NANOSCALE HORIZONS 2023; 8:1132-1154. [PMID: 37424331 DOI: 10.1039/d3nh00101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The advent of spintronics has undoubtedly revolutionized data storage, processing, and sensing applications. Organic semiconductors (OSCs), characterized by long spin relaxation times (>μs) and abundant spin-dependent properties, have emerged as promising materials for advanced spintronic applications. To successfully implement spin-related functions in organic spintronic devices, the four fundamental processes of spin generation, transport, manipulation, and detection form the main building blocks and are commonly in demand. Thereinto, the effective generation of spin polarization in OSCs is a precondition, but in practice, this has not been an easy task. In this context, considerable efforts have been made on this topic, covering novel materials systems, spin-dependent theories, and device fabrication technologies. In this review, we underline recent advances in external spin injection and organic property-induced spin polarization, according to the distinction between the sources of spin polarization. We focused mainly on summarizing and discussing both the physical mechanism and representative research on spin generation in OSCs, especially for various spin injection methods, organic magnetic materials, the chiral-induced spin selectivity effect, and the spinterface effect. Finally, the challenges and prospects that allow this topic to continue to be dynamic were outlined.
Collapse
Affiliation(s)
- Ke Meng
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lidan Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
Mičová R, Rajnák C, Titiš J, Samoľová E, Zalibera M, Bieńko A, Boča R. Slow magnetic relaxation in two mononuclear Mn(II) complexes not governed by the over-barrier Orbach process. Chem Commun (Camb) 2023; 59:2612-2615. [PMID: 36757181 DOI: 10.1039/d2cc06510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two hexacoordinate Mn(II) complexes containing a chelating residue of hexafluoroacetylacetone and (Cl-substituted) 4-benzylpyridine show DC magnetic functions typical for S = 5/2 spin systems: g ∼ 2, D - small. The AC susceptibility confirms a field supported slow magnetic relaxation in which the over-barrier Orbach relaxation process does not play a role. Both systems possess two or three slow relaxation channels.
Collapse
Affiliation(s)
- Romana Mičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Erika Samoľová
- X-Ray Crystallography Facility, UC San Diego, 5128 Urey Hall MC 0358, 9500 Gilman Drive, La Jolla CA, USA.,Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Michal Zalibera
- Department of Physical Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| |
Collapse
|
15
|
Münzfeld L, Dahlen M, Hauser A, Mahieu N, Kuppusamy SK, Moutet J, Tricoire M, Köppe R, La Droitte L, Cador O, Le Guennic B, Nocton G, Moreno-Pineda E, Ruben M, Roesky PW. Molecular Lanthanide Switches for Magnetism and Photoluminescence. Angew Chem Int Ed Engl 2023; 62:e202218107. [PMID: 36651327 DOI: 10.1002/anie.202218107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Solvation of [(CNT)Ln(η8 -COT)] (Ln=La, Ce, Nd, Tb, Er; CNT=cyclononatetraenyl, i.e., C9 H9 - ; COT=cyclooctatetraendiid, i.e., C8 H8 2- ) complexes with tetrahydrofuran (THF) gives rise to neutral [(η4 -CNT)Ln(thf)2 (η8 -COT)] (Ln=La, Ce) and ionic [Ln(thf)x (η8 -COT)][CNT] (x=4 (Ce, Nd, Tb), 3 (Er)) species in a solid-to-solid transformation. Due to the severe distortion of the ligand sphere upon solvation, these species act as switchable luminophores and single-molecule magnets. The desolvation of the coordinated solvents can be triggered by applying a dynamic vacuum, as well as a temperature gradient stimulus. Raman spectroscopic investigations revealed fast and fully reversible solvation and desolvation processes. Moreover, we also show that a Nd:YAG laser can induce the necessary temperature gradient for a self-sufficient switching process of the Ce(III) analogue in a spatially resolved manner.
Collapse
Affiliation(s)
- Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Nolwenn Mahieu
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jules Moutet
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Maxime Tricoire
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Ralf Köppe
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Léo La Droitte
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Grégory Nocton
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Eufemio Moreno-Pineda
- Depto de Química-Física, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Centre Européen de Science Quantique (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), UMR 7006, CNRS, Université de Strasbourg, 8 allée Gaspard Monge, BP, 70028, 67083, Strasbourg Cedex, France
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| |
Collapse
|
16
|
Antiferromagnetically coupled iso-structural CrIII, MnIII and FeIII complexes of a tetradentate Schiff base ligand derived from o-phenylenediamine. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00510-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Chegerev MG, Starikova AA. A computational search for spin-crossover in bis(catecholate) diiron complexes. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Li HQ, Sun YC, Shi L, Chen FL, Shen FX, Zhao Y, Wang XY. Modulating the Structures and Magnetic Properties of Dy(III) Single-Molecule Magnets through Acid-Base Regulation. Inorg Chem 2022; 61:2272-2283. [PMID: 35025491 DOI: 10.1021/acs.inorgchem.1c03639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical modulation on the structures and physical properties of the coordination complexes is of great interest for the preparation of new functional materials. By changing the acidity or basicity of the reaction medium, the deprotonation degree of a multidentate ligand with multiple active protons, H4daps (H4daps = N',N'″-((1E,1'E)-pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))bis(2-hydroxybenzohydrazide)), can be regulated on purpose. With this ligand of different deprotonation and charges, three new DyIII complexes ([Dy(H3daps)(CH3COO)2(EtOH)]·CH3COOH (1Dy), [Dy2(H2daps)2(EtOH)2(H2O)2(MeOH)2](CF3SO3)2·(H2O)2 (2Dy), and [Dy3(H1daps)2(H2daps)(μ3-OH)(EtOH)(H2O)] (3Dy)) of different nuclearities (mono-, di-, and trinuclear for 1Dy to 3Dy, respectively) have been synthesized and characterized structurally and magnetically. Analyses on the related bond lengths and resulting hydrogen bond modes in the complexes provide the details of the deprotonation position and the charge of the ligands, which can be in the form of H3daps-, H2daps2-, and H1daps3-. Interestingly, the more deprotonated ligand can act as a bridging ligand between the DyIII centers using the phenol and/or carbonyl oxygen atoms, which leads to the multinuclear structures. Magnetic studies on these complexes revealed that complex 1Dy is a field-induced single-molecule magnet (SMM), while complexes 2Dy and 3Dy show SMM behavior under a zero dc field.
Collapse
Affiliation(s)
- Hong-Qing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Le Shi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Li Chen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Liu Q, Yao NT, Sun HY, Hu JX, Meng YS, Liu T. Light actuated single-chain magnet with magnetic coercivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyanide-bridged {Fe2Co}-based coordination polymer was synthesized. It showed photo-induced slow relaxation of magnetization and a coercive field of 400 Oe.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
20
|
Luo QC, Ge N, Zhai YQ, Wang T, Sun L, Sun Q, Li F, Ouyang Z, Wang Z, Zheng YZ. A C,S Bonded Quasi-Two-Coordinate Chromium(II) Complex Showing Field-induced Slow Magnetic Relaxation Behaviour. Dalton Trans 2022; 51:9218-9222. [DOI: 10.1039/d2dt01131j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C,S bonded quasi-two-coordinate Cr(II) complex, Cr(SAr*)2 (HSAr* = HSC6H3-2,6(C6H2-2,4,6-Pri3)2), has been successfully synthesized. Magnetic, high-frequency / field electron paramagnetic resonance (HF-EPR) experiments and ab initio calculation studies show that...
Collapse
|
21
|
Manipulating Selective Metal‐to‐Metal Electron Transfer to Achieve Multi‐Phase Transitions in an Asymmetric [Fe2Co]‐Assembled Mixed‐Valence Chain. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Meng YS, Yao NT, Zhao L, Yi C, Liu Q, Li YM, Oshio H, Liu T. Manipulating Selective Metal-to-Metal Electron Transfer to Achieve Multi-Phase Transitions in an Asymmetric [Fe2Co]-Assembled Mixed-Valence Chain. Angew Chem Int Ed Engl 2021; 61:e202115367. [PMID: 34971479 DOI: 10.1002/anie.202115367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/08/2022]
Abstract
Manipulation of multi-functions in molecular materials is promising for future switching and memory devices, although is currently difficult. Herein, we assembled the asymmetric {Fe2Co} unit into a cyanide-bridged mixed-valence chain {[(Tp)Fe(CN)3]2Co(BIT)}·2CH3OH (1) (Tp = hydrotris(pyrazolyl)borate and BIT = 3,4-bis-(1H-imidazol-1-yl)thiophen), which showed reversible multi-phase transitions accompanied by the photo-switchable single-chain magnet property and dielectric anomalies. Variable temperature X-ray structural studies revealed thermo-and photo-induced selective electron transfer (ET) between the Co and one of the Fe ions. Alternating-current magnetic susceptibility studies revealed that 1 displayed on and off of the single-chain magnet behavior by alternating 946-nm and 532-nm light irradiations. A substantial anomaly in dielectric constant was discovered during the electron transfer process, which is uncommon in similar ET complexes. These findings illustrate that 1 provided a new platform for multi-phase transitions and multi-switches adjusted by selective metal-to-metal ET.
Collapse
Affiliation(s)
- Yin-Shan Meng
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Linggong Rd., Dalian, 116024, China., 116024, Dalian, CHINA
| | - Nian-Tao Yao
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Liang Zhao
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Cheng Yi
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Qiang Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Ya-Ming Li
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Hiroki Oshio
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Tao Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| |
Collapse
|
23
|
Jiang D, Song H, Wen T, Jiang Z, Li C, Liu K, Yang W, Huang H, Wang Y. Pressure-Driven Two-Step Second-Harmonic-Generation Switching in BiOIO3. Angew Chem Int Ed Engl 2021; 61:e202116656. [PMID: 34964244 DOI: 10.1002/anie.202116656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/09/2022]
Abstract
Materials with multi-stabilities controllable by external stimuli are potential for high-capacity information storage and switch devices. Herein, we report the observation of pressure-driven two-step second-harmonic-generation (SHG) switching in polar BiOIO 3 for the first time. Structure analyses reveal two pressure-induced phase transitions in BiOIO 3 from the ambient noncentrosymmetric phase (SHG-high) to an intermediate noncentrosymmetric phase (SHG-intermediate) and then to a centrosymmetric phase (SHG-off). The three-state SHG switching is inspected by in-situ high-pressure powder SHG and polarization-dependent single-crystal SHG measurements. Local structure analyses based on the in-situ Raman spectra and X-ray absorption spectra reveal that the SHG switching are caused by the step-wise suppression of lone-pair electrons on the [IO 3 ] - units. The dramatic evolution of the functional units under compression also leads to subtle changes of the optical absorption edge of BiOIO 3 . Materials with switchable multiple stabilities provide a state-of-art platform for next-generation switch and information storage devices.
Collapse
Affiliation(s)
- Dequan Jiang
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Huimin Song
- Peking University, School of Materials Science and Engineering, CHINA
| | - Ting Wen
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Zimin Jiang
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Chen Li
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Ke Liu
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Hongwei Huang
- China University of Geosciences Beijing, No. 29, Xueyuan Road, Haidian DIstrict, 100083, Beijing, CHINA
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| |
Collapse
|
24
|
Jiang D, Song H, Wen T, Jiang Z, Li C, Liu K, Yang W, Huang H, Wang Y. Pressure‐Driven Two‐Step Second‐Harmonic‐Generation Switching in BiOIO3. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dequan Jiang
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Huimin Song
- Peking University School of Materials Science and Engineering CHINA
| | - Ting Wen
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Zimin Jiang
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Chen Li
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Ke Liu
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Hongwei Huang
- China University of Geosciences Beijing No. 29, Xueyuan Road, Haidian DIstrict 100083 Beijing CHINA
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| |
Collapse
|
25
|
Guo Z, You M, Deng YF, Liu Q, Meng YS, Pikramenou Z, Zhang YZ. An azido-bridged [FeII4] grid-like molecule showing spin crossover behaviour. Dalton Trans 2021; 50:14303-14308. [PMID: 34554167 DOI: 10.1039/d1dt01908b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The supramolecular self-assembly synthetic strategy provides a valid tool to obtain polynuclear Fe(II) complexes having effective communication between the metal centres and distinct spin crossover behaviour. Despite the great success in constructing various magnetic molecules, progress has not been made in SCO complexes based on azido bridges. In this article, the coordination-driven supramolecular assembly based on 3,6-substituted pyridazine and azide is presented to afford two Fe(II) grid-like complexes: [(L)4FeII4(N3)4][BPh4]4·sol (1, L = 3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine and 2, L = 3,6-di(pyridin-2-yl)pyridazine). The substitution of pyridinyl groups in 2 instead of pyrazolyl ones in 1 led to the only example exhibiting spin-crossover behaviour (T1/2 = 230 K) among the azido-bridged complexes. In addition, a temperature-dependent photoluminescence study of 2 demonstrates a visible synergetic effect between the SCO event and the luminescence.
Collapse
Affiliation(s)
- Zhilin Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China. .,School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, UK.
| | - Maolin You
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China. .,Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd, Dalian 116024, P. R. China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd, Dalian 116024, P. R. China
| | - Zoe Pikramenou
- School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, UK.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
26
|
Li W, Wang C, Wang T. Molecular structures and magnetic properties of endohedral metallofullerenes. Chem Commun (Camb) 2021; 57:10317-10326. [PMID: 34542549 DOI: 10.1039/d1cc04218a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endohedral metallofullerenes have fascinating core-shell structures, with metal atoms or metal clusters encaged in fullerene cages, and they display various chemical, optical and magnetic properties derived from different types of fullerene cages and metal moieties. Fullerene cages can act as carriers to stabilize unusual cluster moieties. Many bizarre species that are hard to produce via synthetic methods survive well under the protection of a fullerene cage, making metallofullerenes ideal platforms for generating new clusters and bonds. Fullerene cages can also be carriers to hold active unpaired electrons. Some metallofullerenes possess electron spin and show intriguing magnetic properties, making them applicable for use in quantum computing, high density information storage and magnetoreception systems. The exploration of new metallofullerenes is still ongoing, while function-oriented studies are also promoted for the future application of metallofullerenes. Herein, we highlight the recent progress in the synthesis, electron spin characteristics and magnetic properties of metallofullerenes. Discussions and an outlook on the future development of metallofullerenes are also stated.
Collapse
Affiliation(s)
- Wang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| |
Collapse
|
27
|
Capel Berdiell I, Davies DJ, Woodworth J, Kulmaczewski R, Cespedes O, Halcrow MA. Structures and Spin States of Iron(II) Complexes of Isomeric 2,6-Di(1,2,3-triazolyl)pyridine Ligands. Inorg Chem 2021; 60:14988-15000. [PMID: 34547208 DOI: 10.1021/acs.inorgchem.1c02404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron(II) complex salts of 2,6-di(1,2,3-triazol-1-yl)pyridine (L1) are unexpectedly unstable in undried solvent. This is explained by the isolation of [Fe(L1)4(H2O)2][ClO4]2 and [Fe(NCS)2(L1)2(H2O)2]·L1, containing L1 bound as a monodentate ligand rather than in the expected tridentate fashion. These complexes associate into 44 grid structures through O-H···N hydrogen bonding; a solvate of a related 44 coordination framework, catena-[Cu(μ-L1)2(H2O)2][BF4]2, is also presented. The isomeric ligands 2,6-di(1,2,3-triazol-2-yl)pyridine (L2) and 2,6-di(1H-1,2,3-triazol-4-yl)pyridine (L3) bind to iron(II) in a more typical tridentate fashion. Solvates of [Fe(L3)2][ClO4]2 are low-spin and diamagnetic in the solid state and in solution, while [Fe(L2)2][ClO4]2 and [Co(L3)2][BF4]2 are fully high-spin. Treatment of L3 with methyl iodide affords 2,6-di(2-methyl-1,2,3-triazol-4-yl)pyridine (L4) and 2-(1-methyl-1,2,3-triazol-4-yl)-6-(2-methyl-1,2,3-triazol-4-yl)pyridine (L5). While salts of [Fe(L5)2]2+ are low-spin in the solid state, [Fe(L4)2][ClO4]2·H2O is high-spin, and [Fe(L4)2][ClO4]2·3MeNO2 exhibits a hysteretic spin transition to 50% completeness at T1/2 = 128 K (ΔT1/2 = 6 K). This transition proceeds via a symmetry-breaking phase transition to an unusual low-temperature phase containing three unique cation sites with high-spin, low-spin, and 1:1 mixed-spin populations. The unusual distribution of the spin states in the low-temperature phase reflects "spin-state frustration" of the mixed-spin cation site by an equal number of high-spin and low-spin nearest neighbors. Gas-phase density functional theory calculations reproduce the spin-state preferences of these and some related complexes. These highlight the interplay between the σ-basicity and π-acidity of the heterocyclic donors in this ligand type, which have opposing influences on the molecular ligand field. The Brønsted basicities of L1-L3 are very sensitive to the linkage isomerism of their triazolyl donors, which explains why their iron complex spin states show more variation than the better-known iron(II)/2,6-dipyrazolylpyridine system.
Collapse
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Daniel J Davies
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Jack Woodworth
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, E. C. Stoner Building, Leeds LS2 9JT, U.K
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|
28
|
Drahoš B, Šalitroš I, Císařová I, Herchel R. A multifunctional magnetic material based on a solid solution of Fe(ii)/Co(ii) complexes with a macrocyclic cyclam-based ligand. Dalton Trans 2021; 50:11147-11157. [PMID: 34324612 DOI: 10.1039/d1dt01534f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to prepare a multifunctional magnetic material combining spin crossover together with single-molecular magnetism, co-crystallization of Fe(ii) and Co(ii) complexes of the pyridine derivative of cyclam (Py2-C = 1,8-bis(pyridin-2-ylmethyl)-1,4,8,11-tetraazacyclotetradecane) was performed. Complexes with the general formula [MII(Py2-C)](ClO4)2·H2O (MII = Fe (1), Co (2) or Fe0.4Co0.6 (3)) were prepared and thoroughly characterized. Based on X-ray molecular structures, they formed octahedral complexes with cis-arrangement of the coordinated pyridine moieties. Magnetic data revealed that the Fe(ii) complex 1 shows complete SCO with the transition temperature T1/2 = 141 K, which is preserved also in the mixed Fe/Co system 3 (T1/2 = 128 K). Co(ii) complex 2 behaves as a field-induced single-molecule magnet as well as the mixed system 3 with a direct and phonon bottleneck relaxation process, respectively. This is the first example of such Fe/Co solid solution providing SCO in combination with field-induced SMM properties. Unfortunately, the light-induced excited spin-state trapping (LIESST) effect was not observed either for the Fe(ii) complex 1 or the mixed system 3 and thus, the effect of SCO on SMM properties at low temperature could not be investigated in detail. Nevertheless, the obtained results clearly document the success of the solid solution methodology for the preparation of multifunctional magnetic materials.
Collapse
Affiliation(s)
- Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
29
|
Zhao L, Meng YS, Liu Q, Sato O, Shi Q, Oshio H, Liu T. Switching the magnetic hysteresis of an [Fe ii-NC-W v]-based coordination polymer by photoinduced reversible spin crossover. Nat Chem 2021; 13:698-704. [PMID: 34031565 DOI: 10.1038/s41557-021-00695-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2021] [Indexed: 02/04/2023]
Abstract
Magnetic bistable materials that feature magnetic hysteresis are comparable to elementary binary units and promising for application in switches and memory devices. In this work, we report a material that consists of parallel cyanide-bridged [Feii-Wv] coordination chains linked together through rigid bis(imidazolyl)-benzene ligands and displays multiple magnetic states. The paramagnetic high-spin and diamagnetic low-spin states of the spin-crossover Feii ions can be interconverted by reversible light-induced excited spin state trapping (LIESST) by alternating between light irradiation of 808 and 473 nm. At 1.8 K, under 808-nm-light irradiation, magnetic interactions between the photogenerated paramagnetic high-spin Feii centres and the Wv centres lead to long fragments that exhibit single-chain magnet behaviour, with a wide magnetic hysteresis and a large coercive field of 19 kOe; under a 473 nm light, isolated Feii-Wv fragments behave as single-molecule magnets instead. At 3.3 K, the high-spin form still displays magnetic hysteresis, albeit narrower, whereas the low-spin one does not.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, Fukuoka, Japan
| | - Quan Shi
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian, China
| | - Hiroki Oshio
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| |
Collapse
|
30
|
Tiaouinine S, Flores Gonzalez J, Lefeuvre B, Guizouarn T, Cordier M, Dorcet V, Kaboub L, Cador O, Pointillart F. Spin Crossover and Field‐Induced Single‐Molecule Magnet Behaviour in Co(II) Complexes Based on Terpyridine with Tetrathiafulvalene Analogues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siham Tiaouinine
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
- Laboratory of Organic Materials and Heterochemistry University of Tebessa Rue de Constantine 12002 Tébessa Algeria
| | - Jessica Flores Gonzalez
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Bertrand Lefeuvre
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Thierry Guizouarn
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Marie Cordier
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Vincent Dorcet
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Lakehmici Kaboub
- Laboratory of Organic Materials and Heterochemistry University of Tebessa Rue de Constantine 12002 Tébessa Algeria
- Laboratory of Chemistry Molecular Engineering and Nanostructures University of Ferhat Abbas-Sétif 1 19000 Sétif Algeria
| | - Olivier Cador
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Fabrice Pointillart
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| |
Collapse
|
31
|
Wang P, Saber MR, VanNatta PE, Yap GPA, Popescu CV, Scarborough CC, Kieber-Emmons MT, Dunbar KR, Riordan CG. Molecular and Electronic Structures and Single-Molecule Magnet Behavior of Tris(thioether)-Iron Complexes Containing Redox-Active α-Diimine Ligands. Inorg Chem 2021; 60:6480-6491. [PMID: 33840189 DOI: 10.1021/acs.inorgchem.1c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporating radical ligands into metal complexes is one of the emerging trends in the design of single-molecule magnets (SMMs). While significant effort has been expended to generate multinuclear transition metal-based SMMs with bridging radical ligands, less attention has been paid to mononuclear transition metal-radical SMMs. Herein, we describe the first α-diiminato radical-containing mononuclear transition metal SMM, namely, [κ2-PhTttBu]Fe(AdNCHCHNAd) (1), and its analogue [κ2-PhTttBu]Fe(CyNCHCHNCy) (2) (PhTttBu = phenyltris(tert-butylthiomethyl)borate, Ad = adamantyl, and Cy = cyclohexyl). 1 and 2 feature nearly identical geometric and electronic structures, as shown by X-ray crystallography and electronic absorption spectroscopy. A more detailed description of the electronic structure of 1 was obtained through EPR and Mössbauer spectroscopies, SQUID magnetometry, and DFT, TD-DFT, and CAS calculations. 1 and 2 are best described as high-spin iron(II) complexes with antiferromagnetically coupled α-diiminato radical ligands. A strong magnetic exchange coupling between the iron(II) ion and the ligand radical was confirmed in 1, with an estimated coupling constant J < -250 cm-1 (J = -657 cm-1, DFT). Calibrated CAS calculations revealed that the ground-state Fe(II)-α-diiminato radical configuration has significant ionic contributions, which are weighted specifically toward the Fe(I)-neutral α-diimine species. Experimental data and theoretical calculations also suggest that 1 possesses an easy-axis anisotropy, with an axial zero-field splitting parameter D in the range from -4 to-1 cm-1. Finally, dynamic magnetic studies show that 1 exhibits slow magnetic relaxation behavior with an energy barrier close to the theoretical maximum, 2|D|. These results demonstrate that incorporating strongly coupled α-diiminato radicals into mononuclear transition metal complexes can be an effective strategy to prepare SMMs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Mohamed R Saber
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States.,Department of Chemistry, Fayoum University, Fayoum 63514, Egypt
| | - Peter E VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Codrina V Popescu
- Department of Chemistry, University of Saint Thomas, 2115 Summit Avenue, Saint Paul, Minnesota 55105, United States
| | - Christopher C Scarborough
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Syngenta Crop Protection AG, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| | | | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Charles G Riordan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
32
|
Liu Q, Hu JX, Meng YS, Jiang WJ, Wang JL, Wen W, Wu Q, Zhu HL, Zhao L, Liu T. Asymmetric Coordination Toward a Photoinduced Single-Chain Magnet Showing High Coercivity Values. Angew Chem Int Ed Engl 2021; 60:10537-10541. [PMID: 33569868 DOI: 10.1002/anie.202017249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/29/2022]
Abstract
The production of photo-switchable molecular nanomagnets with substantial coercivity, which is indispensable for information storage and process applications, is challenging. Introducing photo-responsive spin-crossover units provides a feasible means of controlling the magnetic anisotropy, interactions, and overall nanomagnet properties. Herein, we report a cyanide-bridged chain 1⋅12H2 O ({[(Pz Tp)FeIII (CN)3 ]2 FeII (Pmat)2 }n ⋅12 H2 O) generated by linking the FeII -based spin-crossover unit with the [(Pz Tp)Fe(CN)3 ]- (Pz Tp: tetrakis(pyrazolyl)borate) building block in the presence of asymmetric ditopic ligand Pmat ((4-pyridine-4-yl)methyleneamino-1,2,4-triazole). Structural characterization revealed that the introduction of this asymmetric ligand led to a distorted coordination environment of FeII ions, which were equatorially coordinated by four cyanide N atoms, and apically coordinated by one pyridine N atom and one triazole N atom. Upon 808-nm light irradiation, 1⋅12H2 O underwent photoinduced spin-crossover and exhibited single-chain magnet behavior with a coercive field of up to 1.3 T. This represents a 3d-based photoinduced single-chain magnet exhibiting pronounced hysteresis.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Ji-Xiang Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Wen-Jing Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Jun-Li Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Wen Wen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Qiong Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Hai-Lang Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| |
Collapse
|
33
|
Liu Q, Hu J, Meng Y, Jiang W, Wang J, Wen W, Wu Q, Zhu H, Zhao L, Liu T. Asymmetric Coordination Toward a Photoinduced Single‐Chain Magnet Showing High Coercivity Values. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Ji‐Xiang Hu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Wen‐Jing Jiang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Jun‐Li Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Wen Wen
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Qiong Wu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Hai‐Lang Zhu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| |
Collapse
|
34
|
Su QQ, Yuan Q, Wu XF, Chen SH, Xiang J, Jin XX, Wang LX, Wang BW, Gao S, Lau TC. Slow magnetic relaxation in structurally similar mononuclear 8-coordinate Fe(II) and Fe(III) compounds. Chem Commun (Camb) 2021; 57:781-784. [PMID: 33355553 DOI: 10.1039/d0cc07004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A pair of structurally-similar and stable 8-coordinate high-spin Fe(ii) and Fe(iii) compounds have been obtained. Both compounds exhibit field-induced slow magnetic relaxation behaviour. The Fe(iii) compound represents the first example of 8-coordinate Fe(iii) single-molecule magnets (SMM).
Collapse
Affiliation(s)
- Qian-Qian Su
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Qiong Yuan
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Si-Huai Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Li-Xin Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China. and South China University of Technology, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
35
|
Świtlicka A, Machura B, Cano J, Lloret F, Julve M. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Świtlicka
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Barbara Machura
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| |
Collapse
|
36
|
Hu Z, Hu H, Chen Z, Liu D, Zhang Y, Sun J, Liang Y, Yao D, Liang F. Guest-Induced Switching of a Molecule-Based Magnet in a 3d-4f Heterometallic Cluster-Based Chain Structure. Inorg Chem 2021; 60:633-641. [PMID: 33373231 DOI: 10.1021/acs.inorgchem.0c02466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the motivation of controlling a magnetic switch by external stimuli, we report here an infinite chain structure formed from the secondary building units of Cu3Tb2 clusters through the linkage of nitrate ions. It behaves as a molecule-based magnet with the highest energy barrier among isolated Tb/Cu-based single-molecule magnets and single-chain magnets, which is close to a dimer of a Cu3Tb2 cluster unit from a magnetic point as revealed by its correlation length of 2.23 Cu3Tb2 units. This kind of molecule-based magnet in a chain structure is rare. The removal of its guest ethanol molecules leads to the complete disappearance of slow magnetic relaxation behavior. Interestingly, the capture and removal of guest ethanol molecules are reversible, mediating a rare ON/OFF switching of a 3d-4f heterometallic molecule-based magnet, which was interpreted by the theoretical calculations based on the structural difference upon desolvation.
Collapse
Affiliation(s)
- Zhaobo Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.,Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Huancheng Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zilu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dongcheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yiquan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junliang Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuning Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Di Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fupei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
37
|
Kelai M, Cahier B, Atanasov M, Neese F, Tong Y, Zhang L, Bellec A, Iasco O, Rivière E, Guillot R, Chacon C, Girard Y, Lagoute J, Rousset S, Repain V, Otero E, Arrio MA, Sainctavit P, Barra AL, Boillot ML, Mallah T. Robust magnetic anisotropy of a monolayer of hexacoordinate Fe( ii) complexes assembled on Cu(111). Inorg Chem Front 2021. [DOI: 10.1039/d1qi00085c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tris pyrazolyl borate ligand imposes a rigid scaffold around Fe(ii) ensuring a robust magnetic anisotropy when the molecules assembled as monolayers suffer from the dissymmetric environment of the substrate/vacuum interface.
Collapse
|
38
|
Zhang Y, Yang Q, Lu J, Guo M, Li XL, Tang J. Heterometallic {DyIII2FeII2} grids with slow magnetic relaxation and spin crossover. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01471k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The self-assembly of a DyIII ion, an FeII ion and a multitopic H2L ligand produces novel [2 × 2] {DyIII2FeII2} grids exhibiting slow magnetic relaxation and spin crossover.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Qianqian Yang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jingjing Lu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Mei Guo
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
39
|
Akiyoshi R, Ohtani R, Lindoy LF, Hayami S. Spin crossover phenomena in long chain alkylated complexes. Dalton Trans 2021; 50:5065-5079. [DOI: 10.1039/d1dt00004g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents a discussion of soft metal complexes with a focus on spin crossover behaviours that are associated with structural phase transition, including liquid crystal LC transition.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shinya Hayami
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| |
Collapse
|
40
|
Kobylarczyk J, Liberka M, Stanek JJ, Sieklucka B, Podgajny R. Tuning of the phase transition between site selective SCO and intermetallic ET in trimetallic magnetic cyanido-bridged clusters. Dalton Trans 2020; 49:17321-17330. [PMID: 33206068 DOI: 10.1039/d0dt03340e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of crystalline phases composed of trimetallic 3d-5d-5d' {Fe9[Re(CN)8]6-x[W(CN)8]x(MeOH)24}·yMeOH (x = 1 (1), 2 (2), 3 (3), 4 (4) and 5 (5); y = 10-15) clusters were obtained by altering the octacyanidometalate composition. The temperature dependent studies involving SC XRD, SQUID magnetic measurements, IR spectroscopy and 57Fe Mössbauer spectroscopy revealed reversible phase transition with the retention of single crystal character in each congener. The transition was assisted by reversible spin-crossover (SCO) HSFeII↔LSFeII transition at the central Fe1(ii) site for Fe9Re5W1 (1), Fe9Re4W2 (2), Fe9Re3W3 (3) and Fe9Re2W4 (4). In contrast, the tungsten-rich congener Fe9Re1W5 (5) exhibited nontrivial behavior with the SCO transition being stopped halfway through the cooling process, to be completed with single electron transfer (ET) from the external Fe2(ii) center towards one of the neighboring W(v) sites. The critical temperature Tc of SCO has been systematically increased from 193 K (1) to 247 K (4). All experimental data indicate the domination of the Fe(ii)-W(v) valence states in all crystals 1-5, however, with increasing quantity of [W(CN)8]3- (and decreasing quantity of [Re(CN)8]3-), the valence equilibrium Fe(ii)-W(v) ↔ Fe(iii)-W(iv) was systematically shifted to the right, starting from congener 3. The overall electronic configuration at low temperatures and variable amounts and location of spin carriers along the whole series suggest the remarkable competition between magnetic super-exchange Fe(ii)-CN-W(v) interactions and intermolecular interactions. The observed behavior is in line with the information collected previously for the bimetallic congeners Fe9Re6 and Fe9W6, to shed light on the role of the mixed tri-metallic composition in changing the properties observed for the relevant bimetallic cyanido-bridged skeletons.
Collapse
Affiliation(s)
- Jedrzej Kobylarczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | | | | | | | | |
Collapse
|
41
|
X-ray Structure and Magnetic Properties of Heterobimetallic Chains Based on the Use of an Octacyanidodicobalt(III) Complex as Metalloligand. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The assembly of [Co2III(μ-2,5-dpp)(CN)8]2− anions and [MII(CH3OH)2(DMSO)2]2+ cations resulted into the formation of two heterobimetallic 1D coordination polymers of formula [MII(CH3OH)2(DMSO)2(μ-NC)2Co2III(μ-2,5-dpp)(CN)6]n·4nCH3OH [M = CoII (1)/FeII (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine. The [Co2III(μ-2,5-dpp)(CN)8]2− metalloligand coordinates the paramagnetic [MII(CH3OH)2(DMSO)2]2+ complex cations, in a bis-monodentate fashion, to give rise to neutral heterobimetallic chains. Cryomagnetic dc (1.9–300 K) and ac (2.0–13 K) magnetic measurements for 1 and 2 show the presence of Co(II)HS (1) and Fe(II)HS (2) ions (HS – high-spin), respectively, with D values of +53.7(5) (1) and −5.1(3) cm−1 (2) and slow magnetic relaxation for 1, this compound being a new example of SIM with transversal magnetic anisotropy. Low-temperature Q-band EPR study of 1 confirms that D value is positive, which reveals the occurrence of a strong asymmetry in the g-tensors and allows a rough estimation of the E/D ratio, whereas 2 is EPR silent. Theoretical calculations by CASSCF/NEVPT2 on 1 and 2 support the results from magnetometry and EPR. The analysis of the ac magnetic measurements of 1 shows that the relaxation of M takes place in the ground state under external magnetic dc fields through dominant Raman and direct spin-phonon processes.
Collapse
|
42
|
Książek M, Weselski M, Kaźmierczak M, Tołoczko A, Siczek M, Durlak P, Wolny JA, Schünemann V, Kusz J, Bronisz R. Spatiotemporal Studies of the One-Dimensional Coordination Polymer [Fe(ebtz) 2 (C 2 H 5 CN) 2 ](BF 4 ) 2 : Tug of War between the Nitrile Reorientation Versus Crystal Lattice as a Tool for Tuning the Spin Crossover Properties*. Chemistry 2020; 26:14419-14434. [PMID: 32678463 DOI: 10.1002/chem.202002460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4 )2 ⋅6 H2 O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2 (RCN)2 ](BF4 )2 ⋅nRCN (n=2 for R=CH3 (1) and n=0 for R=C2 H5 (2) C3 H7 (3), C3 H5 (4), CH2 Cl (5)) exhibiting spin crossover (SCO). SCO in 1 and 3-5 is complete and occurs above 160 K. In 2, it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2 ↓ =78 K, T1/2 ↑ =123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2. An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS -VLS ) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe-nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2 (C2 H5 CN/C3 H7 CN)2 ](BF4 )2 mixed crystals (2 a, 2 b), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1-5 suggest a particular possibility of 2 to adopt a low (140-145°) value of its Fe-N-C(propionitrile) angle.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr Durlak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Juliusz A Wolny
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Volker Schünemann
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
43
|
Rajnák C, Titiš J, Moncol’ J, Valigura D, Boča R. Effect of the Distant Substituent to Slow Magnetic Relaxation of Pentacoordinate Fe(III) Complexes. Inorg Chem 2020; 59:14871-14878. [DOI: 10.1021/acs.inorgchem.0c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Ján Moncol’
- Institute of Inorganic Chemistry, FCHPT, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Dušan Valigura
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| |
Collapse
|
44
|
Slow Magnetic Relaxation in a One-Dimensional Coordination Polymer Constructed from Hepta-Coordinate Cobalt(II) Nodes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A one-dimensional coordination polymer was synthesized employing hepta-coordinate CoII as nodes and dicyanamide as linkers. Detailed direct current (DC) and alternating current (AC) magnetic susceptibility measurements reveal the presence of field-induced slow magnetic relaxation behavior of the magnetically isolated seven-coordinate CoII center with an easy-plane magnetic anisotropy. Detailed ab initio calculations were performed to understand the magnetic relaxation processes. To our knowledge, the reported complex represents the first example of slow magnetic relaxation in a one-dimensional coordination polymer constructed from hepta-coordinate CoII nodes and dicyanamide linkers.
Collapse
|
45
|
Kawamura A, Xie J, Boyn JN, Jesse KA, McNeece AJ, Hill EA, Collins KA, Valdez-Moreira JA, Filatov AS, Kurutz JW, Mazziotti DA, Anderson JS. Reversible Switching of Organic Diradical Character via Iron-Based Spin-Crossover. J Am Chem Soc 2020; 142:17670-17680. [PMID: 32948091 DOI: 10.1021/jacs.0c08307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Airi Kawamura
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A. Jesse
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew J. McNeece
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ethan A. Hill
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kelsey A. Collins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Alexander S. Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Josh W. Kurutz
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A. Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
46
|
Marin R, Brunet G, Murugesu M. Multifunktionale Einzelmolekülmagnete auf Lanthanoidbasis in neuem Licht. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Riccardo Marin
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Kanada
| | - Gabriel Brunet
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Kanada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Kanada
| |
Collapse
|
47
|
Marin R, Brunet G, Murugesu M. Shining New Light on Multifunctional Lanthanide Single‐Molecule Magnets. Angew Chem Int Ed Engl 2020; 60:1728-1746. [DOI: 10.1002/anie.201910299] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Riccardo Marin
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Gabriel Brunet
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
48
|
Gransbury GK, Livesay BN, Janetzki JT, Hay MA, Gable RW, Shores MP, Starikova A, Boskovic C. Understanding the Origin of One- or Two-Step Valence Tautomeric Transitions in Bis(dioxolene)-Bridged Dinuclear Cobalt Complexes. J Am Chem Soc 2020; 142:10692-10704. [DOI: 10.1021/jacs.0c01073] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gemma K. Gransbury
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brooke N. Livesay
- Department of Chemistry, Colorado State University, Fort Collins 80523, United States
| | - Jett T. Janetzki
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Moya A. Hay
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert W. Gable
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins 80523, United States
| | - Alyona Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
49
|
Collet E. Ultrafast control of anisotropy. Nat Chem 2020; 12:429-430. [DOI: 10.1038/s41557-020-0462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Korzeniak T, Sasmal S, Pinkowicz D, Nitek W, Pełka R, Czernia D, Stefańczyk O, Sieklucka B. Chiral Photomagnets Based on Copper(II) complexes of 1,2-Diaminocyclohexane and Octacyanidomolybdate(IV) Ions. Inorg Chem 2020; 59:5872-5882. [DOI: 10.1021/acs.inorgchem.9b03511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomasz Korzeniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sujit Sasmal
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Robert Pełka
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Dominik Czernia
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Olaf Stefańczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|