1
|
Agarwal N, Nagar N, Raj R, Kumar D, Poluri KM. Conserved Apical Proline Regulating the Structure and DNA Binding Properties of Helicobacter pylori Histone-like DNA Binding Protein (Hup). ACS OMEGA 2022; 7:15231-15246. [PMID: 35572751 PMCID: PMC9089689 DOI: 10.1021/acsomega.2c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Prokaryotic cells lack a proper dedicated nuclear arrangement machinery. A set of proteins known as nucleoid associated proteins (NAPs) perform opening and closure of nucleic acids, behest cellular requirement. Among these, a special class of proteins analogous to eukaryotic histones popularly known as histone-like (HU) DNA binding proteins facilitate the nucleic acid folding/compaction thereby regulating gene architecture and gene regulation. DNA compaction and DNA protection in Helicobacter pylori is performed by HU protein (Hup). To dissect and galvanize the role of proline residue in the binding of Hup with DNA, the structure-dynamics-functional relationship of Hup-P64A variant was analyzed. NMR and biophysical studies evidenced that Hup-P64A protein attenuated DNA-binding and induced structural/stability changes in the DNA binding domain (DBD). Moreover, molecular dynamics simulations and 15N relaxation studies established the reduced conformational dynamics of P64A protein. This comprehensive study dissected the exclusive role of evolutionarily conserved apical proline residue in regulating the structure and DNA binding of Hup protein as P64 is presumed to be involved in the external leverage mechanism responsible for DNA bending and packaging, as proline rings wedge into the DNA backbone through intercalation besides their significant role in DNA binding.
Collapse
Affiliation(s)
- Nipanshu Agarwal
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Nupur Nagar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Ritu Raj
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow-226014, India
| | - Dinesh Kumar
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow-226014, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Centre
for Nanotechnology, Indian Institute of
Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
2
|
Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. Structure and Dynamics in the ATG8 Family From Experimental to Computational Techniques. Front Cell Dev Biol 2020; 8:420. [PMID: 32587856 PMCID: PMC7297954 DOI: 10.3389/fcell.2020.00420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a conserved and essential intracellular mechanism for the removal of damaged components. Since autophagy deregulation is linked to different kinds of pathologies, it is fundamental to gain knowledge on the fine molecular and structural details related to the core proteins of the autophagy machinery. Among these, the family of human ATG8 proteins plays a central role in recruiting other proteins to the different membrane structures involved in the autophagic pathway. Several experimental structures are available for the members of the ATG8 family alone or in complex with their different biological partners, including disordered regions of proteins containing a short linear motif called LC3 interacting motif. Recently, the first structural details of the interaction of ATG8 proteins with biological membranes came into light. The availability of structural data for human ATG8 proteins has been paving the way for studies on their structure-function-dynamic relationship using biomolecular simulations. Experimental and computational structural biology can help to address several outstanding questions on the mechanism of human ATG8 proteins, including their specificity toward different interactors, their association with membranes, the heterogeneity of their conformational ensemble, and their regulation by post-translational modifications. We here summarize the main results collected so far and discuss the future perspectives within the field and the knowledge gaps. Our review can serve as a roadmap for future structural and dynamics studies of the ATG8 family members in health and disease.
Collapse
Affiliation(s)
- Valentina Sora
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Zsidó BZ, Hetényi C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int J Mol Sci 2020; 21:ijms21114134. [PMID: 32531926 PMCID: PMC7311975 DOI: 10.3390/ijms21114134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Development of valid structure–activity relationships (SARs) is a key to the elucidation of pathomechanisms of epigenetic diseases and the development of efficient, new drugs. The present review is based on selected methodologies and applications supplying molecular structure, binding affinity and biological activity data for the development of new SARs. An emphasis is placed on emerging trends and permanent challenges of new discoveries of SARs in the context of proteins as epigenetic drug targets. The review gives a brief overview and classification of the molecular background of epigenetic changes, and surveys both experimental and theoretical approaches in the field. Besides the results of sophisticated, cutting edge techniques such as cryo-electron microscopy, protein crystallography, and isothermal titration calorimetry, examples of frequently used assays and fast screening techniques are also selected. The review features how different experimental methods and theoretical approaches complement each other and result in valid SARs of the epigenome.
Collapse
|
4
|
Kumari P, Frey L, Sobol A, Lakomek NA, Riek R. 15N transverse relaxation measurements for the characterization of µs-ms dynamics are deteriorated by the deuterium isotope effect on 15N resulting from solvent exchange. JOURNAL OF BIOMOLECULAR NMR 2018; 72:125-137. [PMID: 30306288 DOI: 10.1007/s10858-018-0211-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
15N R2 relaxation measurements are key for the elucidation of the dynamics of both folded and intrinsically disordered proteins (IDPs). Here we show, on the example of the intrinsically disordered protein α-synuclein and the folded domain PDZ2, that at physiological pH and near physiological temperatures amide-water exchange can severely skew Hahn-echo based 15N R2 relaxation measurements as well as low frequency data points in CPMG relaxation dispersion experiments. The nature thereof is the solvent exchange with deuterium in the sample buffer, which modulates the 15N chemical shift tensor via the deuterium isotope effect, adding to the apparent relaxation decay which leads to systematic errors in the relaxation data. This results in an artificial increase of the measured apparent 15N R2 rate constants-which should not be mistaken with protein inherent chemical exchange contributions, Rex, to 15N R2. For measurements of 15N R2 rate constants of IDPs and folded proteins at physiological temperatures and pH, we recommend therefore the use of a very low D2O molar fraction in the sample buffer, as low as 1%, or the use of an external D2O reference along with a modified 15N R2 Hahn-echo based experiment. This combination allows for the measurement of Rex contributions to 15N R2 originating from conformational exchange in a time window from µs to ms.
Collapse
Affiliation(s)
- Pratibha Kumari
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Alexander Sobol
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Nils-Alexander Lakomek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Papaleo E, Camilloni C, Teilum K, Vendruscolo M, Lindorff-Larsen K. Molecular dynamics ensemble refinement of the heterogeneous native state of NCBD using chemical shifts and NOEs. PeerJ 2018; 6:e5125. [PMID: 30013831 PMCID: PMC6035720 DOI: 10.7717/peerj.5125] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/08/2018] [Indexed: 01/24/2023] Open
Abstract
Many proteins display complex dynamical properties that are often intimately linked to their biological functions. As the native state of a protein is best described as an ensemble of conformations, it is important to be able to generate models of native state ensembles with high accuracy. Due to limitations in sampling efficiency and force field accuracy it is, however, challenging to obtain accurate ensembles of protein conformations by the use of molecular simulations alone. Here we show that dynamic ensemble refinement, which combines an accurate atomistic force field with commonly available nuclear magnetic resonance (NMR) chemical shifts and NOEs, can provide a detailed and accurate description of the conformational ensemble of the native state of a highly dynamic protein. As both NOEs and chemical shifts are averaged on timescales up to milliseconds, the resulting ensembles reflect the structural heterogeneity that goes beyond that probed, e.g., by NMR relaxation order parameters. We selected the small protein domain NCBD as object of our study since this protein, which has been characterized experimentally in substantial detail, displays a rich and complex dynamical behaviour. In particular, the protein has been described as having a molten-globule like structure, but with a relatively rigid core. Our approach allowed us to describe the conformational dynamics of NCBD in solution, and to probe the structural heterogeneity resulting from both short- and long-timescale dynamics by the calculation of order parameters on different time scales. These results illustrate the usefulness of our approach since they show that NCBD is rather rigid on the nanosecond timescale, but interconverts within a broader ensemble on longer timescales, thus enabling the derivation of a coherent set of conclusions from various NMR experiments on this protein, which could otherwise appear in contradiction with each other.
Collapse
Affiliation(s)
- Elena Papaleo
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Current affiliation: Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,Current affiliation: Department of Biosciences, University of Milano, Milano, Italy
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Jaiswal N, Raikwal N, Pandey H, Agarwal N, Arora A, Poluri KM, Kumar D. NMR elucidation of monomer-dimer transition and conformational heterogeneity in histone-like DNA binding protein of Helicobacter pylori. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:285-299. [PMID: 29241299 DOI: 10.1002/mrc.4701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
Helicobacter pylori (H. pylori) colonizes under harsh acidic/oxidative stress conditions of human gastrointestinal tract and can survive there for infinitely longer durations of host life. The bacterium expresses several harbinger proteins to facilitate its persistent colonization under such conditions. One such protein in H. pylori is histone-like DNA binding protein (Hup), which in its homo-dimeric form binds to DNA to perform various DNA dependent cellular activities. Further, it also plays an important role in protecting the genomic DNA from oxidative stress and acidic denaturation. Legitimately, if the binding of Hup to DNA is suppressed, it will directly impact on the survival of the bacterium, thus making Hup a potential therapeutic target for developing new anti-H. pylori agents. However, to inhibit the binding of Hup to DNA, it is necessary to gain detailed insights into the molecular and structural basis of Hup-dimerization and its binding mechanism to DNA. As a first step in this direction, we report here the nuclear magnetic resonance (NMR) assignments and structural features of Hup at pH 6.0. The study revealed the occurrence of dynamic equilibrium between its monomer and dimer conformations. The dynamic equilibrium was found to shifting towards dimer both at low temperature and low pH; whereas DNA binding studies evidenced that the protein binds to DNA in its dimeric form. These preliminary investigations correlate very well with the diverse functionality of protein and will form the basis for future studies aiming to develop novel anti-H. pylori agents employing structure-based-rational drug discovery approach.
Collapse
Affiliation(s)
- Nancy Jaiswal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Dr. APJ Abdul Kalam Technical University, IET Campus, Sitapur Road, Lucknow, 226021, Uttar Pradesh, India
| | - Nisha Raikwal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| | - Himanshu Pandey
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Nipanshu Agarwal
- Department of Biotechnology and Centre for Nanotechnology Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Krishna Mohan Poluri
- Department of Biotechnology and Centre for Nanotechnology Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| |
Collapse
|
7
|
Tan C, Terakawa T, Takada S. Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics. J Am Chem Soc 2016; 138:8512-22. [DOI: 10.1021/jacs.6b03729] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Tan
- Department
of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tsuyoshi Terakawa
- Department
of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Shoji Takada
- Department
of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
9
|
Characterization of the conformational fluctuations in the Josephin domain of ataxin-3. Biophys J 2016; 107:2932-2940. [PMID: 25517158 PMCID: PMC4269769 DOI: 10.1016/j.bpj.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022] Open
Abstract
As for a variety of other molecular recognition processes, conformational fluctuations play an important role in the cleavage of polyubiquitin chains by the Josephin domain of ataxin-3. The interaction between Josephin and ubiquitin appears to be mediated by the motions of α-helical hairpin that is unusual among deubiquitinating enzymes. Here, we characterized the conformational fluctuations of the helical hairpin by incorporating NMR measurements as replica-averaged restraints in molecular dynamics simulations, and by validating the results by small-angle x-ray scattering measurements. This approach allowed us to define the extent of the helical hairpin motions and suggest a role of such motions in the recognition of ubiquitin.
Collapse
|
10
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
11
|
Courtney JM, Ye Q, Nesbitt AE, Tang M, Tuttle MD, Watt ED, Nuzzio KM, Sperling LJ, Comellas G, Peterson JR, Morrissey JH, Rienstra CM. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum. Structure 2015; 23:1958-1966. [PMID: 26365800 PMCID: PMC4786943 DOI: 10.1016/j.str.2015.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/05/2023]
Abstract
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure.
Collapse
Affiliation(s)
- Joseph M Courtney
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qing Ye
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna E Nesbitt
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ming Tang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marcus D Tuttle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric D Watt
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristin M Nuzzio
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lindsay J Sperling
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gemma Comellas
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph R Peterson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James H Morrissey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chad M Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
12
|
Pastor N, Amero C. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations. FRONTIERS IN PLANT SCIENCE 2015; 6:306. [PMID: 25999971 PMCID: PMC4419604 DOI: 10.3389/fpls.2015.00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.
Collapse
Affiliation(s)
- Nina Pastor
- Laboratorio de Dinámica de Proteínas y Ácidos Nucleicos, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
13
|
Kim DH, Im H, Jee JG, Jang SB, Yoon HJ, Kwon AR, Kang SM, Lee BJ. β-Arm flexibility of HU fromStaphylococcus aureusdictates the DNA-binding and recognition mechanism. ACTA ACUST UNITED AC 2014; 70:3273-89. [DOI: 10.1107/s1399004714023931] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
HU, one of the major nucleoid-associated proteins, interacts with the minor groove of DNA in a nonspecific manner to induce DNA bending or to stabilize bent DNA. In this study, crystal structures are reported for both free HU fromStaphylococcus aureusMu50 (SHU) and SHU bound to 21-mer dsDNA. The structures, in combination with electrophoretic mobility shift assays (EMSAs), isothermal titration calorimetry (ITC) measurements and molecular-dynamics (MD) simulations, elucidate the overall and residue-specific changes in SHU upon recognizing and binding to DNA. Firstly, structural comparison showed the flexible nature of the β-sheets of the DNA-binding domain and that the β-arms bend inwards upon complex formation, whereas the other portions are nearly unaltered. Secondly, it was found that the disruption and formation of salt bridges accompanies DNA binding. Thirdly, residue-specific free-energy analyses using the MM-PBSA method with MD simulation data suggested that the successive basic residues in the β-arms play a central role in recognizing and binding to DNA, which was confirmed by the EMSA and ITC analyses. Moreover, residue Arg55 resides in the hinge region of the flexible β-arms, exhibiting a remarkable role in their flexible nature. Fourthly, EMSAs with various DNAs revealed that SHU prefers deformable DNA. Taken together, these data suggest residue-specific roles in local shape and base readouts, which are primarily mediated by the flexible β-arms consisting of residues 50–80.
Collapse
|
14
|
Camilloni C, Vendruscolo M. Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics. J Am Chem Soc 2014; 136:8982-91. [PMID: 24884637 DOI: 10.1021/ja5027584] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The characterization of denatured states of proteins is challenging because the lack of permanent structure in these states makes it difficult to apply to them standard methods of structural biology. In this work we use all-atom replica-averaged metadynamics (RAM) simulations with NMR chemical shift restraints to determine an ensemble of structures representing an acid-denatured state of the 86-residue protein ACBP. This approach has enabled us to reach convergence in the free energy landscape calculations, obtaining an ensemble of structures in relatively accurate agreement with independent experimental data used for validation. By observing at atomistic resolution the transient formation of native and non-native structures in this acid-denatured state of ACBP, we rationalize the effects of single-point mutations on the folding rate, stability, and transition-state structures of this protein, thus characterizing the role of the unfolded state in determining the folding process.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | | |
Collapse
|
15
|
Bhowmick T, Ghosh S, Dixit K, Ganesan V, Ramagopal UA, Dey D, Sarma SP, Ramakumar S, Nagaraja V. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat Commun 2014; 5:4124. [PMID: 24916461 DOI: 10.1038/ncomms5124] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 05/15/2014] [Indexed: 01/03/2023] Open
Abstract
The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.
Collapse
Affiliation(s)
- Tuhin Bhowmick
- 1] Department of Physics, Indian Institute of Science, Bangalore 560012, India [2]
| | - Soumitra Ghosh
- 1] Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India [2]
| | - Karuna Dixit
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Ganesan
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India
| | - Udupi A Ramagopal
- 1] Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Room 409, Bronx, New York 10461, USA [2] Biological Sciences Division, Poornaprajna Institute of Scientific Research, Bangalore 562110, India
| | - Debayan Dey
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Valakunja Nagaraja
- 1] Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India [2] Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|