1
|
Al-Qatabi N, Magdeleine M, Pagnotta S, Leforestier A, Degrouard J, Arteni AA, Lacas-Gervais S, Gautier R, Drin G. Characterization of atypical BAR domain-containing proteins coded by Toxoplasma gondii. J Biol Chem 2024:107923. [PMID: 39461477 DOI: 10.1016/j.jbc.2024.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, infects cells and replicates inside via the secretion of factors stored in specialized organelles (rhoptries, micronemes, dense granules) and the capture of host materials. The genesis of the secretory organelles and the processes of secretion and endocytosis depend on vesicular trafficking events whose molecular bases remain poorly known. Notably, there is no characterization of the BAR (Bin/Amphiphysin/Rvs) domain-containing proteins expressed by T. gondii and other apicomplexans, although such proteins are known to play critical roles in vesicular trafficking in other eukaryotes. Here, by combining structural analyses with in vitro assays and cellular observations, we have characterized TgREMIND (REgulators of Membrane Interacting Domains), involved in the genesis of rhoptries and dense granules, and TgBAR2 found at the parasite cortex. We establish that TgREMIND comprises an F-BAR domain that can bind curved neutral membranes with no strict phosphoinositide requirement and exert a membrane remodeling activity. Next, we establish that TgREMIND contains a new structural domain called REMIND, which negatively regulates the membrane-binding capacities of the F-BAR domain. In parallel, we report that TgBAR2 contains a BAR domain with an extremely basic membrane-binding interface able to deform anionic membranes into very narrow tubules. Our data show that T. gondii codes for two atypical BAR domain-containing proteins with very contrasting membrane-binding properties, allowing them to function in two distinct regions of the parasite trafficking system.
Collapse
Affiliation(s)
- Noha Al-Qatabi
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Maud Magdeleine
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sophie Pagnotta
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, Parc Valrose, 06108 Nice, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, UMR 8502, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, UMR 8502, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Ana Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, Parc Valrose, 06108 Nice, France
| | - Romain Gautier
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
2
|
Zhang L, Wang Y, Dong Y, Pant A, Liu Y, Masserman L, Xu Y, McLaughlin RN, Bai J. The endophilin curvature-sensitive motif requires electrostatic guidance to recycle synaptic vesicles in vivo. Dev Cell 2022; 57:750-766.e5. [PMID: 35303431 PMCID: PMC8969179 DOI: 10.1016/j.devcel.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/29/2022]
Abstract
Curvature-sensing mechanisms assist proteins in executing particular actions on various membrane organelles. Here, we investigate the functional specificity of curvature-sensing amphipathic motifs in Caenorhabditis elegans through the study of endophilin, an endocytic protein for synaptic vesicle recycling. We generate chimeric endophilin proteins by replacing the endophilin amphipathic motif H0 with other curvature-sensing amphipathic motifs. We find that the role of amphipathic motifs cannot simply be extrapolated from the identity of their parental proteins. For example, the amphipathic motif of the nuclear pore complex protein NUP133 functionally replaces the synaptic role of endophilin H0. Interestingly, non-functional endophilin chimeras have similar defects-producing fewer synaptic vesicles but more endosomes-and this indicates that the curvature-sensing motifs in these chimeras have a common deficiency for reforming synaptic vesicles. Finally, we convert non-functional endophilin chimeras into functional proteins by changing the cationic property of amphipathic motifs, successfully reprogramming the functional specificity of curvature-sensing motifs in vivo.
Collapse
Affiliation(s)
- Lin Zhang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yu Wang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China; Fudan University, Shanghai 200433, P.R. China
| | - Yongming Dong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aaradhya Pant
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yan Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Laura Masserman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ye Xu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Jin R, Grasso M, Zhou M, Marmorstein R, Baumgart T. Unfolding Mechanisms and Conformational Stability of the Dimeric Endophilin N-BAR Domain. ACS OMEGA 2021; 6:20790-20803. [PMID: 34423187 PMCID: PMC8374900 DOI: 10.1021/acsomega.1c01905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Endophilin, which is a member of the Bin-amphiphysin-Rvs (BAR) domain protein superfamily, contains a homodimeric N-BAR domain of a characteristic crescent shape. The N-BAR domain comprises a six-helix bundle and is known to sense and generate membrane curvature. Here, we characterize aspects of the unfolding mechanism of the endophilin A1 N-BAR domain during thermal denaturation and examine factors that influence the thermal stability of this domain. Far-UV circular dichroism (CD) spectroscopy was applied to monitor changes in the secondary structure above room temperature. The protein's conformational changes were further characterized through Foerster resonance energy transfer and cross-linking experiments at varying temperatures. Our results indicate that thermal unfolding of the endophilin N-BAR is (minimally) a two-step process, with a dimeric intermediate that displays partial helicity loss. Furthermore, a thermal shift assay and temperature-dependent CD were applied to compare the unfolding processes of several truncated versions of endophilin. The melting temperature of the N-BAR domain decreased when we deleted either the N-terminal H0 helix or the unstructured linker of endophilin. This result suggests that these intrinsically disordered domains may play a role in structurally stabilizing the functional N-BAR domain in vivo. Finally, we show that single-site mutations can also compromise endophilin's thermal stability.
Collapse
Affiliation(s)
- Rui Jin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael Grasso
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mingyang Zhou
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ronen Marmorstein
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tobias Baumgart
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Bhatt VS, Ashley R, Sundborger-Lunna A. Amphipathic Motifs Regulate N-BAR Protein Endophilin B1 Auto-inhibition and Drive Membrane Remodeling. Structure 2020; 29:61-69.e3. [PMID: 33086035 DOI: 10.1016/j.str.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 02/02/2023]
Abstract
Membrane remodeling is a common theme in a variety of cellular processes. Here, we investigated membrane remodeling N-BAR protein endophilin B1, a critical player in diverse intracellular trafficking events, including mitochondrial and Golgi fission, and apoptosis. We find that endophilin B1 assembles into helical scaffolds on membranes, and that both membrane binding and assembly are driven by interactions between N-terminal helix H0 and the lipid bilayer. Furthermore, we find that endophilin B1 membrane remodeling is auto-inhibited and identify direct SH3 domain-H0 interactions as the underlying mechanism. Our results indicate that lipid composition plays a role in dictating endophilin B1 activity. Taken together, this study provides insight into a poorly understood N-BAR protein family member and highlights molecular mechanisms that may be general for the regulation of membrane remodeling. Our work suggests that interplay between membrane lipids and membrane interacting proteins facilitates spatial and temporal coordination of membrane remodeling.
Collapse
Affiliation(s)
- Veer S Bhatt
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Robert Ashley
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Anna Sundborger-Lunna
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA.
| |
Collapse
|
5
|
Casamento A, Boucrot E. Molecular mechanism of Fast Endophilin-Mediated Endocytosis. Biochem J 2020; 477:2327-2345. [PMID: 32589750 PMCID: PMC7319585 DOI: 10.1042/bcj20190342] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, U.K
| |
Collapse
|
6
|
Thangaraj SK, James S, Rouvinen J, Jänis J. Thermokinetic Analysis of Protein Subunit Exchange by Variable-Temperature Native Mass Spectrometry. Biochemistry 2019; 58:5025-5029. [PMID: 31790206 DOI: 10.1021/acs.biochem.9b00911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many protein complexes are assembled from a varying number of subunits, which are continuously exchanging with diverse time scales. This structural dynamics is considered to be important for many regulatory and sensory adaptation processes that occur in vivo. We have developed an accurate method for monitoring protein subunit exchange by using native electrospray ionization mass spectrometry (ESI-MS), exemplified here for an extremely stable Rad50 zinc hook (Hk) dimer assembly, Zn(Hk)2. The method has two steps: appropriate protein/peptide mutation and native ESI-MS analysis using a variable-temperature sample inlet. In this work, two Hk mutants were produced, mixed with wild-type Hk, and measured at three different temperatures. A thermokinetic analysis of heterodimer formation allowed us to determine the enthalpy, entropy, and Gibbs free energy of activation for subunit exchange, showing that the reaction is slow and associated with a high enthalpic barrier, consistent with the exceptionally high stability of the Zn(Hk)2 assembly.
Collapse
Affiliation(s)
- Senthil K Thangaraj
- Department of Chemistry , University of Eastern Finland , P.O. Box 111, FI-801101 Joensuu , Finland
| | - Salman James
- Department of Chemistry , University of Eastern Finland , P.O. Box 111, FI-801101 Joensuu , Finland
| | - Juha Rouvinen
- Department of Chemistry , University of Eastern Finland , P.O. Box 111, FI-801101 Joensuu , Finland
| | - Janne Jänis
- Department of Chemistry , University of Eastern Finland , P.O. Box 111, FI-801101 Joensuu , Finland
| |
Collapse
|
7
|
Gerth F, Jäpel M, Sticht J, Kuropka B, Schmitt XJ, Driller JH, Loll B, Wahl MC, Pagel K, Haucke V, Freund C. Exon Inclusion Modulates Conformational Plasticity and Autoinhibition of the Intersectin 1 SH3A Domain. Structure 2019; 27:977-987.e5. [DOI: 10.1016/j.str.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
|
8
|
Boonamnaj P, Sompornpisut P. Insight into the Role of the Hv1 C-Terminal Domain in Dimer Stabilization. J Phys Chem B 2018; 122:1037-1048. [PMID: 29290112 DOI: 10.1021/acs.jpcb.7b08669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The voltage-gated proton-selective channel (Hv1) conducts protons in response to changes in membrane potential. The Hv1 protein forms dimers in the membrane. Crystal structures of Hv1 channels have revealed that the primary contacts between the two monomers are in the C-terminal domain (CTD), which forms a coiled-coil structure. The role of Hv1-CTD in channel assembly and activity is not fully understood. Here, molecular dynamics (MD) simulations of full-length and truncated CTD models of human and mouse Hv1 channels reveal a strong contribution of the CTD to the packing of the transmembrane domains. Simulations of the CTD models highlight four fundamental interactions of the key residues contributing to dimer stability. These include salt bridges, hydrophobic interactions, hydrogen bonds, and a disulfide bond across the dimer interface. At neutral pH, salt-bridge interactions increase dimer stability and the dimer becomes less stable at acidic pH. Hydrophobic core packing of the heptad pattern is important for stability, as shown by favorable nonpolar binding free energies rather than by electrostatic components. Moreover, free-energy calculations indicate that a more uniform hydrophobic core in the coiled-coil structure of the Hv1-NIN, a channel carrying the triple mutation M234N-N235I-V236N, leads to an increase in dimer stability with respect to the wild-type. A Cys disulfide bond has a strong impact on dimer stability by holding the dimer together and facilitating the interactions described above. These results are consistent with dissociative temperatures and energy barriers of dimer dissociation obtained from the temperature-accelerated MD.
Collapse
Affiliation(s)
- Panisak Boonamnaj
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| | - Pornthep Sompornpisut
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| |
Collapse
|
9
|
McIntosh BB, Pyrpassopoulos S, Holzbaur ELF, Ostap EM. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Curr Biol 2018; 28:236-248.e5. [PMID: 29337076 DOI: 10.1016/j.cub.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Microtubule and actin filament molecular motors such as kinesin-1 and myosin-Ic (Myo1c) transport and remodel membrane-bound vesicles; however, it is unclear how they coordinate to accomplish these tasks. We introduced kinesin-1- and Myo1c-bound giant unilamellar vesicles (GUVs) into a micropatterned in vitro cytoskeletal matrix modeled after the subcellular architecture where vesicular sorting and membrane remodeling are observed. This array was composed of sparse microtubules intersecting regions dense with actin filaments, and revealed that Myo1c-dependent tethering of GUVs enabled kinesin-1-driven membrane deformation and tubulation. Membrane remodeling at actin/microtubule intersections was modulated by lipid composition and the addition of the Bin-Amphiphysin-Rvs-domain (BAR-domain) proteins endophilin or FCH-domain-only (FCHo). Myo1c not only tethered microtubule-transported cargo, but also transported, deformed, and tubulated GUVs along actin filaments in a lipid-composition- and BAR-protein-responsive manner. These results suggest a mechanism for actin-based involvement in vesicular transport and remodeling of intracellular membranes, and implicate lipid composition as a key factor in determining whether vesicles will undergo transport, deformation, or tubulation driven by opposing actin and microtubule motors and BAR-domain proteins.
Collapse
Affiliation(s)
- Betsy B McIntosh
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Serapion Pyrpassopoulos
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | - E Michael Ostap
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
10
|
Abstract
The Slit-Robo GTPase-activating proteins (srGAPs) were first identified as potential Slit-Robo effectors that influence growth cone guidance. Given their N-terminal F-BAR, central GAP and C-terminal SH3 domains, srGAPs have the potential to affect membrane dynamics, Rho family GTPase activity and other binding partners. Recent research has clarified how srGAP family members act in distinct ways at the cell membrane, and has expanded our understanding of the roles of srGAPs in neuronal and non-neuronal cells. Gene duplication of the human-specific paralog of srGAP2 has resulted in srGAP2 family proteins that may have increased the density of dendritic spines and promoted neoteny of the human brain during crucial periods of human evolution, underscoring the importance of srGAPs in the unique sculpting of the human brain. Importantly, srGAPs also play roles outside of the nervous system, including during contact inhibition of cell movement and in establishing and maintaining cell adhesions in epithelia. Changes in srGAP expression may contribute to neurodevelopmental disorders, cancer metastasis and inflammation. As discussed in this Review, much remains to be discovered about how this interesting family of proteins functions in a diverse set of processes in metazoans and the functional roles srGAPs play in human disease.
Collapse
Affiliation(s)
- Bethany Lucas
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| |
Collapse
|
11
|
Malki I, Cantrelle FX, Sottejeau Y, Lippens G, Lambert JC, Landrieu I. Regulation of the interaction between the neuronal BIN1 isoform 1 and Tau proteins - role of the SH3 domain. FEBS J 2017; 284:3218-3229. [PMID: 28755476 DOI: 10.1111/febs.14185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/25/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Abstract
Bridging integrator 1 (bin1) gene is a genetic determinant of Alzheimer's disease (AD) and has been reported to modulate Alzheimer's pathogenesis through pathway(s) involving Tau. The functional impact of Tau/BIN1 interaction as well as the molecular details of this interaction are still not fully resolved. As a consequence, how BIN1 through its interaction with Tau affects AD risk is also still not determined. To progress in this understanding, interaction of Tau with two BIN1 isoforms was investigated using Nuclear Magnetic Resonance spectroscopy. 1 H, 15 N spectra showed that the C-terminal SH3 domain of BIN1 isoform 1 (BIN1Iso1) is not mobile in solution but locked with the core of the protein. In contrast, the SH3 domain of BIN1 isoform 9 (BIN1Iso9) behaves as an independent mobile domain. This reveals an equilibrium between close and open conformations for the SH3 domain. Interestingly, a 334-376 peptide from the clathrin and AP-2-binding domain (CLAP) domain of BIN1Iso1, which contains a SH3-binding site, is able to compete with BIN1-SH3 intramolecular interaction. For both BIN1 isoforms, the SH3 domain can interact with Tau(210-240) sequence. Tau(210-240) peptide can indeed displace the intramolecular interaction of the BIN1-SH3 of BIN1Iso1 and form a complex with the released domain. The measured Kd were in agreement with a stronger affinity of Tau peptide. Both CLAP and Tau peptides occupied the same surface on the BIN1-SH3 domain, showing that their interaction is mutually exclusive. These results emphasize an additional level of complexity in the regulation of the interaction between BIN1 and Tau dependent of the BIN1 isoforms.
Collapse
Affiliation(s)
- Idir Malki
- Lille University, CNRS UMR8576, Lille, France
| | | | - Yoann Sottejeau
- Lille University, INSERM UMR1167, Pasteur Institute of Lille, Lille, France
| | - Guy Lippens
- Lille University, CNRS UMR8576, Lille, France
| | | | | |
Collapse
|
12
|
Salzer U, Kostan J, Djinović-Carugo K. Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 2017; 74:2413-2438. [PMID: 28243699 PMCID: PMC5487894 DOI: 10.1007/s00018-017-2478-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Collapse
Affiliation(s)
- Ulrich Salzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julius Kostan
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 119, 1000, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck. Proc Natl Acad Sci U S A 2016; 113:E5552-61. [PMID: 27601635 DOI: 10.1073/pnas.1524412113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane remodeling by Fes/Cip4 homology-Bin/Amphiphysin/Rvs167 (F-BAR) proteins is regulated by autoinhibitory interactions between their SRC homology 3 (SH3) and F-BAR domains. The structural basis of autoregulation, and whether it affects interactions of SH3 domains with other cellular ligands, remain unclear. Here we used single-particle electron microscopy to determine the structure of the F-BAR protein Nervous Wreck (Nwk) in both soluble and membrane-bound states. On membrane binding, Nwk SH3 domains do not completely dissociate from the F-BAR dimer, but instead shift from its concave surface to positions on either side of the dimer. Unexpectedly, along with controlling membrane binding, these autoregulatory interactions inhibit the ability of Nwk-SH3a to activate Wiskott-Aldrich syndrome protein (WASp)/actin related protein (Arp) 2/3-dependent actin filament assembly. In Drosophila neurons, Nwk autoregulation restricts SH3a domain-dependent synaptopod formation, synaptic growth, and actin organization. Our results define structural rearrangements in Nwk that control F-BAR-membrane interactions as well as SH3 domain activities, and suggest that these two functions are tightly coordinated in vitro and in vivo.
Collapse
|
14
|
Abstract
I-BAR proteins are well-known actin-cytoskeleton adaptors and have been observed to be involved in the formation of plasma membrane protrusions (filopodia). I-BAR proteins contain an all-helical, crescent-shaped IRSp53-MIM domain (IMD) dimer that is believed to be able to couple with a membrane shape. This coupling could involve the sensing and even the generation of negative plasma membrane curvature. Indeed, the in vitro studies have shown that IMDs can induce inward tubulation of liposomes. While N-BAR domains, which generate positive membrane curvature, have received a considerable amount of attention from both theory and experiments, the mechanisms of curvature coupling through IMDs are comparatively less studied and understood. Here we used a membrane-shape stability assay developed recently in our lab to quantitatively characterize IMD-induced membrane-shape transitions. We determined a membrane-shape stability diagram for IMDs that reveals how membrane tension and protein density can comodulate the generation of IMD-induced membrane protrusions. From comparison to analytical theory, we determine three key parameters that characterize the curvature coupling of IMD. We find that the curvature generation capacity of IMDs is significantly stronger compared to that of endophilin, an N-BAR protein known to be involved in plasma membrane shape transitions. Contrary to N-BAR domains, where amphipathic helix insertion is known to promote its membrane curvature generation, for IMDs we find that amphipathic helices inhibit membrane shape transitions, consistent with the inverse curvature that IMDs generate. Importantly, in both of these types of BAR domains, electrostatic interactions affect membrane-binding capacity, but do not appear to affect the curvature generation capacity of the protein. These two types of BAR domain proteins show qualitatively similar membrane shape stability diagrams, suggesting an underlying ubiquitous mechanism by which peripheral proteins regulate membrane curvature.
Collapse
|
15
|
Membrane Charge Directs the Outcome of F-BAR Domain Lipid Binding and Autoregulation. Cell Rep 2015; 13:2597-2609. [PMID: 26686642 DOI: 10.1016/j.celrep.2015.11.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/20/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022] Open
Abstract
F-BAR domain proteins regulate and sense membrane curvature by interacting with negatively charged phospholipids and assembling into higher-order scaffolds. However, regulatory mechanisms controlling these interactions are poorly understood. Here, we show that Drosophila Nervous Wreck (Nwk) is autoregulated by a C-terminal SH3 domain module that interacts directly with its F-BAR domain. Surprisingly, this autoregulation does not mediate a simple "on-off" switch for membrane remodeling. Instead, the isolated Nwk F-BAR domain efficiently assembles into higher-order structures and deforms membranes only within a limited range of negative membrane charge, and autoregulation elevates this range. Thus, autoregulation could either reduce membrane binding or promote higher-order assembly, depending on local cellular membrane composition. Our findings uncover an unexpected mechanism by which lipid composition directs membrane remodeling.
Collapse
|
16
|
Solvent effects in the extraction and detection of polycyclic aromatic hydrocarbons from complex oils in complex environments. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0583-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Single particle fluorescence burst analysis of epsin induced membrane fission. PLoS One 2015; 10:e0119563. [PMID: 25799353 PMCID: PMC4370887 DOI: 10.1371/journal.pone.0119563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/14/2015] [Indexed: 12/24/2022] Open
Abstract
Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.
Collapse
|
18
|
Shi Z, Baumgart T. Membrane tension and peripheral protein density mediate membrane shape transitions. Nat Commun 2015; 6:5974. [PMID: 25569184 PMCID: PMC4353700 DOI: 10.1038/ncomms6974] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/28/2014] [Indexed: 01/21/2023] Open
Abstract
Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins.
Collapse
Affiliation(s)
- Zheng Shi
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104, USA
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Abstract
Dynamins and BAR proteins are crucial in a wide variety of cellular processes for their ability to mediate membrane remodeling, such as membrane curvature and membrane fission and fusion. In this review, we highlight dynamins and BAR proteins and the cellular mechanisms that are involved in the initiation and progression of cancer. We specifically discuss the roles of the seproteinsin endocytosis, endo-lysosomal trafficking, autophagy, and apoptosis as these processes are all tightly linked to membrane remodeling and cancer.
Collapse
Affiliation(s)
- Anna C. Sundborger
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jenny E. Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Wu T, Baumgart T. BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2. Biochemistry 2014; 53:7297-309. [PMID: 25350771 PMCID: PMC4245986 DOI: 10.1021/bi501082r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In striated muscles, invaginations
from the plasma membrane, termed
transverse tubules (T-tubule), function in the excitation–contraction
coupling machinery. BIN1 (isoform8) plays a critical role in the biogenesis
of T-tubules. BIN1 contains an N-terminal BAR domain to sense and
induce membrane curvature, an isoform8-specific polybasic motif (exon10)
as the phosphoinositide binding module and a C-terminal Src homology
3 (SH3) domain for the recruitment of downstream proteins such as
dynamin 2. Previous studies of N-BAR domains focused on elucidating
mechanisms of membrane curvature sensing and generation (MC-S&G).
Less is known about how MC-S&G is regulated. We found that the
SH3 domain binds to the exon10 motif more strongly compared to the
proline-rich domain (PRD) of dynamin 2. Furthermore, we found that
the MC-S&G ability of full-length BIN1 is inhibited on membranes
lacking PI(4,5)P2. Addition of PI(4,5)P2 in
the membrane activates BIN1 to sense and induce membrane curvature.
Co-presence of the SH3 domain and exon10 motif leads to the strongest
phosphoinositide-mediated control of BIN1 function. Addition of SH3
domain ligand (such as PRD peptides), as well as addition of the water-soluble
PI(4,5)P2 analogue, can both enhance the MC-S&G ability
of BIN1 on membranes without PI(4,5)P2, indicating that
the key to activate BIN1 is to disrupt the exon10–SH3 interaction.
The nonsense mutation K436X, found in centronuclear myopathy (CNM)
patients, abolishes SH3 domain binding with either exon10 or the PRD
motif, resulting in increased membrane deformation capacity. Our results
suggest an autoinhibition model for BIN1 that involves a synergistic
regulation by membrane composition and protein–protein interactions.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|