1
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
2
|
Yamaguchi S, Sunagawa N, Samejima M, Igarashi K. Thermotolerance Mechanism of Fungal GH6 Cellobiohydrolase. Part I. Characterization of Thermotolerant Mutant from the Basidiomycete Phanerochaete chrysosporium. J Appl Glycosci (1999) 2024; 71:55-62. [PMID: 38863951 PMCID: PMC11163330 DOI: 10.5458/jag.jag.jag-2023_0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 06/13/2024] Open
Abstract
Cellobiohydrolase (CBH), belonging to glycoside hydrolase family 6 (GH6), plays an essential role in cellulose saccharification, but its low thermotolerance presents a challenge in improving the reaction efficiency. Based on a report that chimeric CBH II (GH6) engineered to remove non-disulfide-bonded free Cys shows increased thermotolerance, we previously mutated the two free Cys residues to Ser in GH6 CBH from the basidiomycete Phanerochaete chrysosporium (PcCel6A) and obtained a thermotolerant double mutant, C240S/C393S (Yamaguchi et al., J. Appl. Glycosci. 2020; 67: 79-86). Here, characterization of the double mutant revealed that its activity towards both amorphous and crystalline cellulose was higher than that of the wild-type enzyme at elevated temperature, suggesting that the catalytic domain is the major contributor to the increased thermotolerance. To investigate the role of each free Cys residue, we prepared both single mutants, C240S and C393S, of the catalytic domain of PcCel6A and examined their residual activity at high temperature and the temperature-dependent changes of folding by means of circular dichroism measurements and thermal shift assay. The results indicate that the C393S mutation is the main contributor to both the increased thermotolerance of C240S/C393S and the increased activity of the catalytic domain at high temperature.
Collapse
Affiliation(s)
- Sora Yamaguchi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
3
|
Zajki-Zechmeister K, Eibinger M, Kaira GS, Nidetzky B. Mechanochemical Coupling of Catalysis and Motion in a Cellulose-Degrading Multienzyme Nanomachine. ACS Catal 2024; 14:2656-2663. [PMID: 38384941 PMCID: PMC10877591 DOI: 10.1021/acscatal.3c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
The cellulosome is a megadalton-size protein complex that functions as a biological nanomachine of cellulosic fiber degradation. We show that the cellulosome behaves as a Brownian ratchet that rectifies protein motions on the cellulose surface into a propulsion mechanism by coupling to the hydrolysis of cellulose chains. Movement on cellulose fibrils is unidirectional and results from "macromolecular crawl" composed of dynamic switches between elongated and compact spatial arrangements of enzyme subunits. Deletion of the main exocellulase Cel48S eliminates conformational bias for aligning the subunits to the long fibril axis, which we reveal as crucial for optimum coupling between directional movement and substrate degradation. Implications of the cellulosome acting as a mechanochemical motor suggest a distinct mechanism of enzymatic machinery in the deconstruction of cellulose assemblies.
Collapse
Affiliation(s)
- Krisztina Zajki-Zechmeister
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, Graz 8010, Austria
| | - Manuel Eibinger
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, Graz 8010, Austria
| | - Gaurav Singh Kaira
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, Graz 8010, Austria
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, Graz 8010, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, Graz 8010, Austria
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, Graz 8010, Austria
| |
Collapse
|
4
|
Paul M, Banerjee A, Maiti S, Mitra D, DasMohapatra PK, Thatoi H. Evaluation of substrate specificity and catalytic promiscuity of Bacillus albus cellulase: an insight into in silico proteomic study aiming at enhanced production of renewable energy. J Biomol Struct Dyn 2023:1-23. [PMID: 38126200 DOI: 10.1080/07391102.2023.2295971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Cellulases are enzymes that aid in the hydrolysis of cellulosic fibers and have a wide range of industrial uses. In the present in silico study, sequence alignment between cellulases from different Bacillus species revealed that most of the residues are conserved in those aligned enzymes. Three dimensional structures of cellulase enzymes from 23 different Bacillus species have been predicted and based on the alignment between the modeled structures, those enzymes have been categorized into 7 different groups according to the homology in their conformational folds. There are two structural contents in Gr-I cellulase namely β1-α2 and β3-α5 loops which varies greatly according to their static position. Molecular docking study between the B. albus cellulase and its various cellulosic substrates including xylanoglucan oligosaccharides revealed that residues viz. Phe154, Tyr258, Tyr282, Tyr285, and Tyr376 of B. albus cellulase are significantly involved in formation stacking interaction during enzyme-substrate binding. Residue interaction network and binding energy analysis for the B. albus cellulase with different cellulosic substrates depicted the strong affinity of XylGlc3 substrate with the receptor enzyme. Molecular interaction and molecular dynamics simulation studies exhibited structural stability of enzyme-substrate complexes which are greatly influenced by the presence of catalytic promiscuity in their substrate binding sites. Screening of B. albus in carboxymethylcellulose (CMC) and xylan supplemented agar media revealed the capability of the bacterium in degrading both cellulose and xylan. Overall, the study demonstrated B. albus cellulase as an effective biocatalyst candidate with the potential role of catalytic promiscuity for possible applications in biofuel industries.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
- Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Amrita Banerjee
- Oriental Institute of Science and Technology, Midnapore, India
| | - Smarajit Maiti
- Oriental Institute of Science and Technology, Midnapore, India
| | - Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, India
| | - Pradeep K DasMohapatra
- Department of Microbiology, Raiganj University, Raiganj, India
- PAKB Environment Conservation Centre, Raiganj University, Raiganj, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| |
Collapse
|
5
|
Yang J, Zhang X, Sun Q, Li R, Wang X, Zhao G, He X, Zheng F. Modulation of the catalytic activity and thermostability of a thermostable GH7 endoglucanase by engineering the key loop B3. Int J Biol Macromol 2023; 248:125945. [PMID: 37482151 DOI: 10.1016/j.ijbiomac.2023.125945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The loop B3 of glycoside hydrolase family 7 (GH7) endoglucanases is confined into long and short types. TtCel7 is a thermophilic GH7 endoglucanase from Thermothelomyces thermophilus ATCC 42464 with a long loop B3. TtCel7 was distinct for the excellent thermostability (>30 % residual activity after 1-h incubation at 90 °C). The catalytic efficiency was reduced by removing the disulfide bond in loop B3 (C220A) and truncated the loop B3 (B3cut). However, B3cut exhibited improved thermostability, the remaining enzyme activity increased by 39 %-171 % compared toTtCel7 when treated at 70-90 °C for 1-h. Based on the analysis of molecular dynamics simulation, both loops B1 and A3 of B3cut swing toward the catalytic center, which contributed to the reduced cleft-space and increased structure-rigidity. Conversely, the deletion of disulfide bond resulted in a reduction of structural rigidity in C220A. Through structure-directed enzyme modulation, this study has identified two structural elements that are related to the catalysis and thermostability of TtCel7. The loop B3 of TtCel7 possibly stretches the catalytic pocket, thereby increases the openness of the catalytic tunnel and enhancing flexibility for efficient catalysis. Additionally, the disulfide bond within loop B3 serves to enhance structural stability and maintain a heightened level of activity.
Collapse
Affiliation(s)
- Junzhao Yang
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Xinrui Zhang
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Qingyang Sun
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Ruilin Li
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guozhu Zhao
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Xiangwei He
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Fei Zheng
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Kuch NJ, Kutschke ME, Parker A, Bingman CA, Fox BG. Contribution of calcium ligands in substrate binding and product release in the Acetovibrio thermocellus glycoside hydrolase family 9 cellulase CelR. J Biol Chem 2023; 299:104655. [PMID: 36990218 PMCID: PMC10149213 DOI: 10.1016/j.jbc.2023.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability. This study examines a GH9 from Acetovibrio thermocellus ATCC 27405, AtCelR containing a catalytic domain and a carbohydrate binding module (CBM3c). Crystal structures of the enzyme without substrate, bound to cellohexaose (substrate) or cellobiose (product), show the positioning of ligands to calcium and adjacent residues in the catalytic domain that may contribute to substrate binding and facilitate product release. We also investigated the properties of the enzyme engineered to contain an additional carbohydrate binding module (CBM3a). Relative to the catalytic domain alone, CBM3a gave improved binding for Avicel (a crystalline form of cellulose), and catalytic efficiency (kcat/KM) was improved 40× with both CBM3c and CBM3a present. However, because of the molecular weight added by CBM3a, the specific activity of the engineered enzyme was not increased relative to the native construct consisting of only the catalytic and CBM3c domains. This work provides new insight into a potential role of the conserved calcium in the catalytic domain and identifies contributions and limitations of domain engineering for AtCelR and perhaps other GH9 enzymes.
Collapse
Affiliation(s)
- Nathaniel J Kuch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark E Kutschke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alex Parker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Dane County Youth Apprenticeship Program, Dane County School Consortium, Monona, Wisconsin, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Collaborative Crystallography Core, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
7
|
Li P, Wang X, Zhang C, Xu D. Processive binding mechanism of Cel9G from Clostridium cellulovorans: molecular dynamics and free energy landscape investigations. Phys Chem Chem Phys 2023; 25:646-657. [DOI: 10.1039/d2cp04830b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The processive binding mechanism of cellulose by Cel9G from C. cellulovorans was investigated by MD and metadynamics simulations.
Collapse
Affiliation(s)
- Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| |
Collapse
|
8
|
Penneru SK, Saharay M, Krishnan M. CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol. J Chem Inf Model 2022; 62:6628-6638. [PMID: 35649216 DOI: 10.1021/acs.jcim.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial cellulase enzymes are potent candidates for the efficient production of bioethanol, a promising alternative to fossil fuels, from cellulosic biomass. These enzymes catalyze the breakdown of cellulose in plant biomass into simple sugars and then to bioethanol. In the absence of the enzyme, the cellulosic biomass is recalcitrant to decomposition due to fermentation-resistant lignin and pectin coatings on the cellulose surface, which make them inaccessible for hydrolysis. Cellobiohydrolase CelS is a microbial enzyme that binds to cellulose fiber and efficiently cleaves it into a simple sugar (cellobiose) by a repeated processive chopping mechanism. The two contributing factors to the catalytic reaction rate and the yield of cellobiose are the efficient product expulsion from the product binding site of CelS and the movement of the substrate or cellulose chain into the active site. Despite progress in understanding product expulsion in other cellulases, much remains to be understood about the molecular mechanism of processive action of these enzymes. Here, nonequilibrium molecular dynamics simulations using suitable reaction coordinates are carried out to investigate the energetics and mechanism of the substrate dynamics and product expulsion in CelS. The calculated free energy barrier for the product expulsion is three times lower than that for the processive action indicating that product removal is relatively easier and faster than the sliding of the substrate to the catalytic active site. The water traffic near the active site in response to the product expulsion and the processive action is also explored.
Collapse
Affiliation(s)
- Sree Kavya Penneru
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996-1939, United States
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
9
|
Uchiyama T, Uchihashi T, Ishida T, Nakamura A, Vermaas JV, Crowley MF, Samejima M, Beckham GT, Igarashi K. Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface. SCIENCE ADVANCES 2022; 8:eade5155. [PMID: 36563138 PMCID: PMC9788756 DOI: 10.1126/sciadv.ade5155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Efficient depolymerization of crystalline cellulose requires cooperation between multiple cellulolytic enzymes. Through biochemical approaches, molecular dynamics (MD) simulation, and single-molecule observations using high-speed atomic force microscopy (HS-AFM), we quantify and track synergistic activity for cellobiohydrolases (CBHs) with a lytic polysaccharide monooxygenase (LPMO) from Phanerochaete chrysosporium. Increasing concentrations of LPMO (AA9D) increased the activity of a glycoside hydrolase family 6 CBH, Cel6A, whereas the activity of a family 7 CBH (Cel7D) was enhanced only at lower concentrations of AA9D. MD simulation suggests that the result of AA9D action to produce chain breaks in crystalline cellulose can oxidatively disturb the crystalline surface by disrupting hydrogen bonds. HS-AFM observations showed that AA9D increased the number of Cel7D molecules moving on the substrate surface and increased the processivity of Cel7D, thereby increasing the depolymerization performance, suggesting that AA9D not only generates chain ends but also amorphizes the crystalline surface, thereby increasing the activity of CBHs.
Collapse
Affiliation(s)
- Taku Uchiyama
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Physics, Structural Biology Center, and Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8602, Japan
| | - Takuya Ishida
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiko Nakamura
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Josh V. Vermaas
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Crowley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Faculty of Engineering, Shinshu University, 4-17-1, Wakasato, Nagano 380-8533, Japan
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- VTT Technical Research Center of Finland Ltd., Tietotie 2, P.O. Box 1000, Espoo, FI-02044 VTT, Finland
| |
Collapse
|
10
|
Petrášek Z, Nidetzky B. Model of Processive Catalysis with Site Clustering and Blocking and Its Application to Cellulose Hydrolysis. J Phys Chem B 2022; 126:8472-8485. [PMID: 36251767 PMCID: PMC9623590 DOI: 10.1021/acs.jpcb.2c05956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Interactions between particles moving on a linear track and their possible blocking by obstacles can lead to crowding, impeding the particles' transport kinetics. When the particles are enzymes processively catalyzing a reaction along a linear polymeric substrate, these crowding and blocking effects may substantially reduce the overall catalytic rate. Cellulose hydrolysis by exocellulases processively moving along cellulose chains assembled into insoluble cellulose particles is an example of such a catalytic transport process. The details of the kinetics of cellulose hydrolysis and the causes of the often observed reduction of hydrolysis rate over time are not yet fully understood. Crowding and blocking of enzyme particles are thought to be one of the important factors affecting the cellulose hydrolysis, but its exact role and mechanism are not clear. Here, we introduce a simple model based on an elementary transport process that incorporates the crowding and blocking effects in a straightforward way. This is achieved by making a distinction between binding and non-binding sites on the chain. The model reproduces a range of experimental results, mainly related to the early phase of cellulose hydrolysis. Our results indicate that the combined effects of clustering of binding sites together with the occupancy pattern of these sites by the enzyme molecules play a decisive role in the overall kinetics of cellulose hydrolysis. It is suggested that periodic desorption and rebinding of enzyme molecules could be a basis of a strategy to partially counter the clustering of and blocking by the binding sites and so enhance the rate of cellulose hydrolysis. The general nature of the model means that it could be applicable also to other transport processes that make a distinction between binding and non-binding sites, where crowding and blocking are expected to be relevant.
Collapse
Affiliation(s)
- Zdeněk Petrášek
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010Graz, Austria,
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010Graz, Austria,Austrian
Centre of Industrial Biotechnology, Petersgasse 14, A-8010Graz, Austria,. Phone: +43 (0)316 8738409, +43 (0)316 8738400
| |
Collapse
|
11
|
Zajki-Zechmeister K, Eibinger M, Nidetzky B. Enzyme Synergy in Transient Clusters of Endo- and Exocellulase Enables a Multilayer Mode of Processive Depolymerization of Cellulose. ACS Catal 2022; 12:10984-10994. [PMID: 36082050 PMCID: PMC9442579 DOI: 10.1021/acscatal.2c02377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Biological degradation of cellulosic materials relies on the molecular-mechanistic principle that internally chain-cleaving endocellulases work synergistically with chain end-cleaving exocellulases in polysaccharide chain depolymerization. How endo-exo synergy becomes effective in the deconstruction of a solid substrate that presents cellulose chains assembled into crystalline material is an open question of the mechanism, with immediate implications on the bioconversion efficiency of cellulases. Here, based on single-molecule evidence from real-time atomic force microscopy, we discover that endo- and exocellulases engage in the formation of transient clusters of typically three to four enzymes at the cellulose surface. The clusters form specifically at regular domains of crystalline cellulose microfibrils that feature molecular defects in the polysaccharide chain organization. The dynamics of cluster formation correlates with substrate degradation through a multilayer-processive mode of chain depolymerization, overall leading to the directed ablation of single microfibrils from the cellulose surface. Each multilayer-processive step involves the spatiotemporally coordinated and mechanistically concerted activity of the endo- and exocellulases in close proximity. Mechanistically, the cooperativity with the endocellulase enables the exocellulase to pass through its processive cycles ∼100-fold faster than when acting alone. Our results suggest an advanced paradigm of efficient multienzymatic degradation of structurally organized polymer materials by endo-exo synergetic chain depolymerization.
Collapse
Affiliation(s)
- Krisztina Zajki-Zechmeister
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
| | - Manuel Eibinger
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
12
|
Zajki-Zechmeister K, Kaira GS, Eibinger M, Seelich K, Nidetzky B. Processive Enzymes Kept on a Leash: How Cellulase Activity in Multienzyme Complexes Directs Nanoscale Deconstruction of Cellulose. ACS Catal 2021; 11:13530-13542. [PMID: 34777910 PMCID: PMC8576811 DOI: 10.1021/acscatal.1c03465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Biological deconstruction of polymer materials gains efficiency from the spatiotemporally coordinated action of enzymes with synergetic function in polymer chain depolymerization. To perpetuate enzyme synergy on a solid substrate undergoing deconstruction, the overall attack must alternate between focusing the individual enzymes locally and dissipating them again to other surface sites. Natural cellulases working as multienzyme complexes assembled on a scaffold protein (the cellulosome) maximize the effect of local concentration yet restrain the dispersion of individual enzymes. Here, with evidence from real-time atomic force microscopy to track nanoscale deconstruction of single cellulose fibers, we show that the cellulosome forces the fiber degradation into the transversal direction, to produce smaller fragments from multiple local attacks ("cuts"). Noncomplexed enzymes, as in fungal cellulases or obtained by dissociating the cellulosome, release the confining force so that fiber degradation proceeds laterally, observed as directed ablation of surface fibrils and leading to whole fiber "thinning". Processive cellulases that are enabled to freely disperse evoke the lateral degradation and determine its efficiency. Our results suggest that among natural cellulases, the dispersed enzymes are more generally and globally effective in depolymerization, while the cellulosome represents a specialized, fiber-fragmenting machinery.
Collapse
Affiliation(s)
- Krisztina Zajki-Zechmeister
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
| | - Gaurav Singh Kaira
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Manuel Eibinger
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
| | - Klara Seelich
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
13
|
Anuganti M, Fu H, Ekatan S, Kumar CV, Lin Y. Kinetic Study on Enzymatic Hydrolysis of Cellulose in an Open, Inhibition-Free System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5180-5192. [PMID: 33872034 DOI: 10.1021/acs.langmuir.1c00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the complexity of cellulases and the requirement of enzyme adsorption on cellulose prior to reactions, it is difficult to evaluate their reaction with a general mechanistic scheme. Nevertheless, it is of great interest to come up with an approximate analytic description of a valid model for the purpose of developing an intuitive understanding of these complex enzyme systems. Herein, we used the surface plasmonic resonance method to monitor the action of a cellobiohydrolase by itself, as well as its mixture with a synergetic endoglucanase, on the surface of a regenerated model cellulose film, under continuous flow conditions. We found a phenomenological approach by taking advantage of the long steady state of cellulose hydrolysis in the open, inhibition-free system. This provided a direct and reliable way to analyze the adsorption and reaction processes with a minimum number of fitting parameters. We investigated a generalized Langmuir-Michaelis-Menten model to describe a full set of kinetic results across a range of enzyme concentrations, compositions, and temperatures. The overall form of the equations describing the pseudo-steady-state kinetics of the flow-system shares some interesting similarities with the Michaelis-Menten equation. The use of familiar Michaelis-Menten parameters in the analysis provides a unifying framework to study cellulase kinetics. The strategy may provide a shortcut for approaching a quantitative while intuitive understanding of enzymatic degradation of cellulose from top to bottom. The open system approach and the kinetic analysis should be applicable to a variety of cellulases and reaction systems to accelerate the progress in the field.
Collapse
Affiliation(s)
- Murali Anuganti
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hailin Fu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Stephen Ekatan
- Polymer Program, Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
14
|
Li X, Zangiabadi M, Zhao Y. Molecularly Imprinted Synthetic Glucosidase for the Hydrolysis of Cellulose in Aqueous and Nonaqueous Solutions. J Am Chem Soc 2021; 143:5172-5181. [DOI: 10.1021/jacs.1c01352] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
15
|
Nakamura A, Kanazawa T, Furuta T, Sakurai M, Saloheimo M, Samejima M, Koivula A, Igarashi K. Role of Tryptophan 38 in Loading Substrate Chain into the Active-site Tunnel of Cellobiohydrolase I from Trichoderma reesei. J Appl Glycosci (1999) 2021; 68:19-29. [PMID: 34354542 PMCID: PMC8116176 DOI: 10.5458/jag.jag.jag-2020_0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Cellobiohydrolase I from Trichoderma reesei ( Tr Cel7A) is one of the best-studied cellulases, exhibiting high activity towards crystalline cellulose. Tryptophan residues at subsites -7 and -4 (Trp40 and Trp38 respectively) are located at the entrance and middle of the tunnel-like active site of Tr Cel7A, and are conserved among the GH family 7 cellobiohydrolases. Trp40 of Tr Cel7A is important for the recruitment of cellulose chain ends on the substrate surface, but the role of Trp38 is less clear. Comparison of the effects of W38A and W40A mutations on the binding energies of sugar units at the two subsites indicated that the contribution of Trp38 to the binding was greater than that of Trp40. In addition, the smooth gradient of binding energy was broken in W38A mutant. To clarify the importance of Trp38, the activities of Tr Cel7A WT and W38A towards crystalline cellulose and amorphous cellulose were compared. W38A was more active than WT towards amorphous cellulose, whereas its activity towards crystalline cellulose was only one-tenth of that of WT. To quantify the effect of mutation at subsite -4, we measured kinetic parameters of Tr Cel7A WT, W40A and W38A towards cello-oligosaccharides. All combinations of enzymes and substrates showed substrate inhibition, and comparison of the inhibition constants showed that the Trp38 residue increases the velocity of substrate intake ( kon for forming productive complex) from the minus side of the subsites. These results indicate a key role of Trp38 residue in processively loading the reducing-end of cellulose chain into the catalytic tunnel.
Collapse
Affiliation(s)
- Akihiko Nakamura
- 1 Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University
| | - Takashi Kanazawa
- 2 School of Life Science and Technology, Tokyo Institute of Technology
| | - Tadaomi Furuta
- 2 School of Life Science and Technology, Tokyo Institute of Technology
| | - Minoru Sakurai
- 2 School of Life Science and Technology, Tokyo Institute of Technology
| | | | - Masahiro Samejima
- 4 Faculty of Engineering, Shinshu University.,5 Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo
| | - Anu Koivula
- 3 VTT Technical Research Centre of Finland Ltd
| | - Kiyohiko Igarashi
- 3 VTT Technical Research Centre of Finland Ltd.,5 Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo
| |
Collapse
|
16
|
A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases. J Biol Chem 2021; 296:100504. [PMID: 33675751 PMCID: PMC8047454 DOI: 10.1016/j.jbc.2021.100504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.
Collapse
|
17
|
Qu M, Watanabe-Nakayama T, Sun S, Umeda K, Guo X, Liu Y, Ando T, Yang Q. High-Speed Atomic Force Microscopy Reveals Factors Affecting the Processivity of Chitinases during Interfacial Enzymatic Hydrolysis of Crystalline Chitin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingbo Qu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | | | - Shaopeng Sun
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Xiaoxi Guo
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Yuansheng Liu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7 Pengfei Road, Shenzhen 518120, China
| |
Collapse
|
18
|
Yamaguchi S, Sunagawa N, Tachioka M, Igarashi K, Samejima M. Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete Phanerochaete chrysosporium. J Appl Glycosci (1999) 2020; 67:79-86. [PMID: 34354533 PMCID: PMC8132074 DOI: 10.5458/jag.jag.jag-2020_0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase Pc Cel6A from the fungus Phanerochaete chrysosporium , and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris . Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of Pc Cel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.
Collapse
Affiliation(s)
- Sora Yamaguchi
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naoki Sunagawa
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Mikako Tachioka
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,2 Deep-Sea Nanoscience Research Group, Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology
| | - Kiyohiko Igarashi
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,3 VTT Technical Research Centre of Finland
| | - Masahiro Samejima
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,4 Faculty of Engineering, Shinshu University
| |
Collapse
|
19
|
Nakamura A, Ishiwata D, Visootsat A, Uchiyama T, Mizutani K, Kaneko S, Murata T, Igarashi K, Iino R. Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases. J Biol Chem 2020; 295:14606-14617. [PMID: 32816991 PMCID: PMC7586223 DOI: 10.1074/jbc.ra120.014792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/15/2020] [Indexed: 01/09/2023] Open
Abstract
Cellobiohydrolases directly convert crystalline cellulose into cellobiose and are of biotechnological interest to achieve efficient biomass utilization. As a result, much research in the field has focused on identifying cellobiohydrolases that are very fast. Cellobiohydrolase A from the bacterium Cellulomonas fimi (CfCel6B) and cellobiohydrolase II from the fungus Trichoderma reesei (TrCel6A) have similar catalytic domains (CDs) and show similar hydrolytic activity. However, TrCel6A and CfCel6B have different cellulose-binding domains (CBDs) and linkers: TrCel6A has a glycosylated peptide linker, whereas CfCel6B's linker consists of three fibronectin type 3 domains. We previously found that TrCel6A's linker plays an important role in increasing the binding rate constant to crystalline cellulose. However, it was not clear whether CfCel6B's linker has similar function. Here we analyze kinetic parameters of CfCel6B using single-molecule fluorescence imaging to compare CfCel6B and TrCel6A. We find that CBD is important for initial binding of CfCel6B, but the contribution of the linker to the binding rate constant or to the dissociation rate constant is minor. The crystal structure of the CfCel6B CD showed longer loops at the entrance and exit of the substrate-binding tunnel compared with TrCel6A CD, which results in higher processivity. Furthermore, CfCel6B CD showed not only fast surface diffusion but also slow processive movement, which is not observed in TrCel6A CD. Combined with the results of a phylogenetic tree analysis, we propose that bacterial cellobiohydrolases are designed to degrade crystalline cellulose using high-affinity CBD and high-processivity CD.
Collapse
Affiliation(s)
- Akihiko Nakamura
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Shizuoka, Japan.
| | - Daiki Ishiwata
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Akasit Visootsat
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Taku Uchiyama
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ryota Iino
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
20
|
Abstract
Some cellulases exhibit “processivity”: the ability to degrade crystalline cellulose through successive hydrolytic catalytic reactions without the release of the enzyme from the substrate surface. We previously observed the movement of fungal processive cellulases by high-speed atomic force microscopy, and here, we use the same technique to directly observe the processive movement of bacterial cellobiohydrolases settling a long-standing controversy. Although fungal and bacterial processive cellulases have completely different protein folds, they have evolved to acquire processivity through the same strategy of adding subsites to extend the substrate-binding site and forming a tunnel-like active site by increasing the number of loops covering the active site. This represents an example of protein-level convergent evolution to acquire the same functions from different ancestors. Cellulose is the most abundant biomass on Earth, and many microorganisms depend on it as a source of energy. It consists mainly of crystalline and amorphous regions, and natural degradation of the crystalline part is highly dependent on the degree of processivity of the degrading enzymes (i.e., the extent of continuous hydrolysis without detachment from the substrate cellulose). Here, we report high-speed atomic force microscopic (HS-AFM) observations of the movement of four types of cellulases derived from the cellulolytic bacteria Cellulomonas fimi on various insoluble cellulose substrates. The HS-AFM images clearly demonstrated that two of them (CfCel6B and CfCel48A) slide on crystalline cellulose. The direction of processive movement of CfCel6B is from the nonreducing to the reducing end of the substrate, which is opposite that of processive cellulase Cel7A of the fungus Trichoderma reesei (TrCel7A), whose movement was first observed by this technique, while CfCel48A moves in the same direction as TrCel7A. When CfCel6B and TrCel7A were mixed on the same substrate, “traffic accidents” were observed, in which the two cellulases blocked each other’s progress. The processivity of CfCel6B was similar to those of fungal family 7 cellulases but considerably higher than those of fungal family 6 cellulases. The results indicate that bacteria utilize family 6 cellulases as high-processivity enzymes for efficient degradation of crystalline cellulose, whereas family 7 enzymes have the same function in fungi. This is consistent with the idea of convergent evolution of processive cellulases in fungi and bacteria to achieve similar functionality using different protein foldings.
Collapse
|
21
|
Igarashi K, Kaneko S, Kitaoka M, Samejima M. Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium. J Appl Glycosci (1999) 2020; 67:51-57. [PMID: 34354528 PMCID: PMC8293687 DOI: 10.5458/jag.jag.jag-2020_0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 12/02/2022] Open
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar Km and kcat values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher Km value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,2 VTT Technical Research Centre of Finland Ltd
| | - Satoshi Kaneko
- 3 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Motomitsu Kitaoka
- 4 Faculty of Agriculture, Niigata University.,5 Food Research Institute, National Agriculture and Food Research Organization
| | - Masahiro Samejima
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,6 Faculty of Engineering, Shinshu University
| |
Collapse
|
22
|
Sørlie M, Horn SJ, Vaaje-Kolstad G, Eijsink VG. Using chitosan to understand chitinases and the role of processivity in the degradation of recalcitrant polysaccharides. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Røjel N, Kari J, Sørensen TH, Badino SF, Morth JP, Schaller K, Cavaleiro AM, Borch K, Westh P. Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues. J Biol Chem 2020; 295:1454-1463. [PMID: 31848226 PMCID: PMC7008363 DOI: 10.1074/jbc.ra119.011420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Indexed: 11/06/2022] Open
Abstract
Cellobiohydrolases effectively degrade cellulose and are of biotechnological interest because they can convert lignocellulosic biomass to fermentable sugars. Here, we implemented a fluorescence-based method for real-time measurements of complexation and decomplexation of the processive cellulase Cel7A and its insoluble substrate, cellulose. The method enabled detailed kinetic and thermodynamic analyses of ligand binding in a heterogeneous system. We studied WT Cel7A and several variants in which one or two of four highly conserved Trp residues in the binding tunnel had been replaced with Ala. WT Cel7A had on/off-rate constants of 1 × 105 m-1 s-1 and 5 × 10-3 s-1, respectively, reflecting the slow dynamics of a solid, polymeric ligand. Especially the off-rate constant was many orders of magnitude lower than typical values for small, soluble ligands. Binding rate and strength both were typically lower for the Trp variants, but effects of the substitutions were moderate and sometimes negligible. Hence, we propose that lowering the activation barrier for complexation is not a major driving force for the high conservation of the Trp residues. Using so-called Φ-factor analysis, we analyzed the kinetic and thermodynamic results for the variants. The results of this analysis suggested a transition state for complexation and decomplexation in which the reducing end of the ligand is close to the tunnel entrance (near Trp-40), whereas the rest of the binding tunnel is empty. We propose that this structure defines the highest free-energy barrier of the overall catalytic cycle and hence governs the turnover rate of this industrially important enzyme.
Collapse
Affiliation(s)
- Nanna Røjel
- Institut for Naturvidenskab og Miljo, Roskilde University, DK-4000 Roskilde, Denmark
| | - Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Silke F Badino
- Institut for Naturvidenskab og Miljo, Roskilde University, DK-4000 Roskilde, Denmark
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kay Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes A/S, DK-2800 Kgs. Lyngby Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
24
|
Visootsat A, Nakamura A, Vignon P, Watanabe H, Uchihashi T, Iino R. Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase A from Serratia marcescens. J Biol Chem 2020; 295:1915-1925. [PMID: 31924658 PMCID: PMC7029130 DOI: 10.1074/jbc.ra119.012078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Chitin degradation is important for biomass conversion and has potential applications for agriculture, biotechnology, and the pharmaceutical industry. Chitinase A from the Gram-negative bacterium Serratia marcescens (SmChiA) is a processive enzyme that hydrolyzes crystalline chitin as it moves linearly along the substrate surface. In a previous study, the catalytic activity of SmChiA against crystalline chitin was found to increase after the tryptophan substitution of two phenylalanine residues (F232W and F396W), located at the entrance and exit of the substrate binding cleft of the catalytic domain, respectively. However, the mechanism underlying this high catalytic activity remains elusive. In this study, single-molecule fluorescence imaging and high-speed atomic force microscopy were applied to understand the mechanism of this high-catalytic-activity mutant. A reaction scheme including processive catalysis was used to reproduce the properties of SmChiA WT and F232W/F396W, in which all of the kinetic parameters were experimentally determined. High activity of F232W/F396W mutant was caused by a high processivity and a low dissociation rate constant after productive binding. The turnover numbers for both WT and F232W/F396W, determined by the biochemical analysis, were well-replicated using the kinetic parameters obtained from single-molecule imaging analysis, indicating the validity of the reaction scheme. Furthermore, alignment of amino acid sequences of 258 SmChiA-like proteins revealed that tryptophan, not phenylalanine, is the predominant amino acid at the corresponding positions (Phe-232 and Phe-396 for SmChiA). Our study will be helpful for understanding the kinetic mechanisms and further improvement of crystalline chitin hydrolytic activity of SmChiA mutants.
Collapse
Affiliation(s)
- Akasit Visootsat
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Akihiko Nakamura
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Paul Vignon
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Chimie ParisTech, Paris 75231, France
| | - Hiroki Watanabe
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8601, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Science, Okazaki, Aichi 444-8787, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8601, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Science, Okazaki, Aichi 444-8787, Japan
| | - Ryota Iino
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
25
|
Shimizu FL, Zamora HDZ, Schmatz AA, Melati RB, Bueno D, Brienzo M. Biofuels Generation Based on Technical Process and Biomass Quality. CLEAN ENERGY PRODUCTION TECHNOLOGIES 2020. [DOI: 10.1007/978-981-13-8637-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Schiano‐di‐Cola C, Kołaczkowski B, Sørensen TH, Christensen SJ, Cavaleiro AM, Windahl MS, Borch K, Morth JP, Westh P. Structural and biochemical characterization of a family 7 highly thermostable endoglucanase from the fungusRasamsonia emersonii. FEBS J 2019; 287:2577-2596. [DOI: 10.1111/febs.15151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Trine Holst Sørensen
- Department of Science and Environment Roskilde University Denmark
- Novozymes A/S Lyngby Denmark
| | | | | | - Michael Skovbo Windahl
- Department of Science and Environment Roskilde University Denmark
- Novozymes A/S Lyngby Denmark
| | | | - Jens Preben Morth
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| | - Peter Westh
- Department of Science and Environment Roskilde University Denmark
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| |
Collapse
|
27
|
Abstract
Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Trichoderma reesei Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.
Collapse
|
28
|
Valadares F, Gonçalves TA, Damasio A, Milagres AM, Squina FM, Segato F, Ferraz A. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme Microb Technol 2019; 130:109370. [PMID: 31421724 DOI: 10.1016/j.enzmictec.2019.109370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Secretome evaluations of lignocellulose-decay basidiomycetes can reveal new enzymes in selected fungal species that degrade specific substrates. Proteins discovered in such studies can support biorefinery development. Brown-rot (Gloeophyllum trabeum) and white-rot (Pleurotus ostreatus) fungi growing in sugarcane bagasse solid-state cultures produced 119 and 63 different extracellular proteins, respectively. Several of the identified enzymes are suitable for in vitro biomass conversion, including a range of cellulases (endoglucanases, cellobiohydrolases and β-glucosidases), hemicellulases (endoxylanases, α-arabinofuranosidases, α-glucuronidases and acetylxylan esterases) and carbohydrate-active auxiliary proteins, such as AA9 lytic polysaccharide monooxygenase, AA1 laccase and AA2 versatile peroxidase. Extracellular oxalate decarboxylase was also detected in both fungal species, exclusively in media containing sugarcane bagasse. Interestingly, intracellular AA6 quinone oxidoreductases were also exclusively produced under sugarcane bagasse induction in both fungi. These enzymes promote quinone redox cycling, which is used to produce Fenton's reagents by lignocellulose-decay fungi. Hitherto undiscovered hypothetical proteins that are predicted in lignocellulose-decay fungi genomes appeared in high relative abundance in the cultures containing sugarcane bagasse, which suggests undisclosed, new biochemical mechanisms that are used by lignocellulose-decay fungi to degrade sugarcane biomass. In general, lignocellulose-decay fungi produce a number of canonical hydrolases, as well as some newly observed enzymes, that are suitable for in vitro biomass digestion in a biorefinery context.
Collapse
Affiliation(s)
- Fernanda Valadares
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - Thiago A Gonçalves
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, 18023-000 Sorocaba, SP, Brazil; Institute of Biology, University of Campinas (UNICAMP), 13080-655, Campinas, SP, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), 13080-655, Campinas, SP, Brazil
| | - Adriane Mf Milagres
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Fernando Segato
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil.
| |
Collapse
|
29
|
Petrášek Z, Eibinger M, Nidetzky B. Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A. Biotechnol Bioeng 2019; 116:515-525. [PMID: 30515756 PMCID: PMC6590443 DOI: 10.1002/bit.26889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023]
Abstract
The hydrolysis of cellulose by processive cellulases, such as exocellulase TrCel7A from Trichoderma reesei, is typically characterized by an initial burst of high activity followed by a slowdown, often leading to incomplete hydrolysis of the substrate. The origins of these limitations to cellulose hydrolysis are not yet fully understood. Here, we propose a new model for the initial phase of cellulose hydrolysis by processive cellulases, incorporating a bound but inactive enzyme state. The model, based on ordinary differential equations, accurately reproduces the activity burst and the subsequent slowdown of the cellulose hydrolysis and describes the experimental data equally well or better than the previously suggested model. We also derive steady‐state expressions that can be used to describe the pseudo‐steady state reached after the initial activity burst. Importantly, we show that the new model predicts the existence of an optimal enzyme‐substrate affinity at which the pseudo‐steady state hydrolysis rate is maximized. The model further allows the calculation of glucose production rate from the first cut in the processive run and reproduces the second activity burst commonly observed upon new enzyme addition. These results are expected to be applicable also to other processive enzymes.
Collapse
Affiliation(s)
- Zdeneˇk Petrášek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
30
|
Dong M, Wang S, Xu F, Wang J, Yang N, Li Q, Chen J, Li W. Pretreatment of sweet sorghum straw and its enzymatic digestion: insight into the structural changes and visualization of hydrolysis process. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:276. [PMID: 31768194 PMCID: PMC6874820 DOI: 10.1186/s13068-019-1613-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/10/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The efficient utilization of lignocellulosic biomass for biofuel production has received increasing attention. Previous studies have investigated the pretreatment process of biomass, but the detailed enzymatic hydrolysis process of pretreated biomass remains largely unclear. Thus, this study investigated the pretreatment efficiency of dilute alkali, acid, hydrogen peroxide and its ultimate effects on enzymatic hydrolysis. Furthermore, to better understand the enzymatic digestion process of alkali-pretreated sweet sorghum straw (SSS), multimodal microscopy techniques were used to visualize the enzymatic hydrolysis process. RESULT After pretreatment with alkali, an enzymatic hydrolysis efficiency of 86.44% was obtained, which increased by 99.54% compared to the untreated straw (43.23%). The FTIR, XRD and SEM characterization revealed a sequence of microstructural changes occurring in plant cell walls after pretreatment, including the destruction of lignin-polysaccharide interactions, the increase of porosity and crystallinity, and reduction of recalcitrance. During the course of hydrolysis, the cellulase dissolved the cell walls in the same manner and the digestion firstly occurred from the middle of cell walls and then toward the cell wall corners. The CLSM coupled with fluorescent labeling demonstrated that the sclerenchyma cells and vascular bundles in natural SSS were highly lignified, which caused the nonproductive bindings of cellulase on lignin. However, the efficient delignification significantly increased the accessibility and digestibility of cellulase to biomass, thereby improving the saccharification efficiency. CONCLUSION This work will be helpful in investigating the biomass pretreatment and its structural characterization. In addition, the visualization results of the enzymatic hydrolysis process of pretreated lignocellulose could be used for guidance to explore the lignocellulosic biomass processing and large-scale biofuel production.
Collapse
Affiliation(s)
- Miaoyin Dong
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, 730000 Gansu People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049 People’s Republic of China
| | - Shuyang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, 730000 Gansu People’s Republic of China
- Institute of Biology, Gansu Academy of Sciences, 197 Dingxi South Rd., Lanzhou, 730000 Gansu People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049 People’s Republic of China
| | - Fuqiang Xu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, 730000 Gansu People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049 People’s Republic of China
| | - Junkai Wang
- College of Physics and Electronic Engineering, Northwest Normal University, Anning Rd., Lanzhou, 730000 Gansu People’s Republic of China
| | - Ning Yang
- College of Life Sciences, Northwest Normal University, Anning Rd., Lanzhou, 730000 Gansu People’s Republic of China
| | - Qiaoqiao Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, 730000 Gansu People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049 People’s Republic of China
| | - Jihong Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, 730000 Gansu People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049 People’s Republic of China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, 730000 Gansu People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049 People’s Republic of China
| |
Collapse
|
31
|
Nakamura A, Iino R. Visualization of Functional Structure and Kinetic Dynamics of Cellulases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:201-217. [PMID: 30484250 DOI: 10.1007/978-981-13-2158-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Akihiko Nakamura
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
- Department of Functional Molecular Science, School of Physical Sciences, Kanagawa, Japan.
| | - Ryota Iino
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Kanagawa, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Aichi, Japan
| |
Collapse
|
32
|
|
33
|
Nakamura A, Okazaki KI, Furuta T, Sakurai M, Iino R. Processive chitinase is Brownian monorail operated by fast catalysis after peeling rail from crystalline chitin. Nat Commun 2018; 9:3814. [PMID: 30232340 PMCID: PMC6145945 DOI: 10.1038/s41467-018-06362-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 12/02/2022] Open
Abstract
Processive chitinase is a linear molecular motor which moves on the surface of crystalline chitin driven by processive hydrolysis of single chitin chain. Here, we analyse the mechanism underlying unidirectional movement of Serratia marcescens chitinase A (SmChiA) using high-precision single-molecule imaging, X-ray crystallography, and all-atom molecular dynamics simulation. SmChiA shows fast unidirectional movement of ~50 nm s-1 with 1 nm forward and backward steps, consistent with the length of reaction product chitobiose. Analysis of the kinetic isotope effect reveals fast substrate-assisted catalysis with time constant of ~3 ms. Decrystallization of the single chitin chain from crystal surface is the rate-limiting step of movement with time constant of ~17 ms, achieved by binding free energy at the product-binding site of SmChiA. Our results demonstrate that SmChiA operates as a burnt-bridge Brownian ratchet wherein the Brownian motion along the single chitin chain is rectified forward by substrate-assisted catalysis.
Collapse
Grants
- JP15H06898 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- JP17K18429 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- JP17H05899 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- JP16H00789 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- JP16H00858 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- JP17K19213 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- JP18H05424 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- JP15H04366 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 01311805 MEXT | National Institutes of Natural Sciences (NINS)
- J281002 MEXT | National Institutes of Natural Sciences (NINS)
- Advanced Technology Institute Research Grants (RG2709)
Collapse
Affiliation(s)
- Akihiko Nakamura
- Institute for Molecular Science, National Institutes of Natural Sciences, 444-8787, Okazaki, Aichi, Japan.
- Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan.
| | - Kei-Ichi Okazaki
- Institute for Molecular Science, National Institutes of Natural Sciences, 444-8787, Okazaki, Aichi, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, 444-8787, Okazaki, Aichi, Japan.
- Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan.
| |
Collapse
|
34
|
Zhai R, Hu J, Saddler JN. The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. BIORESOURCE TECHNOLOGY 2018; 258:79-87. [PMID: 29524690 DOI: 10.1016/j.biortech.2017.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 05/24/2023]
Abstract
In this study, the influence of major hemicellulosic sugars (mannose and xylose) on cellulose hydrolysis and major enzyme activities were evaluated by using both commercial enzyme cocktail and purified cellulase monocomponents over a "library" of cellulosic substrates. Surprisingly, the results showed that unlike glucose, mannose/xylose did not inhibit individual cellulase activities but significantly decreased their hydrolytic performance on cellulose substrates. When various enzyme-substrate interactions (e.g. adsorption/desorption, productive binding, and processive moving) were evaluated, it appeared that these hemicellulosic sugars significantly reduced the productive binding and processivity of Cel7A, which in turn limited cellulase hydrolytic efficacy. Among a range of major cellulose characteristics (e.g. crystallinity, degree of polymerization, accessibility, and surface charges), the acid group content of the cellulosic substrates seemed to be the main driver that determined the extent of hemicellulosic sugar inhibition. Our results provided new insights for better understanding the sugar inhibition mechanisms of cellulose hydrolysis.
Collapse
Affiliation(s)
- Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| | - Jinguang Hu
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada.
| | - Jack N Saddler
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| |
Collapse
|
35
|
Silveira RL, Skaf MS. Concerted motions and large-scale structural fluctuations of Trichoderma reesei Cel7A cellobiohydrolase. Phys Chem Chem Phys 2018; 20:7498-7507. [PMID: 29488531 DOI: 10.1039/c8cp00101d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cellobiohydrolases (CBHs) are key enzymes for the saccharification of cellulose and play major roles in industrial settings for biofuel production. The catalytic core domain of these enzymes exhibits a long and narrow binding tunnel capable of binding glucan chains from crystalline cellulose and processively hydrolyze them. The binding cleft is topped by a set of loops, which are believed to play key roles in substrate binding and cleavage processivity. Here, we present an analysis of the loop motions of the Trichoderma reesei Cel7A catalytic core domain (TrCel7A) using conventional and accelerated molecular dynamics simulations. We observe that the loops exhibit highly coupled fluctuations and cannot move independently of each other. In the absence of a substrate, the characteristic large amplitude dynamics of TrCel7A consists of breathing motions, where the loops undergo open-and-close fluctuations. Upon substrate binding, the open-close fluctuations of the loops are quenched and one of the loops moves parallel to the binding site, possibly to allow processive motion along the glucan chain. Using microsecond accelerated molecular dynamics, we observe large-scale fluctuations of the loops (up to 37 Å) and the entire exposure of the TrCel7A binding site in the absence of the substrate, resembling an endoglucanase. These results suggest that the initial CBH-substrate contact and substrate recognition by the enzyme are similar to that of endoglucanases and, once bound to the substrate, the loops remain closed for proper enzymatic activity.
Collapse
Affiliation(s)
- Rodrigo L Silveira
- Institute of Chemistry, University of Campinas, Cx. P. 6154, Campinas, 13084-862, SP, Brazil.
| | | |
Collapse
|
36
|
Kadowaki MAS, Higasi P, de Godoy MO, Prade RA, Polikarpov I. Biochemical and structural insights into a thermostable cellobiohydrolase from Myceliophthora thermophila. FEBS J 2018; 285:559-579. [PMID: 29222836 DOI: 10.1111/febs.14356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
Abstract
Cellobiohydrolases hydrolyze cellulose, a linear polymer with glucose monomers linked exclusively by β-1,4 glycosidic linkages. The widespread hydrogen bonding network tethers individual cellulose polymers forming crystalline cellulose, which prevent the access of hydrolytic enzymes and water molecules. The most abundant enzyme secreted by Myceliophthora thermophila M77 in response to the presence of biomass is the cellobiohydrolase MtCel7A, which is composed by a GH7-catalytic domain (CD), a linker, and a CBM1-type carbohydrate-binding module. GH7 cellobiohydrolases have been studied before, and structural models have been proposed. However, currently available GH7 crystal structures only define separate catalytic domains and/or cellulose-binding modules and do not include the full-length structures that are involved in shaping the catalytic mode of operation. In this study, we determined the 3D structure of catalytic domain using X-ray crystallography and retrieved the full-length enzyme envelope via small-angle X-ray scattering (SAXS) technique. The SAXS data reveal a tadpole-like molecular shape with a rigid linker connecting the CD and CBM. Our biochemical studies show that MtCel7A has higher catalytic efficiency and thermostability as well as lower processivity when compared to the well-studied TrCel7A from Trichoderma reesei. Based on a comparison of the crystallographic structures of CDs and their molecular dynamic simulations, we demonstrate that MtCel7A has considerably higher flexibility than TrCel7A. In particular, loops that cover the active site are more flexible and undergo higher conformational fluctuations, which might account for decreased processivity and enhanced enzymatic efficiency. Our statistical coupling analysis suggests co-evolution of amino acid clusters comprising the catalytic site of MtCel7A, which correlate with the steps in the catalytic cycle of the enzyme. DATABASE The atomic coordinates and structural factors of MtCel7A have been deposited in the Protein Data Bank with accession number 5W11.
Collapse
Affiliation(s)
| | - Paula Higasi
- São Carlos Institute of Physics, University of São Paulo, Brazil
| | | | - Rolf A Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Brazil
| |
Collapse
|
37
|
Zhou H, Wang L, Liu Y. Physico-chemical oxidative cleavage strategy facilitates the degradation of recalcitrant crystalline cellulose by cellulases hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:16. [PMID: 29416561 PMCID: PMC5784611 DOI: 10.1186/s13068-018-1016-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/10/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Efficient enzymatic conversion of recalcitrant crystalline cellulose is critical for enabling cost-effective industrial conversion of cellulosic biomass to biofuels and chemicals. Fully understanding enzyme digestion mechanism is paving a new way to design efficient process for biomass conversion. Accordingly, a continuing drive is inspiring to discover new routes to promote crystalline cellulose disruption. RESULTS Herein, a physico-chemical oxidative cleavage strategy of irradiation oxidation/post-reduction (IOPR) was employed to treat crystalline cellulose I to cleave glycosidic bonds association with some new oxidized and reduced chain ends, thus boosting downstream degradation by cellulases from Trichoderma reesei. The hydrolysis performance of treated crystalline cellulose was conducted with either T. reesei Cel7A (TrCel7A) alone, or a cellulase enzyme mixture (90% Celluclast 1.5 L, 10% β-glucosidase). 81.6 and/or 97% of conversion efficiency have been reached for 24-h and 48-h cellulase hydrolysis, respectively. The high efficient conversion of crystalline cellulose after IOPR is mainly attributed to generating some new chain ends, which are identified by MAIDI-TOF-MS and HPLC. Furthermore, the nanoscale architectures of crystalline cellulose before and after IOPR are systematically investigated by XRD, EPR, ATR- FTIR, GPC, and XPS techniques. Together with TEM images, the results reveal a fascinating digestion mechanism of "peel-off" and "cavity-formation" paradigms toward degrading crystalline cellulose by cellulase mixtures after IOPR treatment. CONCLUSIONS This encouraging results show that the proposed IOPR approach will become a potential competitive alternative to current biomass pretreatment. It opens a new avenue toward the implementation of pretreatment and the design of enzyme cocktails in lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Huan Zhou
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Liuyang Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yun Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| |
Collapse
|
38
|
Alanine substitution in cellobiohydrolase provides new insights into substrate threading. Sci Rep 2017; 7:16320. [PMID: 29176588 PMCID: PMC5701224 DOI: 10.1038/s41598-017-16434-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
The glycoside hydrolase family 7 (GH7) member cellobiohydrolase (CBH) is a key enzyme that degrades crystalline cellulose, an important structural component of plant cell walls. As GH7 CBH is a major component in the enzyme mixture used to degrade biomass into fermentable glucose in biorefineries, enhancing its catalytic activity will significantly impact development in this field. GH7 CBH possesses a catalytic tunnel through which cellulose substrates are threaded and hydrolysed. Despite numerous studies dissecting this processive mechanism, the role of amino acid residues in the tunnel remains not fully understood. Herein, we examined the respective contributions of nine amino acid residues in the catalytic tunnel of GH7 CBH from Talaromyces cellulolyticus by substitution with alanine. As a result, N62A and K203A mutants were found to possess significantly higher cellulase activities than wild type. Molecular dynamics simulations showed that the N62 residue interacted strongly with the cellulose substrate, impeding threading, while the N62A mutant allowed cellulose to proceed more smoothly. Furthermore, the W63 residue was observed to facilitate twisting of the cellulose substrate in our simulations. This study helps elucidate cellulose threading and provides insight into biomass hydrolysis.
Collapse
|
39
|
Single-molecule study of oxidative enzymatic deconstruction of cellulose. Nat Commun 2017; 8:894. [PMID: 29026070 PMCID: PMC5638905 DOI: 10.1038/s41467-017-01028-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/02/2017] [Indexed: 01/29/2023] Open
Abstract
LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme’s biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time ( ~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly ( ≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion. Understanding the role of enzymes in biomass depolymerization is essential for the development of more efficient biorefineries. Here, the authors show by atomic force microscopy the real-time mechanism of cellulose deconstruction by lytic polysaccharide monooxygenases.
Collapse
|
40
|
Song L, Li Y, Xiong Z, Pan L, Luo Q, Xu X, Lu S. Water-Induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohydr Polym 2017; 179:110-117. [PMID: 29111033 DOI: 10.1016/j.carbpol.2017.09.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022]
Abstract
A novel water-induced shape memory nanocomposites were prepared by introducing graphene oxide (GO), which was based on microcrystalline cellulose nanofibers (MSF-g-COOH) extracting from sisal fibers. The results showed that the water-induced shape memory properties of MSF-g-COOH were significantly improved by the strong hydrogen bonding interaction between MSF-g-COOH and GO, It leads to some additional physically cross-linked points in MSF-g-COOH. On the other hand, at 0.5wt% GO loading, tensile strength and Young modulus of the nanocomposite increased from 139 to 184MPa, and from 5.77 to 8.54GPa, respectively, compared to those of pure MSF-g-COOH. Furthermore, a water-induced model was proposed to discuss the water-induced shape memory behaviors of the MSF-g-COOH/GO nanocomposites. This study provides a framework for developing a cellulose based shape memory polymers (CSMPs) and better understanding the shape recovery mechanism in water-induced CSMPs.
Collapse
Affiliation(s)
- Laifu Song
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yuqi Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| | - Zhongqiang Xiong
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lulu Pan
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qiyun Luo
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xu Xu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Department of Mechanical, Automotive & Materials Engineering, University of Windsor, 401 Sunset Ave, Windsor, ON, N9 B 3P4, Canada
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
41
|
Kari J, Kont R, Borch K, Buskov S, Olsen JP, Cruyz-Bagger N, Väljamäe P, Westh P. Anomeric Selectivity and Product Profile of a Processive Cellulase. Biochemistry 2016; 56:167-178. [PMID: 28026938 DOI: 10.1021/acs.biochem.6b00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellobiohydrolases (CBHs) make up an important group of enzymes for both natural carbon cycling and industrial deconstruction of lignocellulosic biomass. The consecutive hydrolysis of one cellulose strand relies on an intricate pattern of enzyme-substrate interactions in the long, tunnel-shaped binding site of the CBH. In this work, we have investigated the initial complexation mode with cellulose of the most thoroughly studied CBH, Cel7A from Hypocrea jecorina (HjCel7A). We found that HjCel7A predominantly produces glucose when it initiates a processive run on insoluble microcrystalline cellulose, confirming the validity of an even and odd product ratio as an estimate of processivity. Moreover, the glucose released from cellulose was predominantly α-glucose. A link between the initial binding mode of the enzyme and the reducing end configuration was investigated by inhibition studies with the two anomers of cellobiose. A clear preference for β-cellobiose in product binding site +2 was observed for HjCel7A, but not the homologous endoglucanase, HjCe7B. Possible relationships between this anomeric preference in the product site and the prevalence of odd-numbered initial-cut products are discussed, and a correlation between processivity and anomer selectivity is proposed.
Collapse
Affiliation(s)
- Jeppe Kari
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| | - Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu , Tartu, Estonia
| | - Kim Borch
- Novozymes A/S , Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Steen Buskov
- Novozymes A/S , Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Johan Pelck Olsen
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| | | | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu , Tartu, Estonia
| | - Peter Westh
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| |
Collapse
|
42
|
Kubicek CP, Kubicek EM. Enzymatic deconstruction of plant biomass by fungal enzymes. Curr Opin Chem Biol 2016; 35:51-57. [DOI: 10.1016/j.cbpa.2016.08.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
43
|
Shi J, Wu D, Zhang L, Simmons BA, Singh S, Yang B, Wyman CE. Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Biotechnol Bioeng 2016; 114:503-515. [PMID: 27617791 DOI: 10.1002/bit.26180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/29/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Abstract
The enzymatic hydrolysis of cellulose is a thermodynamically challenging catalytic process that is influenced by both substrate-related and enzyme-related factors. In this study, a proteolysis approach was applied to recover and clean the partially converted cellulose at the different stages of enzymatic hydrolysis to monitor the hydrolysis rate as a function of substrate reactivity/accessibility and investigate surface characteristics of the partially converted cellulose. Enzyme-substrate interactions between individual key cellulase components from wild-type Trichoderma reesei and partially converted cellulose were followed and correlated to the enzyme adsorption capacity and dynamic sugar release. Results suggest that cellobiohydrolase CBH1 (Cel7A) and endoglucanases EG2 (Cel5A) adsorption capacities decreased as cellulose was progressively hydrolyzed, likely due to the "depletion" of binding sites. Furthermore, the degree of synergism between CBH1 and EG2 varied depending on the enzyme loading and the substrates. The results provide a better understanding of the relationship between dynamic change of substrate features and the functionality of various cellulase components during enzymatic hydrolysis. Biotechnol. Bioeng. 2017;114: 503-515. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jian Shi
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky
| | - Dong Wu
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Biological and Materials Science Center, Sandia National Laboratories, Livermore, California
| | - Libing Zhang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Biological and Materials Science Center, Sandia National Laboratories, Livermore, California
| | - Bin Yang
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Charles E Wyman
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Department of Chemical and Environmental Engineering, Bourns College of Engineering, Riverside, California.,BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
44
|
Kont R, Kari J, Borch K, Westh P, Väljamäe P. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A. J Biol Chem 2016; 291:26013-26023. [PMID: 27780868 DOI: 10.1074/jbc.m116.756007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/21/2016] [Indexed: 01/27/2023] Open
Abstract
Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase.
Collapse
Affiliation(s)
- Riin Kont
- From the Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Jeppe Kari
- the Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark, and
| | - Kim Borch
- Novozymes A/S, Bagsværd DK-2880, Denmark
| | - Peter Westh
- the Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark, and
| | - Priit Väljamäe
- From the Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia,
| |
Collapse
|
45
|
Nakamura A, Tasaki T, Ishiwata D, Yamamoto M, Okuni Y, Visootsat A, Maximilien M, Noji H, Uchiyama T, Samejima M, Igarashi K, Iino R. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose. J Biol Chem 2016; 291:22404-22413. [PMID: 27609516 DOI: 10.1074/jbc.m116.752048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/24/2016] [Indexed: 11/06/2022] Open
Abstract
Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose Iα The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30-40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose.
Collapse
Affiliation(s)
- Akihiko Nakamura
- From the Okazaki Institute for Integrative Bioscience and.,the Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (SOKENDAI), Kanagawa 240-0193, Japan
| | - Tomoyuki Tasaki
- the Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Daiki Ishiwata
- From the Okazaki Institute for Integrative Bioscience and
| | | | - Yasuko Okuni
- From the Okazaki Institute for Integrative Bioscience and
| | - Akasit Visootsat
- the Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Morice Maximilien
- the National Chemical Engineering Institute in Paris, Paris 75005, France
| | - Hiroyuki Noji
- the Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Taku Uchiyama
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan, and
| | - Masahiro Samejima
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan, and
| | - Kiyohiko Igarashi
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan, and.,the VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Ryota Iino
- From the Okazaki Institute for Integrative Bioscience and .,the Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (SOKENDAI), Kanagawa 240-0193, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Aichi 444-8787, Japan
| |
Collapse
|
46
|
Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzyme Microb Technol 2016; 91:42-51. [DOI: 10.1016/j.enzmictec.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022]
|
47
|
Jana S, Hamre AG, Wildberger P, Holen MM, Eijsink VGH, Beckham GT, Sørlie M, Payne CM. Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases. J Phys Chem B 2016; 120:1236-49. [PMID: 26824449 DOI: 10.1021/acs.jpcb.5b12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microorganisms use a host of enzymes, including processive glycoside hydrolases, to deconstruct recalcitrant polysaccharides to sugars. Processive glycoside hydrolases closely associate with polymer chains and repeatedly cleave glycosidic linkages without dissociating from the crystalline surface after each hydrolytic step; they are typically the most abundant enzymes in both natural secretomes and industrial cocktails by virtue of their significant hydrolytic potential. The ubiquity of aromatic residues lining the enzyme catalytic tunnels and clefts is a notable feature of processive glycoside hydrolases. We hypothesized that these aromatic residues have uniquely defined roles, such as substrate chain acquisition and binding in the catalytic tunnel, that are defined by their local environment and position relative to the substrate and the catalytic center. Here, we investigated this hypothesis with variants of Serratia marcescens family 18 processive chitinases ChiA and ChiB. We applied molecular simulation and free energy calculations to assess active site dynamics and ligand binding free energies. Isothermal titration calorimetry provided further insight into enthalpic and entropic contributions to ligand binding free energy. Thus, the roles of six aromatic residues, Trp-167, Trp-275, and Phe-396 in ChiA, and Trp-97, Trp-220, and Phe-190 in ChiB, have been examined. We observed that point mutation of the tryptophan residues to alanine results in unfavorable changes in the free energy of binding relative to wild-type. The most drastic effects were observed for residues positioned at the "entrances" of the deep substrate-binding clefts and known to be important for processivity. Interestingly, phenylalanine mutations in ChiA and ChiB had little to no effect on chito-oligomer binding, in accordance with the limited effects of their removal on chitinase functionality.
Collapse
Affiliation(s)
- Suvamay Jana
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506-0046, United States
| | - Anne Grethe Hamre
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Patricia Wildberger
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Matilde Mengkrog Holen
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Morten Sørlie
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
48
|
Eide KB, Stockinger LW, Lewin AS, Tøndervik A, Eijsink VG, Sørlie M. The role of active site aromatic residues in substrate degradation by the human chitotriosidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:242-7. [DOI: 10.1016/j.bbapap.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 11/15/2022]
|
49
|
Uchihashi T, Watanabe H, Fukuda S, Shibata M, Ando T. Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy 2016; 160:182-196. [DOI: 10.1016/j.ultramic.2015.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/25/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
|
50
|
Kurašin M, Kuusk S, Kuusk P, Sørlie M, Väljamäe P. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases. J Biol Chem 2015; 290:29074-85. [PMID: 26468285 DOI: 10.1074/jbc.m115.684977] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils.
Collapse
Affiliation(s)
| | - Silja Kuusk
- From the Institutes of Molecular and Cell Biology and
| | - Piret Kuusk
- Physics, University of Tartu, 51010 Tartu, Estonia and
| | - Morten Sørlie
- the Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1432, Norway
| | | |
Collapse
|