1
|
Pan TT, Jiang S, Yuan H, Wang ZY, He MT, Zhang CY. Construction of a chemiluminescent biosensor based on enzymatic extension and click chemistry for sensitive measurement of MGMT activity in human breast tissues. Talanta 2025; 282:127009. [PMID: 39383723 DOI: 10.1016/j.talanta.2024.127009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
O6-methylguanine methyltransferase (MGMT) is responsible for dealkylation of naturally occurring O6-methylguanines, and it is closely related with DNA replication, transcription, and cancers. Herein, we develop a chemiluminescent biosensor based on enzymatic extension and click chemistry for sensitive measurement of MGMT activity. When MGMT is present, the MGMT-catalyzed demethylation reaction initiates the cleavage of biotinylated dumbbell probes by PvuII restrictive enzyme, releasing two DNA fragments with 3'-OH end. The resultant DNA fragments can trigger terminal transferase (TdT)- and click chemistry-assisted isothermal amplification to obtain abundant G-rich sequences. The G-rich sequences can be captured by magnetic beads to produce a high chemiluminescence signal. This biosensor can greatly amplify the chemiluminescence signal, facilitating label-free and template-free measurement of MGMT. Especially, the introduction of dumbbell probe and PvuII enzyme can efficiently eliminate the false positive and improve the assay specificity. This biosensor possesses high sensitivity with a detection limit of 1.4 × 10-9 ng/μL, and it may accurately quantify the intracellular MGMT. Importantly, this biosensor can be used to screen the MGMT inhibitors and distinguish the MGMT level in breast tumor tissues and normal tissues, with great potential in drug discovery and cancer diagnosis.
Collapse
Affiliation(s)
- Ting-Ting Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Huimin Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Mao-Tao He
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Wang ZH, Li J, Liu Q, Qian JC, Li QQ, Wang QY, Zeng LT, Li SJ, Gao X, Pan JX, Gao XF, Wu K, Hu GX, Iwakuma T, Cai JP. A modified nucleoside O6-methyl-2'-deoxyguanosine-5'-triphosphate exhibits anti-glioblastoma activity in a caspase-independent manner. Pharmacol Res 2024; 199:106990. [PMID: 37984506 DOI: 10.1016/j.phrs.2023.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.
Collapse
Affiliation(s)
- Zi-Hui Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Qian Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Chang Qian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Qing Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Yu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Si-Jia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Xin Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Jia-Xin Pan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Xu-Fan Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Wu
- Wu Xi AppTec (Tianjin) Co., Ltd, China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tomoo Iwakuma
- Children's Mercy Research Institute, Kansas City, MO 64108, USA
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
4
|
Kaur R, Aboelnga MM, Nikkel DJ, Wetmore SD. The metal dependence of single-metal mediated phosphodiester bond cleavage: a QM/MM study of a multifaceted human enzyme. Phys Chem Chem Phys 2022; 24:29130-29140. [PMID: 36444615 DOI: 10.1039/d2cp04338f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleases catalyze the cleavage of phosphodiester bonds in nucleic acids using a range of metal cofactors. Although it is well accepted that many nucleases rely on two metal ions, the one-metal mediated pathway is debated. Furthermore, one-metal mediated nucleases maintain activity in the presence of many different metals, but the underlying reasons for this broad metal specificity are unknown. The human apurinic/apyrimidinic endonuclease (APE1), which plays a key role in DNA repair, transcription regulation, and gene expression, is a prototypical example of a one-metal dependent nuclease. Although Mg2+ is the native metal cofactor, APE1 remains catalytically active in the presence of several metals, with the rate decreasing as Mg2+ > Mn2+ > Ni2+ > Zn2+, while Ca2+ completely abolished the activity. The present work uses quantum mechanics-molecular mechanics techniques to map APE1-facilitated phosphodiester bond hydrolysis in the presence of these metals. The structural differences in stationary points along the reaction pathway shed light on the interplay between several factors that allow APE1 to remain catalytically active for various metals, with the trend in the barrier heights correlating with the experimentally reported APE1 catalytic activity. In contrast, Ca2+ significantly changes the metal coordination and active site geometry, and thus completely inhibits catalysis. Our work thereby provides support for the controversial single-metal mediated phosphodiester bond cleavage and clarifies uncertainties regarding the role of the metal and metal identity in this important reaction. This information is key for future medicinal and biotechnological applications including disease diagnosis and treatment, and protein engineering.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
5
|
Insights into the substrate discrimination mechanisms of methyl-CpG-binding domain 4. Biochem J 2021; 478:1985-1997. [PMID: 33960375 DOI: 10.1042/bcj20210017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022]
Abstract
G:T mismatches, the major mispairs generated during DNA metabolism, are repaired in part by mismatch-specific DNA glycosylases such as methyl-CpG-binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). Mismatch-specific DNA glycosylases must discriminate the mismatches against million-fold excess correct base pairs. MBD4 efficiently removes thymine opposite guanine but not opposite adenine. Previous studies have revealed that the substrate thymine is flipped out and enters the catalytic site of the enzyme, while the estranged guanine is stabilized by Arg468 of MBD4. To gain further insights into the mismatch discrimination mechanism of MBD4, we assessed the glycosylase activity of MBD4 toward various base pairs. In addition, we determined a crystal structure of MBD4 bound to T:O6-methylguanine-containing DNA, which suggests the O6 and N2 of purine and the O4 of pyrimidine are required to be a substrate for MBD4. To understand the role of the Arg468 finger in catalysis, we evaluated the glycosylase activity of MBD4 mutants, which revealed the guanidinium moiety of Arg468 may play an important role in catalysis. D560N/R468K MBD4 bound to T:G mismatched DNA shows that the side chain amine moiety of the Lys stabilizes the flipped-out thymine by a water-mediated phosphate pinching, while the backbone carbonyl oxygen of the Lys engages in hydrogen bonds with N2 of the estranged guanine. Comparison of various DNA glycosylase structures implies the guanidinium and amine moieties of Arg and Lys, respectively, may involve in discriminating between substrate mismatches and nonsubstrate base pairs.
Collapse
|
6
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Structural insights into the promutagenic bypass of the major cisplatin-induced DNA lesion. Biochem J 2020; 477:937-951. [PMID: 32039434 DOI: 10.1042/bcj20190906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/06/2023]
Abstract
The cisplatin-1,2-d(GpG) (Pt-GG) intrastrand cross-link is the predominant DNA lesion generated by cisplatin. Cisplatin has been shown to predominantly induce G to T mutations and Pt-GG permits significant misincorporation of dATP by human DNA polymerase β (polβ). In agreement, polβ overexpression, which is frequently observed in cancer cells, is linked to cisplatin resistance and a mutator phenotype. However, the structural basis for the misincorporation of dATP opposite Pt-GG is unknown. Here, we report the first structures of a DNA polymerase inaccurately bypassing Pt-GG. We solved two structures of polβ misincorporating dATP opposite the 5'-dG of Pt-GG in the presence of Mg2+ or Mn2+. The Mg2+-bound structure exhibits a sub-optimal conformation for catalysis, while the Mn2+-bound structure is in a catalytically more favorable semi-closed conformation. In both structures, dATP does not form a coplanar base pairing with Pt-GG. In the polβ active site, the syn-dATP opposite Pt-GG appears to be stabilized by protein templating and pi stacking interactions, which resembles the polβ-mediated dATP incorporation opposite an abasic site. Overall, our results suggest that the templating Pt-GG in the polβ active site behaves like an abasic site, promoting the insertion of dATP in a non-instructional manner.
Collapse
|
8
|
Kou Y, Koag MC, Lee S. Promutagenicity of 8-Chloroguanine, A Major Inflammation-Induced Halogenated DNA Lesion. Molecules 2019; 24:molecules24193507. [PMID: 31569643 PMCID: PMC6804246 DOI: 10.3390/molecules24193507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation is closely associated with cancer development. One possible mechanism for inflammation-induced carcinogenesis is DNA damage caused by reactive halogen species, such as hypochlorous acid, which is released by myeloperoxidase to kill pathogens. Hypochlorous acid can attack genomic DNA to produce 8-chloro-2′-deoxyguanosine (ClG) as a major lesion. It has been postulated that ClG promotes mutagenic replication using its syn conformer; yet, the structural basis for ClG-induced mutagenesis is unknown. We obtained crystal structures and kinetics data for nucleotide incorporation past a templating ClG using human DNA polymerase β (polβ) as a model enzyme for high-fidelity DNA polymerases. The structures showed that ClG formed base pairs with incoming dCTP and dGTP using its anti and syn conformers, respectively. Kinetic studies showed that polβ incorporated dGTP only 15-fold less efficiently than dCTP, suggesting that replication across ClG is promutagenic. Two hydrogen bonds between syn-ClG and anti-dGTP and a water-mediated hydrogen bond appeared to facilitate mutagenic replication opposite the major halogenated guanine lesion. These results suggest that ClG in DNA promotes G to C transversion mutations by forming Hoogsteen base pairing between syn-ClG and anti-G during DNA synthesis.
Collapse
Affiliation(s)
- Yi Kou
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Coitinho JB, Costa MAF, Melo EM, Morais EA, de Andrade LGA, da Rocha AM, de Magalhães MTQ, Favaro DC, Bleicher L, Pedroso ERP, Goes AM, Nagem RAP. Structural and immunological characterization of a new nucleotidyltransferase-like antigen from Paracoccidioides brasiliensis. Mol Immunol 2019; 112:151-162. [PMID: 31108423 DOI: 10.1016/j.molimm.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Pb27 antigen is an interesting alternative to immunological diagnosis of Paracoccidioidomycosis (PCM) and has demonstrated to be protective in experimental PCM. Its tertiary structure and possible function remained unknown till now. To study Pb27 at the atomic level, the recombinant protein was expressed in Escherichia coli BL21(DE3), purified, and its three-dimensional structure was solved by X-ray crystallography. Based on this structure, we performed a residue correlation analysis and in silico ligand search assays to address a possible biological function to Pb27. We identified Pb27 as a member of the extensive nucleotidyltransferase superfamily. The protein has an αβαβαβ topology with two domains (N- and C-terminal domains) and adopts a monomeric form as its biological unit in solution. Structural comparisons with similar members of the superfamily clearly indicate Pb27 C-terminal domain is singular and may play an important role in its biological function. Bioinformatics analysis suggested that Pb27 might bind to ATP and CTP. This suggestion is corroborated by the fact that a magnesium cation is coordinated by two aspartic acid residues present at the active site (between N- and C-terminal domains), as evidenced by X-ray diffraction data. Besides, NMR assays (1H-15N HSQC spectra) confirmed the binding of CTP to Pb27, demonstrating for the first time an interaction between a nucleotide and this protein. Moreover, we evaluated the reactivity of sera from patients with Paracoccidioides brasiliensis infection against the recombinant form of Pb27 and showed that it was recognized by sera from infected and treated patients. Predicted B and T cell epitopes were synthesized and further evaluated against sera of PCM patients, providing information of the most reactive peptides in Pb27 primary structure which interact with specific Pb27 antibodies.
Collapse
Affiliation(s)
- Juliana B Coitinho
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil
| | - Mariana A F Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Eliza M Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Elis A Morais
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Lorena G A de Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Aline M da Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mariana T Q de Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Denize C Favaro
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Enio R P Pedroso
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Alfredo M Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
10
|
Koag MC, Jung H, Lee S. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. J Am Chem Soc 2019; 141:4584-4596. [PMID: 30817143 DOI: 10.1021/jacs.8b08551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species attack DNA to produce 7,8-dihyro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major lesions. The structural basis for the mutagenicity of oxoG, which induces G to T mutations, is well understood. However, the structural basis for the mutagenic potential of oxoA, which induces A to C mutations, remains poorly understood. To gain insight into oxoA-induced mutagenesis, we conducted kinetic studies of human DNA polymerases β and η replicating across oxoA and structural studies of polβ incorporating dTTP/dGTP opposite oxoA. While polη readily bypassed oxoA, it incorporated dGTP opposite oxoA with a catalytic specificity comparable to that of correct insertion, underscoring the promutagenic nature of the major oxidative adenine lesion. Polη and polβ incorporated dGTP opposite oxoA ∼170-fold and ∼100-fold more efficiently than that opposite dA, respectively, indicating that the 8-oxo moiety greatly facilitated error-prone replication. Crystal structures of polβ showed that, when paired with an incoming dTTP, the templating oxoA adopted an anti conformation and formed Watson-Crick base pair. When paired with dGTP, oxoA adopted a syn conformation and formed a Hoogsteen base pair with Watson-Crick-like geometry, highlighting the dual-coding potential of oxoA. The templating oxoA was stabilized by Lys280-mediated stacking and hydrogen bonds. Overall, these results provide insight into the mutagenic potential and dual-coding nature of the major oxidative adenine lesion.
Collapse
Affiliation(s)
- Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
11
|
In vitro lesion bypass by human PrimPol. DNA Repair (Amst) 2018; 70:18-24. [DOI: 10.1016/j.dnarep.2018.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022]
|
12
|
Kou Y, Koag MC, Lee S. Structural and Kinetic Studies of the Effect of Guanine N7 Alkylation and Metal Cofactors on DNA Replication. Biochemistry 2018; 57:5105-5116. [PMID: 29957995 DOI: 10.1021/acs.biochem.8b00331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide variety of endogenous and exogenous alkylating agents attack DNA to preferentially generate N7-alkylguanine (N7-alkylG) adducts. Studies of the effect of N7-alkylG lesions on biological processes have been difficult in part because of complications arising from the chemical lability of the positively charged N7-alkylG, which can readily produce secondary lesions. To assess the effect of bulky N7-alkylG on DNA replication, we prepared chemically stable N7-benzylguanine (N7bnG)-containing DNA and evaluated nucleotide incorporation opposite the lesion by human DNA polymerase β (polβ), a model enzyme for high-fidelity DNA polymerases. Kinetic studies showed that the N7-benzyl-G lesion greatly inhibited dCTP incorporation by polβ. The crystal structure of polβ incorporating dCTP opposite N7bnG showed a Watson-Crick N7bnG:dCTP structure. The polβ-N7bnG:dCTP structure showed an open protein conformation, a relatively disordered dCTP, and a lack of catalytic metal, which explained the inefficient nucleotide incorporation opposite N7bnG. This indicates that polβ is sensitive to major groove adducts in the templating base side and deters nucleotide incorporation opposite bulky N7-alkylG adducts by adopting a catalytically incompetent conformation. Substituting Mg2+ for Mn2+ induced an open-to-closed conformational change due to the presence of catalytic metal and stably bound dCTP and increased the catalytic efficiency by ∼10-fold, highlighting the effect of binding of the incoming nucleotide and catalytic metal on protein conformation and nucleotidyl transfer reaction. Overall, these results suggest that, although bulky alkyl groups at guanine-N7 may not alter base pairing properties of guanine, the major groove-positioned lesions in the template could impede nucleotidyl transfer by some DNA polymerases.
Collapse
Affiliation(s)
- Yi Kou
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Myong-Chul Koag
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
13
|
Insights into the effect of minor groove interactions and metal cofactors on mutagenic replication by human DNA polymerase β. Biochem J 2018; 475:571-585. [PMID: 29301983 DOI: 10.1042/bcj20170787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 11/17/2022]
Abstract
DNA polymerases accommodate various base-pair conformations in the event of incorrect insertions. In particular, Watson-Crick-like dG:dTTP base pair has been observed at the insertion site of human DNA polymerase β (pol β). A potential factor contributing to the diverse conformations of base-pair mismatches is minor groove interactions. To gain insights into the effect of minor groove interactions on base-pair conformations, we generated an Asn279Ala polβ mutant that cannot make minor groove contacts with an incoming nucleotide. We conducted structural and kinetic studies of Asn279Ala polβ in complex with incoming dTTP and templating dG or O6-methyl-dG. The crystal structure of the Asn279Ala polβ-G:T complex showed a wobble dG:dTTP base pair, indicating that the previously observed Watson-Crick-like dG:dTTP conformation was induced by the minor groove contact. In contrast, O6-methyl-dG, an analog of the enol tautomer of guanine, formed a Watson-Crick-like base pair with dTTP in the absence of the minor groove contact. These results suggest that the Watson-Crick-like G:T base pair at the insertion site is formed by the rare enol tautomers of G or T, whose population is increased by the minor groove hydrogen bond with Asn279. Kinetic studies showed that Asn279Ala mutation decreased dG:dTTP misincorporation rate six-fold in the presence of Mg2+ but increased the rate three-fold in the presence of Mn2+, highlighting the effect of minor groove interactions and metal ions on promutagenic replication by polβ.
Collapse
|
14
|
Prakasha Gowda AS, Spratt TE. Active Site Interactions Impact Phosphoryl Transfer during Replication of Damaged and Undamaged DNA by Escherichia coli DNA Polymerase I. Chem Res Toxicol 2017; 30:2033-2043. [PMID: 29053918 DOI: 10.1021/acs.chemrestox.7b00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replicative DNA polymerases are able to discriminate between very similar substrates with high accuracy. One mechanism by which E. coli DNA polymerase I checks for Watson-Crick geometry is through a hydrogen bonding fork between Arg668 and the incoming dNTP and the minor groove of the primer terminus. The importance of the Arg-fork was examined by disrupting it with either a guanine to 3-deazaguanine substitution at the primer terminus or the use of a carbocyclic deoxyribose analog of dUTP. Using thio-substituted dNTPs and differential quench techniques, we determined that when the Arg-fork was disrupted, the rate-limiting step changed from a conformational change to phosphodiester bond formation. This result indicates that Arg668 is involved in the phosphoryl transfer step. We examined the role of the Arg-fork in the replication of four DNA damaged templates, O6-methylguanine (O6-mG), 8-oxo-7,8-dihydroguanine (oxoG), O2-[4-(3-pyridyl)-4-oxobutyl]thymine (O2-POB-T), and N2-[(7S,8R,9S,10R)-7,8,9,10-tetrahydro-8,9,10-trihydroxybenzo[a]pyren-7-yl]-guanine (N2-BP-G). In general, the guanine to 3-deazaguanine substitution caused a decrease in kpol that was proportional to kpol over five orders of magnitude. The linear relationship indicates that the Arg668-fork helps catalyze phosphoryl transfer by the same mechanism with all the substrates. Exceptions to the linear relationship were the incorporations of dTTP opposite G, oxoG, and O6mG, which showed large decreases in kpol, similar to that exhibited by the Watson-Crick base pairs. It was proposed that the incorporation of dTTP opposite G, oxoG, and O6mG occurred via Watson-Crick-like structures.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Thomas E Spratt
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| |
Collapse
|
15
|
Mahmoud MM, Schechter A, Alnajjar KS, Huang J, Towle-Weicksel J, Eckenroth BE, Doublié S, Sweasy JB. Defective Nucleotide Release by DNA Polymerase β Mutator Variant E288K Is the Basis of Its Low Fidelity. Biochemistry 2017; 56:5550-5559. [PMID: 28945359 DOI: 10.1021/acs.biochem.7b00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA polymerases synthesize new DNA during DNA replication and repair, and their ability to do so faithfully is essential to maintaining genomic integrity. DNA polymerase β (Pol β) functions in base excision repair to fill in single-nucleotide gaps, and variants of Pol β have been associated with cancer. Specifically, the E288K Pol β variant has been found in colon tumors and has been shown to display sequence-specific mutator activity. To probe the mechanism that may underlie E288K's loss of fidelity, a fluorescence resonance energy transfer system that utilizes a fluorophore on the fingers domain of Pol β and a quencher on the DNA substrate was employed. Our results show that E288K utilizes an overall mechanism similar to that of wild type (WT) Pol β when incorporating correct dNTP. However, when inserting the correct dNTP, E288K exhibits a faster rate of closing of the fingers domain combined with a slower rate of nucleotide release compared to those of WT Pol β. We also detect enzyme closure upon mixing with the incorrect dNTP for E288K but not WT Pol β. Taken together, our results suggest that E288K Pol β incorporates all dNTPs more readily than WT because of an inherent defect that results in rapid isomerization of dNTPs within its active site. Structural modeling implies that this inherent defect is due to interaction of E288K with DNA, resulting in a stable closed enzyme structure.
Collapse
Affiliation(s)
- Mariam M Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Allison Schechter
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Khadijeh S Alnajjar
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Ji Huang
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Jamie Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont , Burlington, Vermont 05405, United States
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont , Burlington, Vermont 05405, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States.,Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
16
|
Wu WJ, Yang W, Tsai MD. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0068] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Cheun Y, Koag MC, Naguib YW, Ouzon-Shubeita H, Cui Z, Pakotiprapha D, Lee S. Synthesis, structure, and biological evaluation of a platinum-carbazole conjugate. Chem Biol Drug Des 2017. [PMID: 28649747 DOI: 10.1111/cbdd.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cisplatin resistance is caused, in part, by the efficient removal of the helix-distorting cisplatin 1,2-intrastrand cross-links by nucleotide excision repair (NER) machinery. To make a platinum-DNA adduct that causes less helical distortion than the cisplatin 1,2-intrastrand adduct, we designed and synthesized a monofunctional platinum-carbazole conjugate (carbazoplatin). The 2.5 Å crystal structure of carbazoplatin-DNA adduct revealed both the monoplatination of the N7 of a guanine (G) base and the intercalation into two G:C base pairs, while causing a minor distortion of the DNA helix. A 50-mer dsDNA containing a single carbazoplatin lesion was poorly processed by UvrABC endonuclease, the prokaryotic NER machinery that detects helical distortion and performs dual incision around the lesion. Our cell viability assay indicated that the cytotoxic pathways of carbazoplatin might be different from those of cisplatin; carbazoplatin was 5-8 times more cytotoxic than cisplatin against PANC-1 and MDA-MB-231 cancer cell lines.
Collapse
Affiliation(s)
- Young Cheun
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Myong-Chul Koag
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Youssef W Naguib
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hala Ouzon-Shubeita
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Zhengrong Cui
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center of Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Gu S, Xiong J, Shi Y, You J, Zou Z, Liu X, Zhang H. Error-prone bypass of O 6-methylguanine by DNA polymerase of Pseudomonas aeruginosa phage PaP1. DNA Repair (Amst) 2017. [PMID: 28651167 DOI: 10.1016/j.dnarep.2017.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O6-Methylguanine (O6-MeG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, generally leads to G:C to A:T mutagenesis. To study DNA replication encountering O6-MeG by the DNA polymerase (gp90) of P. aeruginosa phage PaP1, we analyzed steady-state and pre-steady-state kinetics of nucleotide incorporation opposite O6-MeG by gp90 exo-. O6-MeG partially inhibited full-length extension by gp90 exo-. O6-MeG greatly reduces dNTP incorporation efficiency, resulting in 67-fold preferential error-prone incorporation of dTTP than dCTP. Gp90 exo- extends beyond T:O6-MeG 2-fold more efficiently than C:O6-MeG. Incorporation of dCTP opposite G and incorporation of dCTP or dTTP opposite O6-MeG show fast burst phases. The pre-steady-state incorporation efficiency (kpol/Kd,dNTP) is decreased in the order of dCTP:G>dTTP:O6-MeG>dCTP:O6-MeG. The presence of O6-MeG at template does not affect the binding affinity of polymerase to DNA but it weakened their binding in the presence of dCTP and Mg2+. Misincorporation of dTTP opposite O6-MeG further weakens the binding affinity of polymerase to DNA. The priority of dTTP incorporation opposite O6-MeG is originated from the fact that dTTP can induce a faster conformational change step and a faster chemical step than dCTP. This study reveals that gp90 bypasses O6-MeG in an error-prone manner and provides further understanding in DNA replication encountering mutagenic alkylation DNA damage for P. aeruginosa phage PaP1.
Collapse
Affiliation(s)
- Shiling Gu
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ying Shi
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jia You
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhenyu Zou
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xiaoying Liu
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Simonelli V, Leuzzi G, Basile G, D'Errico M, Fortini P, Franchitto A, Viti V, Brown AR, Parlanti E, Pascucci B, Palli D, Giuliani A, Palombo F, Sobol RW, Dogliotti E. Crosstalk between mismatch repair and base excision repair in human gastric cancer. Oncotarget 2016; 8:84827-84840. [PMID: 29156686 PMCID: PMC5689576 DOI: 10.18632/oncotarget.10185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/23/2016] [Indexed: 12/05/2022] Open
Abstract
DNA repair gene expression in a set of gastric cancers suggested an inverse association between the expression of the mismatch repair (MMR) gene MLH1 and that of the base excision repair (BER) gene DNA polymerase β (Polβ). To gain insight into possible crosstalk of these two repair pathways in cancer, we analysed human gastric adenocarcinoma AGS cells over-expressing Polβ or Polβ active site mutants, alone or in combination with MLH1 silencing. Next, we investigated the cellular response to the alkylating agent methyl methanesulfonate (MMS) and the purine analogue 6-thioguanine (6-TG), agents that induce lesions that are substrates for BER and/or MMR. AGS cells over-expressing Polβ were resistant to 6-TG to a similar extent as when MLH1 was inactivated while inhibition of O6-methylguanine-DNA methyltransferase (MGMT) was required to detect resistance to MMS. Upon either treatment, the association with MLH1 down-regulation further amplified the resistant phenotype. Moreover, AGS cells mutated in Polβ were hypersensitive to both 6-TG and MMS killing and their sensitivity was partially rescued by MLH1 silencing. We provide evidence that the critical lethal lesions in this new pathway are double strand breaks that are exacerbated when Polβ is defective and relieved when MLH1 is silenced. In conclusion, we provide evidence of crosstalk between MLH1 and Polβ that modulates the response to alkylation damage. These studies suggest that the Polβ/MLH1 status should be taken into consideration when designing chemotherapeutic approaches for gastric cancer.
Collapse
Affiliation(s)
- Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Leuzzi
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgia Basile
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Annapaola Franchitto
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Viti
- Istituto di Ricerche Biologia Molecolare P. Angeletti (IRBM), Pomezia (Rome), Italy
| | - Ashley R Brown
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Cristallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, CSPO, Scientific Institute of Tuscany, Florence, Italy
| | - Alessandro Giuliani
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | | - Robert W Sobol
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
20
|
Liu MS, Tsai HY, Liu XX, Ho MC, Wu WJ, Tsai MD. Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ. J Am Chem Soc 2016; 138:2389-98. [PMID: 26836966 DOI: 10.1021/jacs.5b13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanism of DNA polymerase (pol) fidelity is of fundamental importance in chemistry and biology. While high-fidelity pols have been well studied, much less is known about how some pols achieve medium or low fidelity with functional importance. Here we examine how human DNA polymerase λ (Pol λ) achieves medium fidelity by determining 12 crystal structures and performing pre-steady-state kinetic analyses. We showed that apo-Pol λ exists in the closed conformation, unprecedentedly with a preformed MgdNTP binding pocket, and binds MgdNTP readily in the active conformation in the absence of DNA. Since prebinding of MgdNTP could lead to very low fidelity as shown previously, it is attenuated in Pol λ by a hydrophobic core including Leu431, Ile492, and the Tyr505/Phe506 motif. We then predicted and demonstrated that L431A mutation enhances MgdNTP prebinding and lowers the fidelity. We also hypothesized that the MgdNTP-prebinding ability could stabilize a mismatched ternary complex and destabilize a matched ternary complex, and provided evidence with structures in both forms. Our results demonstrate that, while high-fidelity pols follow a common paradigm, Pol λ has developed specific conformations and mechanisms for its medium fidelity. Structural comparison with other pols also suggests that different pols likely utilize different conformational changes and microscopic mechanisms to achieve their catalytic functions with varying fidelities.
Collapse
Affiliation(s)
- Mu-Sen Liu
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | | | | | - Meng-Chiao Ho
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | | | - Ming-Daw Tsai
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
21
|
DNA polymerases β and λ and their roles in cell. DNA Repair (Amst) 2015; 29:112-26. [DOI: 10.1016/j.dnarep.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
22
|
Koag MC, Lai L, Lee S. Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β. J Biol Chem 2014; 289:31341-8. [PMID: 25237188 DOI: 10.1074/jbc.m114.605451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human DNA polymerase β (polβ) has been suggested to play a role in cisplatin resistance, especially in polβ-overexpressing cancer cells. Polβ has been shown to accurately albeit slowly bypass the cisplatin-1,2-d(GpG) (Pt-GG) intramolecular cross-link in vitro. Currently, the structural basis for the inefficient Pt-GG bypass mechanism of polβ is unknown. To gain structural insights into the mechanism, we determined two ternary structures of polβ incorporating dCTP opposite the templating Pt-GG lesion in the presence of the active site Mg(2+) or Mn(2+). The Mg(2+)-bound structure shows that the bulky Pt-GG adduct is accommodated in the polβ active site without any steric hindrance. In addition, both guanines of the Pt-GG lesion form Watson-Crick base pairing with the primer terminus dC and the incoming dCTP, providing the structural basis for the accurate bypass of the Pt-GG adduct by polβ. The Mn(2+)-bound structure shows that polβ adopts a catalytically suboptimal semiclosed conformation during the insertion of dCTP opposite the templating Pt-GG, explaining the inefficient replication across the Pt-GG lesion by polβ. Overall, our studies provide the first structural insights into the mechanism of the potential polβ-mediated cisplatin resistance.
Collapse
Affiliation(s)
- Myong-Chul Koag
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| | - Lara Lai
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| | - Seongmin Lee
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| |
Collapse
|
23
|
Koag MC, Nam K, Lee S. The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β. Nucleic Acids Res 2014; 42:11233-45. [PMID: 25200079 PMCID: PMC4176172 DOI: 10.1093/nar/gku789] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To provide molecular-level insights into the spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β (polβ), we report four crystal structures of polβ complexed with dG•dTTP and dA•dCTP mismatches in the presence of Mg2+ or Mn2+. The Mg(2+)-bound ground-state structures show that the dA•dCTP-Mg2+ complex adopts an 'intermediate' protein conformation while the dG•dTTP-Mg2+ complex adopts an open protein conformation. The Mn(2+)-bound 'pre-chemistry-state' structures show that the dA•dCTP-Mn2+ complex is structurally very similar to the dA•dCTP-Mg2+ complex, whereas the dG•dTTP-Mn2+ complex undergoes a large-scale conformational change to adopt a Watson-Crick-like dG•dTTP base pair and a closed protein conformation. These structural differences, together with our molecular dynamics simulation studies, suggest that polβ increases replication fidelity via a two-stage mismatch discrimination mechanism, where one is in the ground state and the other in the closed conformation state. In the closed conformation state, polβ appears to allow only a Watson-Crick-like conformation for purine•pyrimidine base pairs, thereby discriminating the mismatched base pairs based on their ability to form the Watson-Crick-like conformation. Overall, the present studies provide new insights into the spontaneous replication error and the replication fidelity mechanisms of polβ.
Collapse
Affiliation(s)
- Myong-Chul Koag
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kwangho Nam
- Department of Chemistry and Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| | - Seongmin Lee
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
24
|
Koag MC, Kou Y, Ouzon-Shubeita H, Lee S. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Nucleic Acids Res 2014; 42:8755-66. [PMID: 24966350 PMCID: PMC4117778 DOI: 10.1093/nar/gku554] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
N7-Methyl-2′-deoxyguanosine (m7dG) is the predominant lesion formed by methylating agents. A systematic investigation on the effect of m7dG on DNA replication has been difficult due to the chemical instability of m7dG. To gain insights into the m7dG effect, we employed a 2′-fluorine-mediated transition-state destabilzation strategy. Specifically, we determined kinetic parameters for dCTP insertion opposite a chemically stable m7dG analogue, 2′-fluoro-m7dG (Fm7dG), by human DNA polymerase β (polβ) and solved three X-ray structures of polβ in complex with the templating Fm7dG paired with incoming dCTP or dTTP analogues. The kinetic studies reveal that the templating Fm7dG slows polβ catalysis ∼300-fold, suggesting that m7dG in genomic DNA may impede replication by some DNA polymerases. The structural analysis reveals that Fm7dG forms a canonical Watson–Crick base pair with dCTP, but metal ion coordination is suboptimal for catalysis in the polβ-Fm7dG:dCTP complex, which partially explains the slow insertion of dCTP opposite Fm7dG by polβ. In addition, the polβ-Fm7dG:dTTP structure shows open protein conformations and staggered base pair conformations, indicating that N7-methylation of dG does not promote a promutagenic replication. Overall, the first systematic studies on the effect of m7dG on DNA replication reveal that polβ catalysis across m7dG is slow, yet highly accurate.
Collapse
Affiliation(s)
- Myong-Chul Koag
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Kou
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hala Ouzon-Shubeita
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Seongmin Lee
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|